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Abstract

We implement an isolation with migration model for three species, with migration occurring between two closely related
species while an out-group species is used to provide further information concerning gene trees and model parameters.
The model is implemented in the likelihood framework for analyzing multilocus genomic sequence alignments, with one
sequence sampled from each of the three species. The prior distribution of gene tree topology and branch lengths at every
locus is calculated using a Markov chain characterization of the genealogical process of coalescent and migration, which
integrates over the histories of migration events analytically. The likelihood function is calculated by integrating over
branch lengths in the gene trees (coalescent times) numerically. We analyze the model to study the gene tree-species tree
mismatch probability and the time to the most recent common ancestor at a locus. The model is used to construct
a likelihood ratio test (LRT) of speciation with gene flow. We conduct computer simulations to evaluate the LRT and
found that the test is in general conservative, with the false positive rate well below the significance level. For the test to
have substantial power, hundreds of loci are needed. Application of the test to a human–chimpanzee–gorilla genomic
data set suggests gene flow around the time of speciation of the human and the chimpanzee.
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Introduction
Genomic sequences from closely related species provide
valuable information about the speciation process, such
as the absence or presence of gene flow at the time of species
formation (Patterson et al. 2006; Burgess and Yang 2008).
However extracting such information requires probabilistic
modeling of the genealogical relationships among sequences
and powerful statistical inference methods that can take ac-
count of information and uncertainties from different sour-
ces, including gene tree-species tree conflicts due to
ancestral polymorphism and lineage sorting, and uncertain-
ties in the gene trees due to limited genetic variation at every
locus, etc. In particular, the coalescent process is known to
be highly variable and can create large fluctuations among
loci or among genomic regions (Barton 2006).

Yang (2010) developed a likelihood ratio test (LRT) of
speciation with gene flow, using genomic sequence data
from three species (two closely related species 1 and 2 plus
an out-group species 3), with one sequence sampled from
each species. Gene flow at the time of split of species 1 and
2 is modeled as variation in the divergence time between
species 1 and 2 across the genome, and the model is com-
pared with a null model that assumes a constant diver-
gence time. The model is implemented in the likelihood

framework, with numerical integration used to average
over coalescent times in the gene trees. Migration or gene
flow is not explicitly considered in the model, which is thus
only an approximate description of the genealogical pro-
cess under the ‘‘isolation-with-migration’’ (IM) model.

IM models were implemented by Hey and Nielsen (2004)
in the IM and IMa programs for two populations and have
recently been extended to an arbitrary number of popula-
tions by Hey (2010a). Markov chain Monte Carlo (MCMC)
algorithms are used to average over the gene tree topolo-
gies, the coalescent times, and the histories of migration
events. The algorithm has to integrate over the number,
directions, and times of migration events at every locus.
While there are s – 1 coalescent times to integrate over
in a gene tree for s sequences, there is no upper limit to
the number of migration events, so that the space the
MCMC algorithm has to sample from expands consider-
ably, especially at high migration rates. As MCMC proposals
altering migration histories without changing the gene tree
topology or branch lengths will not affect the likelihood
(i.e., the probability of the sequence data), the MCMC
may be averaging over a huge nearly flat surface. As a re-
sult, MCMC algorithms for the IM model are computation-
ally far more demanding than similar MCMC algorithms
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under multispecies coalescent models without gene flow
(Rannala and Yang 2003). For example, it is challenging
to analyze data sets of 100 loci using the IM or IMa pro-
grams (see, e.g., table 1 in Hey 2010b), while data sets of
50,000 loci have been comfortably analyzed using the
MCMCCOAL or BPP programs (Burgess and Yang 2008).

Thus in this era of ubiquitous genomics, there is a keen
interest in fast computational algorithms suitable for analyz-
ing a huge number of loci (104–105 loci, say) from only a few
genomes (Wang and Hey 2010; Hobolth et al. 2011). In this
paper, we report a maximum likelihood (ML) implementa-
tion of the IM model for three species. We focus on migra-
tion between the two closely related species 1 and 2, while
species 3 is considered an out-group and does not exchange
migrants with either species 1 or 2 or their common ances-
tor. This will be a proper implementation of the IM model
for three species, compared with the approximation in Yang
(2010). We use the Markov chain characterization of the ge-
nealogical process for the sample, which has been used in
analysis of equilibrium population genetics models of migra-
tion, such as the stepping-stone model, the finite island
model, or the general model specified using a migration
matrix in the so-called structured coalescent framework
(Notohara 1990; Wilkinson-Herbots 1998). Such models
have been implemented in GENETREE (Bahlo and Griffiths
2000) and MIGRATE (Beerli and Felsenstein 1999, 2001;
Beerli 2006), making it possible to estimate jointly the pop-
ulation size parameters (hs) and migration rates using
genetic data. However, compared with those population
genetics models, the IM model has the advantage of accom-
modating the relationships among the species/populations
through the use of a phylogeny and may thus be more re-
alistic for many real data sets. Furthermore, the IM model
allows us to evaluate the role of gene flow during speciation.

A benefit of the Markov chain characterization of the
genealogical process is that the probability density of gene
tree topologies and branch lengths (coalescent times) can
be calculated using the transition probability matrix for the
Markov chain, P(t), integrating over the histories of migra-
tion events analytically, leading to significant reduction in
computation (Hobolth et al. 2011). As in Yang (2010), the
integration over the branch lengths in the gene trees is
achieved through numerical integration, and we discuss
strategies to overcome the computational burden.

We use the IM model for three species to construct an
LRT of speciation with gene flow, with the null hypothesis
assuming no gene flow between species 1 and 2. In theory,
the LRT can be conducted using data from species 1 and 2
only, under the two-species IM model studied by Wilkinson-
Herbots (2008), Wang and Hey (2010), and Hobolth et al.
(2011). However, inclusion of an out-group species adds
valuable information in the form of the gene tree topology
and branch lengths, and the gene tree-species tree conflict,
thus increasing the power of the test. It should also make the
test more robust to mutation rate variation among loci
(Yang 1997, 2002). We then apply the test to a data set
of genomic sequences from the human, chimpanzee, and
gorilla, compiled by Burgess and Yang (2008).

Theory and Methods

An IM Model for Three Species and Its Markov
Chain Characterization
Consider the species phylogeny for three species of
figure 1a: ([1, 2], 3), where the two ancestral species
are labelled 4 and 5. The data consist of multiple neutral
loci, with one sequence sampled from each of the three
species at every locus. As in Yang (2010), we assume no
recombination within a locus and free recombination
among loci. The gene trees describing the relationships
among the three sampled sequences at any locus are
depicted in figure 1b–f.

