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Abstract

The use of codon substitution models to compare synonymous and nonsynonymous substitution rates is a
widely used approach to detecting positive Darwinian selection affecting protein evolution. However, in several
recent papers, Hughes and colleagues claim that codon-based likelihood-ratio tests (LRTs) are logically flawed as
they lack prior hypotheses and fail to accommodate random fluctuations in synonymous and nonsynonymous
substitutions Friedman and Hughes (2007) also used site-based LRTs to analyze 605 gene families consisting of
human and mouse paralogues. They found that the outcome of the tests was largely determined by irrelevant
factors such as the GC content at the third codon positions and the synonymous rate dS, but not by the
nonsynonymous rate dN or the dN/dS ratio, factors that should be related to selection. Here, we reanalyze those
data. Contra Friedman and Hughes, we found that the test results are related to sequence length and the average
dN/dS ratio. We examine the criticisms of Hughes and suggest that they are based on misunderstandings of the
codon models and on statistical errors. Our analyses suggest that codon-based tests are useful tools for
comparative analysis of genomic data sets.

Key words: codon model, Darwinian selection, likelihood-ratio test.

Introduction
It has long been realized that synonymous and nonsynon-
ymous substitution rates can be compared to infer the di-
rection and strength of natural selection acting on the
protein (Kimura 1977). A number of methods were devel-
oped to estimate the numbers of synonymous and nonsy-
nonymous substitutions per site (dS and dN) between two
sequences (for review, see Yang 2006a). Applications of
those methods to real data painted a picture of protein
evolution dominated by purifying selection eliminating del-
eterious nonsynonymous mutations, with dN , dS. How-
ever, such pairwise comparisons lack power to detect
positive selection as they average rates over all codons
in the gene and over the whole time period separating
the two sequences. Simultaneous comparison of many se-
quences using codon models (Goldman and Yang 1994;
Muse and Gaut 1994) allows more sophisticated likelihood
ratio tests (LRTs) to be constructed (Anisimova and Kosiol
2009). To improve power, the models focus on particular
branches on the tree or individual codons in the gene, such
as the ‘‘branch models’’ (Yang 1998), the ‘‘site models’’
(Nielsen and Yang 1998; Yang et al. 2000; Kosakovsky Pond
and Muse 2005; Massingham and Goldman 2005;
Rubinstein et al. 2011), and the ‘‘branch-site models’’ (Yang
and Nielsen 2002; Yang et al. 2005). In several recent papers,

Hughes and colleagues (Hughes 2007; Friedman and
Hughes 2007; Hughes and Friedman 2008; Hughes 2012)
raised a number of philosophical criticisms on the use
of codon models to detect positive selection on the pro-
tein. They claim that the site-based tests lack prior hypoth-
esis and fail to account for random fluctuations of
substitutions in the gene. We examine those criticisms be-
low. Additionally, Friedman and Hughes (2007), referred to
later as ‘‘FH07,’’ applied site-based LRTs (see table 1) to an-
alyze human and mouse paralogous genes and found that
the outcome of the LRTs was largely determined by the
sequence length, the GC content at the third codon posi-
tion, and dS, factors that should have little to do with
selection on the protein, but not by dN or the dN/dS ratio,
factors that should reflect the action of selection. Those
results are surprising, and if true, may cast doubts on
the performance of the codon-based LRTs.

Reanalysis of the Data of FH07
We reanalyzed the 605 gene families of FH07, with the results
summarized in table 2. FH07 found 329 (54.5%) alignments
in which at least one of the M1–M2 and M7–M8 tests (see
table 1) detected positive selection at the 5% level. This pro-
portion is very high and does not seem convincing, as sug-
gested by FH07. In contrast, the corresponding figure from
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our reanalysis using the same models in PAML 3.13 was only
63 (10%). Our efforts to reproduce the results of FH07 have
not been successful. The large differences are not due to dif-
ferent versions of the PAML software and are unlikely to be
due to numerical problems. We suspect that FH07 failed to
apply the correct criterion in declaring positive selection by
the tests (see table 1). At any rate the criticisms of FH07 on
the codon models are based on incorrect results and are
unfounded.