We consider migration between species 1 and 2, but as-
sume no migration involving the out-group species 3.
There are eight parameters in the model: h4, h5, s0, s1,
h1, h2, M12, and M21. Here s0 and s1 are the two species
divergence times, measured by the expected number of mu-
tations per site, and h1 5 4N1l, h2 5 4N2l, h4 5 4N4l, and
h5 5 4N5l are the population size parameters for species
1, 2, 4, and 5, with the N’s to be the effective population
sizes and l the mutation rate per site. If migration involv-
ing species 3 is allowed in the model or if two or more
sequences are sampled from species 3, h3 5 4N3l will
have to be considered in the model as well. The migration
rate Mij is defined as the expected number of migrant in-
dividuals from population i to population j per genera-
tion: Mij 5 Njmij, where mij is the migration rate from
populations i to j, defined as the proportion of individuals
in population j that are immigrants from population i.
With only one sequence from each of species 1 and 2,
we expect the data to contain little information about
the four parameters h1, h2, M12, and M21. Thus in this study,
we assume that h1 5 h2 5 h, and M12 5 M21 5 M. As a re-
sult, six parameters are estimated from the data: h5 {h4, h5,
s0, s1, h, M}. This is referred to as the symmetric IM model for
three species (SIM3s). Possible extensions to the model are
discussed later.

When we trace the genealogy of the sample backward in
time, the process can be described using three Markov
chains for the three time epochs E1, E2, and E3, defined
by the species tree (fig. 1). Epoch E1 goes from the present
time to s1, when there exist three species: 1, 2, and 3. Epoch
E2 is from time s1 to s0, with two species: 3 and 5. Epoch E3

goes from time s0 to infinity, with only one species: 4. Dur-
ing each time epoch, the genealogical process of coalescent
and migration is described by the structured coalescent
(Notohara 1990; Wilkinson-Herbots 1998).

Under the SIM3s model and given the data of one se-
quence from each of the three species, we have to consider
only five states for the Markov chain during epoch E1. These
are 113, 123, 223, 13, and 23. Here, 113 means three sequen-
ces in the sample, with two from species 1 and the third
from species 3; 123 means three sequences with one
sequence from each of the three species; 13 means two se-
quences from species 1 and 3, and so on. During epoch
E2, there are only two species (3 and 5), and there are only
two states in the Markov chain: 355 and 35, with the latter
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meaning that the sequences from species 1 and 2 have co-
alesced. Note that when the process leaves epoch E1 to en-
ter E2, the sequences and the states may be relabelled. For
example, state 113 in epoch E1 becomes state 355 in epoch
E2. Epoch E3 has only one species (4), and the genealogical
process is the simple single-population coalescent.

Consider the genealogical process in any population
i and suppose there are ni ancestral lineages in the popu-
lation. If time is measured in generations, coalescent occurs
in population i at the rate of ni(ni – 1)/2 � 1/(2Ni), while
‘‘backward’’ migration occurs from population i to popula-
tion j at the rate nimji. Here, the i/ j migration is ‘‘backward’’
due to the coalescent worldview in which time runs back-
ward and means migration from populations j to i in the
real world. Divide both coalescent and migration rates by
l, so that time is measured by the expected number of
mutations per site. Then, the coalescent rate becomes
ni(ni – 1)/2 � 2/hi, while the (real-world) migration rate
from population j into i becomes nimji/l 5 ni � 4Mji/hi.
Thus the rate matrix (generator) for the Markov chain can be
constructed: Q(1) and Q(2) for epochs E1 and E2, respectively.

For the special model SIM3s considered in this paper, the
genealogical process in epoch E1 concerns really two pop-
ulations (species 1 and 2), and the transition probability
matrix P(1)(t) 5 exp(Q(1)t) is analytically tractable. Let the
time unit be one expected mutation per site, and define
the coalescent and migration rates as c 5 2/h and w 5

4M/h, to simplify the formulae. The rate matrix Q(1) is then

113 123 223 13 23
113 �ð2w þ cÞ 2w 0 c 0
123 w � 2w w 0 0
223 0 2w �ð2w þ cÞ 0 c
13 0 0 0 �w w
23 0 0 0 w �w

ð1Þ

This is a special case of the matrix in equation (1) of
Hobolth et al. (2011) for the IM model for two species. This
Q(1) matrix has the eigenvalues k1 5 0, k2 5 �(2w þ c),
k3 5 �2w, k4;55� 1

2

�
4w þ c ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16w2 þ c2

p �
, all of which

are distinct as w . 0 and c . 0. The transition probability
matrix can be calculated analytically through the spectral
decomposition of Q(1) (see Appendix).

The Probability Distribution of Gene Genealogies
The Markov chain formulation allows us to calculate the
probability distribution of the gene trees and branch lengths
under the SIM3s model. At any locus, there are five possible
gene trees, shown in figure 1, with their coalescent times t1

and t0. Gene trees G1a, G1b, and G1c have the same topology
as the species tree, while G2 and G3 have different topologies.
G1a is the result of sequences from species 1 and 2 coalescing
in epoch E1; this is possible because migrations between spe-
cies 1 and 2 can bring the two sequences into the same pop-
ulation (species 1 or 2). G1b results from sequences from
species 1 and 2 coalescing in epoch E2 (in species 5). If
no coalescent occurs in epochs E1 or E2, gene trees G1c,
G2, and G3 will be generated, each with the same probability.
Below we derive the probability densities of the gene tree
and branch lengths (coalescent times) under the SIM3s
model for each of the gene trees G1a, G1b, G1c, G2, and G3.

For gene tree G1a, a coalescent event occurs in epoch E1

so that right before the coalescent event, the state of the
Markov chain must be either 113 or 223. Thus

fðG1a; t0; t1Þ5
�

P
ð1Þ
123;113ðt1Þ

2

h
þ P

ð1Þ
123;223ðt1Þ

2

h

�
�

P
ð2Þ
35;35ðs0 � s1Þ

2

h4
e� 2ðt0 � s0Þ=h4 ;

5 fðG1a; t1Þ
2

h4
e� 2ðt0 � s0Þ=h4 ;

ð2Þ

where t0 . s0 and 0 , t1 , s1. The joint density of G1a and t1

can be calculated using equation (27) in the Appendix as

fðG1a; t1Þ5 P
ð1Þ
123;113ðt1Þ

2

h
þ P

ð1Þ
123;223ðt1Þ

2

h
5 2P

ð1Þ
123;113ðt1Þ � 2

h

5
2w

a
e� 1

2ðcþ 4w� aÞt1ð1 � e� at1Þ � c

5
8M

h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
64M2 þ 1

p e� t1
h ð8Mþ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
64M2 þ 1

p
Þð1 � e

2t1
h

ffiffiffiffiffiffiffiffiffiffiffiffiffi
64M2 þ 1

p
Þ;

ð3Þ

FIG. 1. (a) The species tree ([1, 2], 3) for three species, showing the parameters in the SIM3s model: h4, h5, s0, s1, h1 5 h2 5 h, and M21 5 M12 5

M. As no migration involving species 3 is assumed in the model, and as one sequence is sampled from each species, h3 for species 3 is not
a parameter in the model. The five possible gene trees for any locus are shown in b-f. If sequences 1 and 2 coalesce in species 1 or 2, the resulting
gene tree will be G1a (b), and if they coalesce in the common ancestor of species 1 and 2, the resulting gene tree will be G1b (c). Otherwise three
gene trees G1c, G2, and G3 are possible as shown in (d–f). Gene trees G1a, G1b, and G1c have the same tree topology as the species tree, while G2 and
G3 have different topologies from the species tree. Coalescent times are represented by node ages t0 and t1 in each gene tree.
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where a 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 16w2

p
. Note that as we assume no migration

between species 3 and 5, P
ð2Þ
35;35ðs0 � s1Þ51:

For gene tree G1b, no coalescent occurs in epoch E1 but
one occurs in E2, at time t1:

fðG1b; t0; t1Þ5 fðG1b; t1Þfðt0jG1b; t1Þ

5

 X
s12A3

P
ð1Þ
123;s1

ðs1Þ
!

�
�

P
ð2Þ
355;355ðt1 � s1Þ

2

h5

�
�

P
ð2Þ
35;35ðs0 � t1Þ � 2

h4
e� 2ðt0 � s0Þ=h4

5 ð1 � PðG1aÞÞ �
2

h5
e� 2ðt1 � s1Þ=h5 � 2

h4
e� 2ðt0 � s0Þ=h4 ;

ð4Þ

with t0 . s0 and s1 , t1 , s0. Here A3 5 {113, 123, 223} is the
set of states with three sequences in epoch E1. P(G1a) is the
probability of gene tree G1a, that is, the probability that
sequences 1 and 2 coalesce before s1:

PðG1aÞ5 1 �
X
s12A3

P
ð1Þ
123;s1

ðs1Þ

5 1 � 1

2a

�
ðc þ 4w þ aÞe� s1

2 ðcþ 4w� aÞ

� ðc þ 4w � aÞe� s1
2 ðcþ 4wþ aÞ

�

5 1 �
��

8M þ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
64M2 þ 1

p þ 1

2

�
e� s1

h ð8Mþ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
64M2 þ 1

p
Þ

�
�

8M þ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
64M2 þ 1

p � 1

2

�
e� s1

h ð8Mþ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
64M2 þ 1

p
Þ
�
:

ð5Þ

All the three states in A3 become 355 when the gene-
alogical process enters epoch E2. Also P

ð2Þ
35;35ðs0 � t1Þ 5 1

because of our assumption of no migration between spe-
cies 3 and 5.

The densities f(G1a, t1) and f(G1b, t1) were obtained earlier
using a different approach by Wilkinson-Herbots (2008),
who studied the distribution of the coalescent time t be-
tween two sequences in an IM model where a panmictic
ancestral population gave rise to n populations time s
ago. The density f(G1a, t1) in equation (3) is Wilkinson–
Herbots’s equation (19), for t � s (or t1 , s1 in our nota-
tion). This is also equation (3.6) of Nath and Griffiths (1993),
truncated at t1 � s1. The density f(G1b, t1) in equation (4) is
Wilkinson–Herbots’s equation (19) for t. s, truncated at s0.

Finally for gene trees G1c, G2, and G3, with times t0, t1 . s0,

fðGk; t0; t1Þ5
1

3

 X
s12A3

P
ð1Þ
123;s1

ðs1Þ
!

P
ð2Þ
355;355ðs0 � s1Þ�

6

h4
e� 6ðt1 � s0Þ=h4

2

h4
e� 2ðt0 � t1Þ=h4

5
1

3
ð1 � PðG1aÞÞ � e� 2ðs0 � s1Þ=h5 �

6

h4
e� 6ðt1 � s0Þ=h4

2

h4
e� 2ðt0 � t1Þ=h4 ;

ð6Þ

with k 5 1c, 2, or 3. Here, A3 5 {113, 123, 223} is again the set
of states with three sequences ancestral to the sample in

epoch E1 and all those states become 355 in epoch E2.
The sum in equation (6) is over all paths in which there
is no coalescent in epochs E1 or E2. In epoch E3, two of
the three sequences coalesce with waiting time t1 � s0,
and then the second coalescent event occurs with waiting
time t0 � t1: those waiting times have independent exponen-
tial distributions, with rates 6/h4 and 2/h4, respectively.
Finally, P

ð2Þ
355;355ðs0 � s1Þ5 e�2ðs0�s1Þ=h5 is the probability that

the two sequences in species 5 do not coalesce during the
time interval s0 � s1 over epoch E2.

Equations (2), (4), and (6) provide a full characterization
of gene trees under the SIM3s model. Those densities will
be used in the calculation of the likelihood function.

Calculation of the Likelihood Function
We assume that the three sequences at every locus are al-
ready aligned, with alignment gaps removed. We assume
the JC69 mutation model (Jukes and Cantor 1969) to cor-
rect for multiple hits. The different loci are assumed to have
the same mutation rate, although it is straightforward to
incorporate relative locus rates if these are externally esti-
mated, for example, by using an out-group species (Yang
2002). The data at any site in the alignment will fall into five
possible categories, called site patterns: xxx, xxy, yxx, xyx,
and xyz, where x, y, and z are any distinct nucleotides.
The data at any locus i are summarized as the counts of
sites with those patterns: Di 5 {ni0, ni1, ni2, ni3, ni4}, and
D 5 {Di} represents the data at all L loci. The likelihood
calculation is quite similar to that in Yang (2002, 2010).
The probability of data at locus i is

fðDi; uÞ5
X

k2f1a;1b;1c;2;3g

ZZ
PðDijGk; t0; t1ÞfðGk; t0; t1Þdt0dt1: ð7Þ

The log likelihood is a sum over loci

‘ðu;DÞ5
XL

i5 1

log fðDi; uÞ: ð8Þ

The probability of data at locus i given the gene tree Gk

and coalescent times or node ages t0 and t1 (see fig. 1) is
given by the multinomial probabilities