We also analyzed the data of FH07 using the M1a–M2a
and the M8a–M8 tests using PAML version 4.4 (table 1).
The M1a–M2a test identified 18 gene alignments with sig-
nificant signal of positive selection, compared with 7 by the
M1–M2 test (table 2). The M7–M8 test identified 64 genes
to be under positive selection while the M8a–M8 test iden-
tified 63, both including as a subset the 18 genes identified
by the M1a–M2a test. As noted previously (Wong et al.
2004), the M1a–M2a test tends to be more stringent than
the M7–M8 test. In 14 gene alignments, M2a identified at
least one codon with the Bayes empirical Bayes (BEB) pos-
terior probability for positive selection, P . 95%. For M8,
this number is 31, including the 14 cases from M2a. For
those data, the results for PAML versions 3.13 and 4.4 are
very similar, and both are very different from those of FH07.

Following FH07, we examined the impact of various
factors on the outcome of the LRTs. The results are
summarized in supplementary table S1 (Supplementary
Material online). FH07 found that the test outcome
was significantly correlated with sequence length, GC3

and mean synonymous substitution rate ð�dSÞ; but not
with mean nonsynonymous substitution rate ð�dNÞ or
mean dN/dS ratio ð�xÞ: In contrast, we found that the test
outcome is significantly influenced by the sequence
length (P , 0.05, Kruskal–Wallis test), as in FH07, and
by the mean dN/dS ratio �x (P, 0.05, Kruskal–Wallis test),
but not with GC3, �dS, or �dN: The impact of sequence
length is as expected, as the test tends to be more power-
ful in larger data sets (Anisimova et al. 2001). The corre-
lation with �x is not hard to explain since on average high
dN/dS ratios may indicate positive selection driving amino
acid changes, although a strong correlation is not auto-
matically expected. The LRTs considered here accommo-
date variable x ratios across codons so that the test may
be significant even if most codons in the gene are under
strong purifying selection while a few codons experience
accelerated nonsynonymous substitutions driven by pos-
itive selection without elevating substantially the average
ratio �x.

Table 1. Site Models Implemented in Different Versions of the CODEML Program.

Model code p Parameters Software References

M0 (one-ratio) 1 v
M1 (neutral) 1 p0, p1 PAML 3.13 Nielsen and Yang (1998)

v0 5 0, v1 5 1
M2 (selection) 3 p0, p1, p2 PAML 3.13 Nielsen and Yang (1998)

v0 5 0, v1 5 1, v2

M1a (neutral) 2 p0, p1 PAML 3.14 or later Wong et al. (2004) and Yang et al. (2005)
v0 < 1, v1 5 1

M2a (selection) 4 p0, p1, p2 PAML 3.14 or later Wong et al. (2004) and Yang et al. (2005)
v0 < 1, v1 5 1, v2 > 1

M7 (beta) 2 p, q PAML 3.13 or later Yang et al. (2000)
M8a (beta and v 5 1) 3 p0, p, q, vs 5 1 PAML 3.13 or later Swanson et al. (2003) and Wong et al. (2004)
M8 (beta and v) 4 p0, p, q, vs > 1 PAML 3.13 or later Yang et al. (2000) and Yang et al. (2005)

NOTE.—p is the number of free parameters. Three LRTs are constructed to compare the following pairs of models: M1–M2, M1a–M2a, and M7–M8. For each test, positive
selection is inferred if 2D‘.5:99, x̂.1, and p̂251 � p̂0 � p̂1.0: A fourth LRT compares M8a against M8, with the 1:1 mixture of 0 and v2

1 used to conduct the test so that
positive selection is inferred if 2D‘.2:71: The differences between the two PAML versions are as follows: (1) In M1 and M2 (PAML 3.13, released in 2002), x0 5 0, while
M1a and M2a (versions 3.14, September 2004, or later) have 0 , x0 , 1. (2) In version 3.13, only the naı̈ve empirical Bayes (NEB) method (Nielsen and Yang 1998) is
available, while version 3.14 added the BEB method (Yang et al. 2005). (3) In version 3.13, x2 in M2 and xs in M8 (beta and x) are estimated over the range (0, N). In
version 3.14 or later, they are estimated over the range (1, N).

Table 2. Numbers of Genes Showing Significant (at the 5% level) Evidence of Positive Selection by Different Tests.