PðDijGk; t0; t1Þ5 C � pni0
0 pni1

1 pni2 þ ni3
2 pni4

4 ; k5 1a; 1b; 1c;
PðDijG2; t0; t1Þ5 C � pni0

0 pni2
1 pni3 þ ni1

2 pni4
4 ;

PðDijG3; t0; t1Þ5 C � pni0
0 pni3

1 pni1 þ ni2
2 pni4

4 ;

ð9Þ

where

p0ðt0; t1Þ5 probðxxxÞ5
�

1 þ 3e� 8t1=3 þ 6e� 8t0=3

þ 6e�ð8t0 þ 4t1Þ=3
�
=16;

p1ðt0; t1Þ5 probðxxyÞ5
�

3 þ 9e� 8t1=3 � 6e� 8t0=3

� 6e�ð8t0 þ 4t1Þ=3
�
=16;

p2ðt0; t1Þ5 probðyxxÞ5
�

3 � 3e� 8t1=3 þ 6e� 8t0=3

� 6e�ð8t0 þ 4t1Þ=3
�
=16;

p3ðt0; t1Þ5 p2ðt0; t1Þ;
p4ðt0; t1Þ5 probðxyzÞ5

�
6 � 6e� 8t1=3 � 12e� 8t0=3

þ 12e�ð8t0 þ 4t1Þ=3
�
=16

ð10Þ

(Yang 1994). Thus, equation (7) becomes
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The transform from t0 and t1 to new variables x0 and x1 is
applied to increase the efficiency of numerical integration,
by causing the quadrature points to be distributed in re-
gions where the integrand is high (see below).

Nonidentifiability of the SIM3s Model
A statistical model is said to be nonidentifiable if there exist
two sets of parameters u and u’, for which the data have
the same probability, that is,

fðD; uÞ5 fðD; u#Þ; for all D: ð12Þ

Nonidentifiable models are often due to errors in model
formulation and should be avoided (see, e.g., Rannala 2002).
For the SIM3s model considered in this paper, we have

fðDijGk; t0; t1; uÞ5 fðDijGk; t0; t1Þ: ð13Þ

Given the gene tree topology Gk and branch lengths
(node ages t0 and t1), the probability of the sequence data
does not depend on the parameters u. Thus if there exist u
and u# that produce the same probability distributions of
gene tree topologies and branch lengths, that is, if

fðGk; t0; t1; uÞ5 fðGk; t0; t1; u#Þ; for all Gk; t0; and t1; ð14Þ

the model will be nonidentifiable.
From equations (2), (4), and (6), it is clear that for equa-

tion (14) to hold for all t0 and t1, u and u# must have the
same h4 and h5. We will, in addition, fix s0 and s1 and dem-
onstrate that different values of h and M in the SIM3s
model can produce the same f(Gk, t0, t1; u) for all Gk, t0,
t1. It is easy to see that f(Gk, t0, t1; h), for k 5 1a, 1b, 1c,
2, 3, are functions of a and b, defined as

a5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16w2 þ c2

p
5 2

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
64M2 þ 1

p
;

b5 4w þ c5 2ð8Mþ 1Þ
h :

ð15Þ

If different values of c and w (or h and M) correspond to
the same values of a and b, the model will be nonidentifi-
able. From equation (15), w satisfies the following quadratic
equation

32w2 � 8bw þ b2 � a2 5 0: ð16Þ

As D 5 64(2a2 – b2) 5 64(4w – c)2 � 0, the equation
always has two valid roots, which may be identical. Thus
with the four parameters (s0, s1, h4, h5) fixed, the points
(c, w) and (c*, w*) 5 (4w, c/4), or the points (h, M) and
ðh�;M�Þ5ð h

8M ; 1
64M Þ always correspond to the same

a and b, and thus always have the same log likelihood. If

ðĥ; M̂Þ is a local optimum, ðĥ�; M̂
�Þ5ð ĥ

8M̂
; 1

64M̂
Þ will also

be a local optimum, with the same log likelihood. If
M̂ 5 1=8; the two points coincide.

The nonidentifiability means that it is not possible to
estimate h and M under the SIM3s model using multiloci
data of three sequences, with one sequence from each spe-
cies. Nevertheless, the LRT is still valid, as the same number
of parameters are involved in the model if we use (a, b) as
parameters instead of (h, M).

Numerical Integration, ML Estimation, and
Implementation
Each evaluation of the log likelihood function (8 and 11)
requires calculation of 3L 2-D integrals for data of L loci.
Following Yang (2010), we use numerical integration to
calculate them. Gaussian quadrature is used, with 2-D
integrals calculated by an iterated use of the 1-D
algorithm (the so-called product rule). The computation
is proportional to K2. To decide how large K should be,
we analyzed five simulated data sets with L 5 15,000
loci, using K 5 16 and 32, and found they produced
similar results, with the difference in D‘ to be less than
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0.01, suggesting that K 5 16 is large enough. This value
is used in calculations of this paper.

Note that the probabilities P(DijGk, t0, t1) of equations
(10) and (11) are very small and vary over many orders
of magnitude depending on t0 and t1. To avoid under-
flows and overflows, the highest log likelihood at the
locus, ‘max, calculated at the ML tree topology and
branch lengths, is used for scaling: the integrand of
equation (11) are divided by e‘max before the terms are
summed up.

We note that the eigenvalues and eigenvectors of the
rate matrix Q(1) do not change over loci, neither do the
site-pattern probabilities p0–p4 of equation (10). Those
quantities are thus calculated prior to the numerical inte-
gration to save computation.

The SIM3s model is implemented in the C program
3S, using the optimization routine in the PAML package
(Yang 2007) to find the ML estimates (MLEs) numeri-
cally. To validate the program, we simulated large data
sets of L 5 105 or 5 � 105 loci under the SIM3s model
(Zhang et al. 2011). The MLEs of parameters under the
same model (including h and M) are found to be very
close to the true values, although for h and M, another
set of values also have the same log likelihood. We did
simple benchmarking using the hominoid data sets
(see below) on a Windows laptop with an intel i7
CPU at 2.67 GHz. For the X-chromosome (or autosomal)
data sets of L 5 510 (or 9,861) loci, the likelihood
iteration under SIM3s takes ;1 min (;20 min), with
;91% (or ;99.7%) of the computation spent on calcu-
lation of the probabilities of the data for different branch
lengths (eq. 9). The log likelihood improves quickly
during the initial stage of the iteration, but becomes slow
when it is close to the optimum: roughly it spent ;90%
of time after it is within 0.1 log-likelihood units of the
optimum. This is partly because of the strong correlation
in estimates of h and M under the model (see below).
The program is written in ANSI C, and can be compiled
for different platforms. It is available at http://abacus.
gene.ucl.ac.uk/software/.