M7/M8 Not Significant M7/M8 Significant

FH07 (From Friedman and Hughes 2007)
M1/M2 not significant 275 (45.5%) 120 (19.9%)
M1/M2 significant 102 (16.9%) 107 (17.7%)

PAML 3.13
M1/M2 not significant 542 (89.6%) 56 (9.3%)
M1/M2 significant 1 (0.17%) 6 (1.0%)

PAML 4.4
M1a/M2a not significant 541 (89.4%) 46 (7.6%)
M1a/M2a significant 0 (0%) 18 (3.0%)

PAML 4.4a

M1a/M2a not significant 542 (89.6%) 45 (7.4%)
M1a/M2a significant 0 (0%) 18 (3.0%)

NOTE.—aThe M8a–M8 comparison was used instead of the M7–M8 comparison.
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As in FH07, we examined whether the set of genes show-
ing evidence of positive selection tend to have certain tree
topologies (supplementary table S2, Supplementary Mate-
rial online). Like FH07, we found no strong and clear asso-
ciation between the outcome of the LRTs and the tree
topology. However, the results from the two studies are
in all other aspects quite different.

Do the LRTs Based on the Site Models Lack a Prior
Hypothesis?
Hughes (2007) criticized the site-based LRTs (Nielsen and
Yang 1998; Yang et al. 2000) and the parsimony method of
Suzuki and Gojobori (1999) for lacking prior biological hy-
potheses about which codons are potentially under posi-
tive selection, likening them to an undirected ‘‘fishing
expedition’’ (Hughes and Friedman 2008). Hughes values
the approach taken by Hughes and Nei (1988) to analyze
the Major Histocompatibility Complex (MHC) genes, where
the overdominance theory of Doherty and Zinkernagel
(1975) and the availability of a crystal structure (Bjorkman
et al. 1987) led to the hypothesis that the antigen recog-
nition site (ARS) may be the target of positive selection.
This hypothesis was confirmed when Hughes and Nei
showed that the ARS domain experienced accelerated non-
synonymous substitutions. Hughes (2007) criticized the
site-based methods for lacking such a prior biological
hypothesis.

Nevertheless, the LRTs based on the site models are
based on a priori well-specified statistical hypotheses, de-
rived from our biological knowledge of the effects of nat-
ural selection. For example, the null hypothesis M1a
(neutral) assumes two site classes with 0 , x0 , 1 and
x1 5 1, but does not allow for sites with x . 1. The al-
ternative hypothesis M2a (selection) adds another site class
with x2 . 1. Strong preference for M2a over M1a will be
statistical evidence for the presence of codons at which
nonsynonymous mutations have elevated fixation proba-
bilities relative to synonymous mutations, the hallmark
of positive selection driving amino acid changes. To test
whether there exist amino acid residues under positive se-
lection, one does not have to know where such residues
may be. Such hypothesis testing need not be based on
knowledge of the mechanisms of adaptive evolution. Nev-
ertheless, such information, if available, can be used in the
test (Yang and Swanson 2002).

In most cases, we lack prior knowledge of where in each
gene positive selection may be acting. LRTs can still be val-
idly used to identify genes showing previously unsuspected
signals of selection—‘‘fishing expeditions’’ may actually find
and catch fish. Given a significant test result, statistical
methods exist to identify sites under positive selection
(e.g., Yang et al. 2005). Indeed, this is a major strength
of those methods: by narrowing down amino acid changes
that must be examined in the laboratory using site-directed
mutagenesis, those methods may provide useful guidance
for experimental work. Numerous examples now exist in
which the results of such statistical analysis were validated

by functional assays in the laboratory (e.g., Bielawski et al.
2004; Sawyer et al. 2005; Deng et al. 2010; Moury and Simon
2011). Even when structural information is available, it is
rarely precise enough to pinpoint codons under positive
selection, and the site-based model may still be very useful.
This appears to be precisely the case with the MHC, the
exemplar of positive selection, as demonstrated by Yang
and Swanson (2002).

Does Random Fluctuation of Synonymous and
Nonsynonymous Substitutions in a Codon
Invalidate the Site-Based LRTs?
Hughes (2007; see also Hughes and Friedman 2005, 2008)
claims that tests based on identifying codons with
dN/dS . 1 are logically flawed because ‘‘all molecular data
sets, even in the absence of positive selection, are likely to
include some codons with x. 1.’’ We suggest that such an
argument confuses statistics with parameters. A parameter
is a fixed constant that characterizes the population, while
a statistic is a summary or estimate from the data and fluc-
tuates among data sets. Part of the confusion may have
resulted from the practice of using dN/dS to refer to both
the parameter (x) and its estimate (x̂ or dN/dS). Statistical
hypotheses underlying the LRTs are formulated using pa-
rameters (the true unobserved x ratios), while the dN/dS

(or x̂ ) ratios that Hughes and Friedman (2005, 2008)
calculated from the data are statistics (Yang 2006b). The
error is most apparent in the calculation of Hughes and
Friedman (2008: equations 1–6) of the probability of ob-
serving a codon with no synonymous differences and
one or more nonsynonymous differences, as if the LRT
would be significant in every data set containing such co-
dons. The authors are correct to claim that such codons
can occur by chance even if selection is purifying; they
are wrong to believe that in every such data set the LRT
will be significant. One can easily design a simulation ex-
periment in which such codons occur in nearly every data
set so that the argument of Hughes and Friedman would
suggest the false positive rate of the LRT to be ;100%,
whereas in reality it is ,5% (Supplementary Material on-
line). Even if the estimated x ratio is infinity, if the estimate
is based on very few changes the LRT will not be significant.
Dealing with random fluctuations in the data is indeed the
essence and purpose of a statistical test.

The Impact of Model Violation
A further criticism we seek to lay to rest is that ‘‘LRTs are
invalid if neither of the two models compared is true.’’
Criticisms in this area are old and have been answered be-
fore. As the statistician Box (1979) stated, ‘‘Models are
never true, but fortunately it is only necessary that they
be useful. For this it is usually needful only that they
not be grossly wrong.’’ Although model violation is a con-
cern, a number of simulation studies have examined the
statistical properties (such as robustness) of codon-based
tests, including the site-based tests (Anisimova et al. 2001,
2002; Wong et al. 2004), the branch-site test (Yang et al.
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2005; Zhang et al. 2005; Yang and dos Reis 2011), and the
BEB identification of sites (Anisimova et al. 2002). For exam-
ple, the site-based tests were found to be quite robust to
misspecification of the functional form used to model vari-
able xs among sites (Anisimova et al. 2002; Wong et al.
2004), to the tree topology, and to among-site variability
in other aspects of the substitution process (such as the tran-
sition/transversion rate ratio, codon usage, and dS) (Bao et al.
2008). They are nevertheless sensitive to excessive recombi-
nations (Anisimova et al. 2003; Shriner et al. 2003; Wilson
and McVean 2006) and to sequence and alignment errors
(Schneider et al. 2009; Fletcher and Yang 2010; Markova-
Raina and Petrov 2011; Jordan and Goldman 2012). Further-
more, substantial progress has been made in improving co-
don models in the past 10–15 years (Rubinstein et al. 2011;
Cannarozzi and Schneider 2012).

In summary, statistical tests throughout the biological
sciences are not perfect, do not have perfect power and
zero error, and cases can always be found where they mis-
lead or fail. Nevertheless, they give us a means to progress
and learn. Furthermore, those tests are constantly being
improved upon, to become more powerful and robust.

Materials and Methods
The alignments of FH07 for 605 gene families with two hu-
man and two mouse paralogues were retrieved from the
Molecular Phylogenetics and Evolution Web site. Alignment
gaps were removed in FH07. The phylogeny was easily in-
ferred and was either tree I: (H1, M1) � (H2, M2) or tree II:
(H1, H2) � (M1, M2), with gene duplication either before or
after species split, respectively.

Following FH07, we applied two LRTs comparing site
models M1 (neutral) against M2 (selection), and M7 (beta)
against M8 (beta and x). FH07 appears to have used the
CODEML program in PAML version 3.13, and we used the
same version. In addition, we applied the LRTs comparing
the modified models M1a (neutral) against M2a (selection),
and M8a against M8, using the current PAML version 4.4.

We also followed FH07 to examine possible relationships
between the LRT results and five features of the gene align-
ment: the sequence length (the number of codons), mean
GC content at third codon positions (GC3), mean dS ð�dSÞ,
mean dN ð�dNÞ; and mean dN/dS ð�xÞ; all calculated by av-
eraging over all pairwise comparisons.

Supplementary Material
Supplementary material and tables S1 and S2 are available
at Molecular Biology and Evolution online (http://www.mbe.
oxfordjournals.org/).
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