Further Characterizations of the SIM3s Model
Here, we examine some predictions of the SIM3s model
concerning the gene trees, such as the gene-tree height
t0 when one sequence is sampled from each of the three
species, and the divergence time t12 between a pair of se-
quences from species 1 and 2.

Besides equation (5) giving the probability of gene tree G1a,
the probabilities for the other gene trees can be derived as

PðG1bÞ5 ð1 � PðG1aÞÞ
�

1 � e� 2ðs0 � s1Þ=h5
�
;

PðGkÞ5 1
3

h
1 � PðG1aÞ � PðG1bÞ

i
5 1

3

h
1 � PðG1aÞ

i
e� 2ðs0 � s1Þ=h5 ; k5 1c; 2; 3:

ð17Þ

The ‘‘gene tree-species tree mismatch probability’’
is the probability that the gene tree for any locus
differs from the species tree (Takahata et al. 1995;
Yang 2002)

PSG 5 PðG2Þ þ PðG3Þ
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2

3
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If M 5 0, we have P(G1a) 5 0, and

PSG 5
2

3
e� 2

h5
ðs0 � s1Þ; ð19Þ

as given by Hudson (1983). If M /N, species 1 and 2 will be
one population with size 2h, so that PðG1aÞ/1 � e�s1=h and

PSG/
2

3
e� 1

hs1 e� 2
h5
ðs0 � s1Þ: ð20Þ

PSG decreases monotonically when M increases from
0 to N. Figures 2a and d show the probabilities of
gene trees for two sets of parameter values. Note that
PSG 5 2P(G1c).

The probability density of the time to the most recent
common ancestor or gene tree height (t0) can be derived by
conditioning on the gene tree

fðt0Þ5
X

k2ð1a;1b;1c;2;3Þ
PðGkÞfðt0jGkÞ

5 ½PðG1aÞ þ PðG1bÞ�
2

h4
e� 2ðt0 � s0Þ=h4 þ 3PðG1cÞ�

3

h4
ðe� 2ðt0 � s0Þ=h4 � e� 6ðt0 � s0Þ=h4Þ

5 ð1 � ½1 � PðG1aÞ�e� 2ðs0 � s1Þ=h5Þ�
2

h4
e� 2ðt0 � s0Þ=h4 þ ½1 � PðG1aÞ�e� 2ðs0 � s1Þ=h5 �

3

h4
ðe� 2ðt0 � s0Þ=h4 � e� 6ðt0 � s0Þ=h4Þ;

ð21Þ

for t0 . s0. Note that in the case of gene trees G1c, G2, and G3,
the density of t0 is given as the sum (or convolution) of two
independent exponential variables with means h4/6 and h4/2
as 3

h4
ðe�2ðt0�s0Þ=h4 � e�6ðt0�s0Þ=h4Þ:

The density (eq. 21) for two sets of parameter values
are shown in figure 2b and e. The expectation can be
obtained as

Eðt0Þ5 EðEðt0jGkÞÞ

5 ½1 � ð1 � PðG1aÞÞe� 2ðs0 � s1Þ=h5 � �
�
s0 þ h4

2

�

þ ð1 � PðG1aÞÞe� 2ðs0 � s1Þ=h5 �
�
s0 þ 2h4

3

�

5 s0 þ h4

2

�
1 þ 1

3
ð1 � PðG1aÞÞe� 2ðs0 � s1Þ=h5

�
:

ð22Þ

Next, we study the divergence time t12 between two se-
quences sampled from species 1 and 2. The density can be
derived by conditioning on the gene trees
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FIG. 2. Characterization of gene trees at different migration rates M under the SIM3s model. Panels a and d show the probabilities of gene
trees G1a, G1b, and G1c, with P(G1a) þ P(G1b) þ 3P(G1c) 5 1, and with PSG 5 2P(G1c) to be the species tree-gene tree mismatch probability.
Panels b and e show the density function of t0 (tree height) for three sequences, one each from the three species. The five curves from top to
bottom are for M 5 0, 0.01, 0.1, 1, 1000. Panels c and f show the density function of t12, the divergence time between two sequences sampled
from species 1 and 2. The five curves are for M 5 0, 0.01, 0.1, 1, 1000. Note that when M 5 0, f(t12) 5 0 for t12 , s1. The two sets of parameter
values are h4 5 h5 5 h 5 0.005, s0 5 0.006, s1 5 0.004 for the hominoid set (a–c); and h4 5 h5 5 h 5 0.01, s0 5 0.02, s1 5 0.01 for the
mangroves set (d–f).
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fðt12Þ5 f fðG1a; t12Þ ðsee equation 8Þ; if 0,t12,s1;

ð1 � PðG1aÞÞ 2
h5

e� 2ðt12 � s1Þ=h5 ; if s1,t12,s0;

ð1 � PðG1aÞÞe� 2ðs0 � s1Þ=h5 � 2
h4

e� 2ðt12 � s0Þ=h4 ;

if t12.s0:

ð23Þ

The density f(t12) is plotted in figure 2c and f for two sets
of parameter values. The density is discontinuous at s1 and
would be discontinuous at s0 as well if h4 6¼ h5. Note that
the areas under the density over the three segments (0, s1),
(s1, s0), and (s0, N) are the probabilities P(G1a), P(G1b), and
P(G1c) þ P(G2) þ P(G3), respectively. The densities for M �
0.01 are nearly identical to that for M5 0, while the densities
for M 5 10 (not shown) or 1,000 are nearly the same as for
M 5 N. The densities for M 5 0.1 and 1 are in between.
The pattern is similar to that found by Zhang et al. (2011),
who examined the impact of M on species delimitation.

Note that if M 5N, we have f(t12) 5 1/h at t12 5 0. If M
is large but finite (say, M 5 103), f(t12) has a peak near 0.
From equation (3), f(t12) 5 0 at t12 5 0 if 0 � M ,N. This
is because for t12 5 0 there have to be a migration and
a coalescent in the small time interval (0, Dt), an event that
has probability of order (Dt)2 if M is finite. Nevertheless, if
M is large but finite, the density rises very quickly from
0 to ;1/h when t12 increases from 0.

Results

Analysis of Simulated Data
The Null Distribution
In standard theory, the LRT statistic 2D‘ has the asymp-
totic v2 distribution, with the degree of freedom to be
the difference in the number of parameters between the
two tested hypotheses. However, this large-sample theory
relies on certain regularity conditions. In our LRT, those
conditions are not satisfied, and the v2

2 is not expected
to be the correct null distribution. First, the null hypothesis
of our test corresponds to fixing parameter M at 0 in the
alternative hypothesis, but the value 0 is at the boundary of
the parameter space. Second, when M 5 0, parameter h
becomes unidentifiable as it does not affect the likelihood.
The distribution of 2D‘ under such irregular conditions is
in general unknown. Mathematical analysis of simple cases
where the likelihood is given by binomial or normal distri-
butions suggests that 2D‘ may converge to þN (in other
words, diverge) when the data size n / N (Hartigan

1985). However, the rate of convergence is very slow, at
log log n (Liu and Shao 2004), so that the asymptotic theory
has virtually no relevance to analysis of practical data sets.
Computer simulations in general confirm that use of the
simple v2 makes the test conservative (Chen and Chen
2001).

We have conducted a small simulation under M0 to ex-
amine the null distribution of our LRT. We used four sets of
parameter values. The first two sets are as in Yang (2010),
based roughly on estimates from the hominoids (Burgess
and Yang 2008) and the mangroves (Zhou et al. 2007). Sets
3 and 4 have larger parameter values and also different val-
ues for the three hs. The JC69 mutation model, with con-
stant rate among loci, is used both to simulate and to
analyze the data. Given the parameter values, the proba-
bilities of the five site patterns are calculated using equa-
tion (10), and the counts of sites at each locus (ni0, ni1, ni2,
ni3, ni4) are generated by sampling from the multinomial
distribution. Each replicate data set consists of L loci, of
500 bp each, and is analyzed under models M0 and SIM3s
to calculate the test statistic 2D‘52ð‘1 � ‘0Þ:

The results are summarized in table 1. We focus on two
features of the null distribution. First, we examine the false
positive rate when v2

2;5% 5 5.99 is used to conduct the test.
For all parameter values and data sizes examined here, use
of the v2

2 makes the test very conservative, with the false
positive rate well below the nominal 5% (table 1). At 15,000
loci, the MLEs of parameters h4, h5, s0, s1 under M0 are very
close to the true values, but the false positive rate of the
test is still far away from 5% and is instead close to 0.5–1%.
There is no doubt that the v2

2 is not the correct null dis-
tribution. Second, we are interested in whether 2D‘ con-
verges to the same distribution, independent of the values
of parameters in the null hypothesis, as is the case with the
v2 under regular conditions. As the number of replicates we
used (1,000) is too small to estimate a full distribution, we
calculated the proportion of replicates in which 2D‘50
and also the 95% percentile. Both vary depending on
the data size and on the parameters in the null model
(table 1). We conclude that it is not feasible to use a fixed
significance value to conduct the test independent of the
parameter values. It should be pointed out that one can use
parametric bootstrap to estimate the correct null distribu-
tion, simulating data sets using parameter estimates under
the null hypothesis. This approach is expensive and not
used in this study. Instead, we use the simple v2

2. We note
that the problem of uncertain null distribution will

Table 1. The False Positive Rate, Percentage of Zeros, and 95% Quantile of the Null Distribution of the LRT Statistic ð2D‘Þ.

Parameters L 5 10 100 1,000 15,000

Set 1 0.000 0.84 0.28 0.001 0.66 2.30 0.005 0.59 2.18 0.008 0.52 2.88
Set 2 0.002 0.85 1.28 0.002 0.78 1.30 0.004 0.70 2.20 0.005 0.61 2.24
Set 3 0.000 0.93 0.42 0.002 0.90 0.64 0.005 0.88 0.64 0.012 0.88 0.82
Set 4 0.002 0.83 1.56 0.006 0.74 2.10 0.006 0.69 1.88 0.005 0.66 1.90

NOTE.—In each cell, the three numbers are 1) the false positive rate when the test is conducted using v2
2;5%55:99; 2) the proportion of replicates in which the test statistic

2D‘50; and 3) the 95% quantile of the null distribution (as opposed to 5.99). Sequence length is 500 bp at each of the L loci. The number of replicates is 1,000. Data are
simulated using MCCOAL under model M0 using four sets of parameter values, as follows: Set 1 (hominoid): h4 5 h5 5 0.005, s0 5 0.006, s1 5 0.004; Set 2 (mangroves): h4

5 h5 5 0.01, s0 5 0.02, s1 5 0.01; Set 3: h4 5 0.02, h5 5 0.03, s0 5 0.06, s1 5 0.04; Set 4: h4 5 0.02, h5 5 0.01, s0 5 0.02, s1 5 0.01.
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disappear when we extend the method to include loci with
two or more sequences from either species 1 or 2 (see be-
low).

The Impact of Recombination
Our model assumes free recombination between loci and no
recombination among sites within the same locus. To exam-
ine whether recombination between sites within a locus may
cause excessive false positives, we simulated data using the
programs MS (Hudson 2002) to generate the genealogical
trees for different sequence segments at each locus and
SEQ-GEN to generate sequence alignments. The data were
then analyzed using the 3S program. No reliable estimates of
recombination rate are available for the mangroves, so we
focussed on the parameter set for the hominoids. The re-
combination rate used is based on the estimates for humans,
at r = 0.37 cM/Mb (with the 95% CI to be 0.27–0.47)
(Arnheim et al. 2007). With the effective population size
of N 5 104, this gives q 5 4Nr 5 0.148 per generation
per kilo base pair or 0.074 for a 500 bp locus. We include
three larger values, so that we used q 5 0.148, 0.3, 2, and
8 per kilo base pair. Recombination appears to be concen-
trated at hot spots (Myers et al. 2005; Wang and Rannala
2009). However, MS does not simulate under a model of
background recombination with hotspots, as it assumes
a constant recombination rate. For example, the following
commands generate a replicate data set of 1,000 loci:

ms 3 1000 -T -r 0.074 500 -I 3 1 1 1 -ej 0.8 2 1 -ej 1.2 3 1jtail
-n þ4j grep -v // . treefile

seq-gen -mHKY -l 500 -s 0.005 -p 100 , treefile . seqfile.
The results are shown in table 2. The false positive rate of

the LRT depends on the number of loci (L) and the re-
combination rate (q). For values of q realistic for humans
(q, 1), the false positive rate is well below 5%. However,
with L 5 15,000 loci and q5 8 per kilo base pair, the false

positive rate is as high as 27%. Overall, our test appears to be
less sensitive to recombination than a similar test of gene
flow using data from two species developed by Yamamichi
et al. (2012). Those authors used h5 0.00405 and q5 2, 4,
and 8 per kilo base pair in their simulations and found that
their test was very sensitive to recombination and to mu-
tation rate variation among loci. The differences appear to
be due to several factors. First, our test uses three instead of
two sequences, so that the gene tree topology and branch
lengths provide information and the test is more robust.
Second, our use of v2

2 makes our test very conservative. Nev-
ertheless, the null model in our test is violated in presence
of recombination, and the false positive rate may be high if q
is large and if a huge number of loci are analyzed.

Power of the LRT
We then generated data sets under the SIM3s model with
migration to examine the power of the test. We use h5 h4

5 h5 (that is, 0.005 for the hominoid set and 0.01 for the
mangroves set), and M 5 1, with on average one migrant
individual per generation. The results are shown in table 3.
With 10 loci, the test has virtually no power. Even with 100
loci, the power is low (4.1% for the hominoid set and 31.9%
for the mangroves set). The power is fairly high when 1,000
loci are included in the data set. The large differences be-
tween the two sets of parameters are mainly due to the
near 2-fold difference in mutation rate and thus the infor-
mation content in the sequence data.

The power of the test based on the new SIM3s model
appears to be even lower than the approximate test based
on a beta distribution of s1 (Yang 2010: table 2). Several
factors may be responsible for the differences. First, there
may not be a simple correspondence between parameter
q in the beta model used by Yang (2010) and the migration
rate M used in this study. Second, the beta model may have
captured the main differences between the null model of
no gene flow and the alternative model of gene flow. Third,
as discussed early, the use of v2

2 for the test, which costs
2 degrees of freedom, has made the new test very conser-
vative, while the approximate test used ,1 df. A useful way
of improving the power of the test is to include some loci
with two or three sequences from each species. Inclusion of
such data will also remove the problem of nonidentifiability
(see below).

Analysis of the Hominoid Data Set
Here, we apply the new test based on the SIM3s model
to the genomic sequences of the human, chimpanzee,
and gorilla compiled and analyzed by Burgess and Yang
(2008; see also Yang 2010). These data are an update of
the data of Patterson et al. (2006), with more stringent
filters to remove the error-prone ends of whole-genome
shotgun reads, as well as coding regions, repeats, RNA
genes, and low-complexity regions. Like the model of this
paper, the multispecies coalescent model (Rannala and Yang
2003) used by Burgess and Yang (2008) assumed free recom-
bination between loci and no recombination between sites

Table 3. Power of the LRT.

Parameter Values L 5 10 100 1,000 15,000

Hominoid set 0.1% 4.1% 68.8% 94.9%
Mangroves set 1.7% 31.9% 93.9% 98.5%

NOTE.—Data are simulated under model M1 (SIM3s) using two sets of
parameters: h4 5 h5 5 h 5 0.005, s0 5 0.006, s1 5 0.004 (hominoid) and h4

5 h5 5 h 5 0.01, s0 5 0.02, s1 5 0.01 (mangroves), with the migration rate M 5

1. The LRT is conducted using the v2
2 distribution at the 5% level (critical value at

5.99). Sequence length is 500 bp at each locus. The number of replicates is 1,000.

Table 2. False Positive Rate of the LRT in Presence of
Recombination.

Recombination Rate L 5 10 100 1,000 15,000

r 5 0.148 3 1023 0.0% 0.0% 0.5% 1.5%
r 5 0.3 3 1023 0.0% 0.0% 0.5% 2.0%
r 5 2 3 1023 0.0% 0.0% 2.0% 4.5%
r 5 8 3 1023 0.0% 0.1% 4.7% 27.1%

NOTE.—Recombination rate q 5 4Nr is per generation per base pair. Data are
simulated using MS and SEQ-GEN under model M0 using the hominoid set of
parameters: h4 5 h5 5 0.005, s0 5 0.006, and s1 5 0.004, with recombination rate
q, and are analyzed using the test of this paper ignoring recombination. Sequence
length is 500 bp at each locus. The number of replicates is 1,000.
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in each locus. Thus Burgess and Yang (2008) used short loci
with about 500 bp (so that recombination within locus is
rare) and at least 10 kb of separation between loci (so that
the loci are nearly freely recombining). We use the 9,861
autosomal loci and 510 X-linked loci for human (H), chim-
panzee (C), and gorilla (G), as analyzed in table 3 of Yang
(2010). Sites with alignment gaps and ambiguity nucleo-
tides are removed. The median sequence length at each
locus is 508 bp. As there is little evidence for mutation rate
variation among those presumably neutral loci and accom-
modating rate variation among loci was found to have little
effect in the previous analysis (Burgess and Yang 2008; Yang
2010: table 3), we assume here the same mutation rate for
all loci.

When all loci on each human chromosome are analyzed
as one data set, the test was not significant for any of the 22
autosomal chromosomes or the X chromosome. This is in
contrast to the analysis using the approximate test based

on the beta model, which is significant at 3 of the 22 au-
tosomes (Yang 2010). This may reflect the different
power of the two tests. When all the 9,861 autosomal
loci are analyzed as one data set, the LRT statistic is
2D‘52ð‘1 � ‘0Þ59:43; so that the test is significant, indi-
cating gene flow, consistent with Yang (2010). The MLEs
under the SIM3s model are listed in table 5 (column headed
‘‘Full Data’’). The approximate standard errors are calcu-
lated by numerical computation of the Hessian matrix
at the MLEs. These are all very small: in analysis of such
genomic data sets, sampling errors are small, and system-
atic errors due to model violations are much more impor-
tant. Figure 3 shows the log likelihood surface as a function
of parameters h and M, with the other four parameters
(h4, h5, s0, s1) fixed at their MLEs. There is strong positive

FIG. 3. A contour plot for parameters h and M, with the other four parameters (h4, h5, s0, s1) fixed at their MLEs. The 9861 autosomal loci from
the human, chimpanzee, and gorilla are analyzed under the SIM3s model. The MLEs are ĥ450:00362; ĥ550:00369; ŝ050:00659; ŝ150:00459;
ĥ50:0260; M̂50:1251; indicated by the white dot in the plot, with ‘5� 649931:90.

Table 5. Parameter Estimates Obtained from the Data Set of 9,861
Autosomal Loci from Hominoids under the SIM3s Model.

MLEs Full Data Left Half Right Half

û4 0.00362 6 0.00009 0.00432 6 0.00012 0.00420 6 0.00013
û5 0.00369 6 0.00026 0.00245 6 0.00043 0.00319 6 0.00056
t̂0 0.00659 6 0.00004 0.00625 6 0.00006 0.00628 6 0.00007
t̂1 0.00459 6 0.00008 0.00493 6 0.00018 0.00464 6 0.00020
û 0.02601 6 0.00140 0.02114 6 0.00152 0.02851 6 0.00291
M̂ 0.1250 6 0.0065 0.1250 6 0.0491 0.1250 6 0.0558
‘1 –649,931.90 –325,045.125 –325,035.85
2D‘ 9.43 3.25 0.97

NOTE.—Left Half refers to the data set in which only the first half of the sites at
each locus are used, whereas Right Half refers to the data set in which only the
second half of the sites at each locus are used.

Table 4. The Correlation Coefficients between MLEs of Parameters
under the SIM3s Model.

uHCG uHC tHCG tHC u M

uHCG
uHC 20.41
tHCG 20.73 0.37
tHC 0.32 20.93 20.22
u 0.05 20.18 20.08 0.05
M 0.25 20.51 20.22 0.48 0.24

NOTE.—The 9,861 hominoid autosomal loci are analyzed. High correlations are
underlined.
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correlation between ĥ and M̂, especially at the logarithmic
scale. Table 4 shows the correlations between the MLEs of
parameters.

Burgess and Yang (2008: table 6) examined the impact of
recombination within locus by analyzing reduced data sets
in which each locus was shortened. Here, we generated two
reduced data sets, consisting of either the left half or the
right half of every locus in the data set of 9,861 autosomal
loci. The parameter estimates and LRT statistics for those
two reduced data sets are listed in table 5. The test is not
significant for either of the reduced data set. This can be
due to two reasons. The first is that each of the two re-
duced data sets has half as much data and contains less
information than the full data set. The second is that re-
combination may be frequent and cause a false positive in
the full data set, while it is unimportant in the reduced data
set. Although both factors may have contributed to the
difference, the simulation results discussed above demon-
strate that the false positive rate for the test is low even
when realistic amounts of recombination. It thus appears
likely that the significant result in the full data sets is not
a false positive. Parameter estimates (table 5) are similar
across the three data sets. It is interesting to note that
M̂50:125 in all three analyses.

Discussion
A common form of model nonidentifiability is overpara-
metrization, or the use of more parameters than can be
estimated from the data. For example, in the problem of
distance estimation between two sequences, the likelihood
is a function of the sequence distance d 5 t � r but not of
the time t and rate r separately. We then use d as the single
parameter in the model, instead of two parameters t and r.
The nonidentifiability of the SIM3s model is different in
that the model is not overparametrized. If we use a and
b as parameters, the model will become identifiable, al-
though a and b do not have the simple biological interpre-
tations that parameters h and M have.

The model is not identifiable because the data contain
one sequence from each of the three species. However, if
some loci with other sample configurations are included,
for example, loci with two or three sequences from the same
species, the model will become identifiable. We are now
working to extend the SIM3s model to deal with loci of
arbitrary configurations. Such loci may be represented by
different initial states in the Markov chain for epoch E1, such
as 111, 222, 333, 112, 113, 122, 133, 223, 233, 11, 22, 33, 12, 13,
and 23. The extension will have several benefits. First, the
data will be much more informative about h1 and h2, and
will in turn help the estimation of the migration rates.
The model will then become identifiable. Second, as param-
eters h1 and h2 are identifiable in both hypotheses, the null
distribution will have a known well-behaved distribution,
that is, a 1:1 mixture between 0 and v2

1. Third, inclusion
of such loci will make the LRT more powerful. Fourth, such
data will enable implementation of more complex models
with arbitrary patterns of migration.

To extend the SIM3s model to consider such loci, one
has to deal with much larger rate matrices Q(1) and Q(2).
The integrals involved in the likelihood function will be
2-D if three sequences are available at the locus, or 1-D
for two sequences, so that the computation should be
feasible. Dealing with data of four or more sequences
at a locus will pose much greater difficulties. First, the
state space of the Markov chain increases quickly and
so is the computation involved in calculating the
transition probability matrix P(t). Second, the summa-
tion over the gene tree topologies and the integration
over the coalescent times will be much more expensive,
as there will be many more possible gene trees to sum
over, and as the dimension of the integrals will become 3
or greater.

Another extension of the model is to deal with nonho-
mogeneous migration rates over time. The rate of gene
flow may be expected to be high at the initial stage of
speciation and to decrease when the two populations di-
verge to become separate species. For example, one may
assume a constant migration rate M since species diver-
gence until a time point T, 0 , T , s1, when gene flow
ceases. Both the migration rate M and the time point T
will be parameters in the model. The distribution of gene
trees and coalescent times under this model can be de-
rived in a straightforward manner using the Markov chain
characterization of this study by breaking time epoch E1

into two segments: E1a: 0 , t , T and E1b: T , t , s1.
Another model may assume that the migration rate has
been decreasing at an exponential rate b since species di-
vergence, so that the migration rate at time t is M0 � exp
{b(s1 – t)}, for 0 , t , s1. The initial migration rate M0

and the exponential rate b will be parameters in the
model, to be estimated from the data. It appears that this
model can be implemented in a similar way to the treat-
ment of deterministically varying population size in the
coalescent model (Slatkin and Hudson 1991; Griffiths
and Tavaré 1994). Those two models may be more real-
istic than the constant-migration model of this study
in describing the gradual buildup of reproductive isolation
after species separation.
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Appendix
Here, we derive the transition probability matrix P(t)

from the Q matrix for time epoch 1 (eq. 1). The spectral
decomposition of Q is derived to be

Q5UKU� 1; ð24Þ

where K 5 diag{k1, k2, k3, k4, k5},
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U5

1 � 1 � 1 1 1
1 0 0 c� a

4w
cþ a

4w
1 1 1 1 1
1 0 � 1 0 0
1 0 1 0 0

2
66664

3
77775; ð25Þ

and

U� 1 5

0 0 0 1
2

1
2

� 1
2 0 1

2
1
2 � 1

2
0 0 0 � 1

2 � 1
2

1
4 ð1 þ c

a Þ � 2w
a

1
4 ð1 þ c

a Þ � cþ a� 4w
4a � cþ a� 4w

4a
1
4 ð1 � c

a Þ 2w
a

1
4 ð1 � c

a Þ c� a� 4w
4a

c� a� 4w
4a

2
66664

3
77775

ð26Þ

with a5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 16w2

p
.

Thus the transition probability matrix is given by

PðtÞ5U � eKt � U� 1; ð27Þ

where eKt5diagfek1t; ek2t; ek3t; ek4t; ek5tg:
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