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ABSTRACT Several computational methods have recently been proposed for delimiting species using multilocus sequence data.
Among them, the Bayesian method of Yang and Rannala uses the multispecies coalescent model in the likelihood framework to
calculate the posterior probabilities for the different species-delimitation models. It has a sound statistical basis and is found to have
nice statistical properties in simulation studies, such as low error rates of undersplitting and oversplitting. However, the method suffers
from poor mixing of the reversible-jump Markov chain Monte Carlo (rjMCMC) algorithms. Here, we describe several modifications to
the algorithms. We propose a flexible prior that allows the user to specify the probability that each node on the guide tree represents
a true speciation event. We also introduce modifications to the rjMCMC algorithms that remove the constraint on the new species
divergence time when splitting and alter the gene trees to remove incompatibilities. The new algorithms are found to improve mixing
of the Markov chain for both simulated and empirical data sets.

SPECIES delimitation using genetic data has become
a popular objective in recent years (Knowles and Carstens

2007). Several likelihood and Bayesian methods have been
developed in the coalescent framework that accounts for
lineage sorting and species-tree vs. gene-tree conflicts but
they vary in the adequacy of their treatment of statistical
uncertainty. The methods of O’Meara (2010) and Ence and
Carstens (2011) attempt to infer both species trees and de-
limitations but assume that gene trees are known without
error. O’Meara (2010) also uses several heuristics to avoid
difficult numerical analyses—the statistical performance of
his method is therefore not predictable from standard as-
ymptotic theory. Most populations for which species delim-
itation will be applied will not be greatly differentiated and
the gene trees will be very uncertain due to few mutations
and a consequent lack of information in the sequence data.
A recent Bayesian-delimitation method (Yang and Rannala
2010) averages over uncertainties in the gene trees and
should perform better for such data. From a statistical per-
spective, species delimitation can be viewed as a model

choice problem. Each possible delimitation corresponds to
a distinct statistical model with parameters that are not
strictly comparable. This is similar to the problem of phylo-
genetic inference in which parameters such as branch
lengths have different interpretations in different topologies
(see Yang 2006), but the delimitation problem is more com-
plex because the number of parameters (model dimension)
also changes across delimitations (Yang and Rannala 2010).

The Bayesian method of Yang and Rannala (2010) uses
reversible-jump Markov chain Monte Carlo (rjMCMC) to
calculate the posterior probabilities of species delimitations,
allowing for changes of dimension between models. The
algorithms involve a split step (which increases the number
of species by one) and a join step (which decreases the
number of species by one) to move between different spe-
cies-delimitation models. The method is implemented in the
Bayesian phylogenetics and phylogeography (BPP) program.
In simulation studies BPP was found to perform well, with
low false negatives (the error of lumping multiple species
into one) and false positives (the error of splitting one spe-
cies into several), and its performance is virtually unaffected
when species experience limited gene flow (e.g., Nm # 0.1)
(Zhang et al. 2011). Camargo et al. (2012) recently com-
pared BPP with several other species-delimitation methods,
including a method based on the simulation methodology
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known as approximate Bayesian computation (ABC) and
another Species Delimitation and Species Tree Estimation
(SpeDeSTEM) that assumes gene trees are known without
error (Ence and Carstens 2011). They concluded that “[o]
verall, BPP was the most accurate, ABC showed an interme-
diate accuracy, and SpeDeSTEM was the least accurate un-
der most simulated conditions.” Thus, BPP can provide
accurate delimitations. However, a drawback of BPP is that
the method can have poor mixing properties for large or
even medium-sized data sets, a common problem when
rjMCMC is used.

In this article, we describe two improvements to the BPP
program. The first is a flexible prior on species-delimitation
models, by which the user assigns a prior probability that
each interior node in the guide tree is a true speciation event
(Figure 1). In particular, by assigning prior probability 1.0 to
a speciation event one forces the two descendent popula-
tions to be always recognized as distinct species. This is
useful for cases in which some species delimitations are un-
ambiguous as it reduces the size of the model state space
and can potentially improve mixing of the MCMC. The sec-
ond is a modification to our earlier rjMCMC algorithms. We
modify our rjMCMC proposal to better deal with the strong
constraint that the gene trees place on the species tree when
the algorithm splits one species into two. Note that under
the multi-species coalescent model (Rannala and Yang
2003) two sequences can coalesce only if they are in the
same species (population). Thus, when we split one species
into two, the youngest coalescent time (node age of a gene
tree) between the two populations across all loci forms
a maximum bound to the new species divergence time. With
many loci, this bound can be too tight (too close to zero). In
this article, we remove the upper bound and instead mod-
ify the gene trees using a rubber-band algorithm (Rannala
and Yang 2003) to remove incompatibilities between the
gene trees and the new species divergence time in the split
move. We apply the new algorithm to two empirical data
sets and conduct a small-scale simulation study to demon-
strate that the modifications lead to moderately improved
performance.

Theory

As far as possible, we use the same notation as in Yang
and Rannala (2010). Let L = {Li} be the set of species-
delimitation models specified by the guide tree (Figure 1),
where Li denotes species-delimitation model i. The data, D,
consists of the alignments of nucleotide sequences at multiple
loci. The population genetic parameters of species-delimitation
model i include species divergence times t and population
sizes u, collectively denoted vi = {t, u} (Yang and Rannala
2010). For simplicity, we drop the subscripts and take L and
v to indicate any particular delimitation or set of population
parameters, respectively, unless the subscripts are needed in
the context. The Bayesian rjMCMC algorithm generates the
posterior distribution

fðL;v;GjDÞ} f ðLÞ f ðvjLÞ fðGjL;vÞ fðDjGÞ;

where f(L) and f(v|L) are the prior probabilities for delim-
itation L and population genetic parameters v, respectively,
f(D|G) is the likelihood of the sequence data given the gene
trees (see, e.g., Felsenstein 1981), and f(G|L, v) is the prior
density of gene trees specified under the neutral multispe-
cies coalescent model (Rannala and Yang 2003). Note that
there is a gene tree G with associated branch lengths (co-
alescence times) at every locus. Given the speciation model
and population genetic parameters, the gene trees at each
locus have independent distributions (we assume that the
loci are unlinked). We focus on the marginal probabilities of
species-delimitation models, f(L|D), integrating over the
gene trees and the coalescent times (G). To reduce the num-
ber of species-delimitation models to be evaluated we re-
quire the user to specify a guide tree of populations and
evaluate only those species-delimitation models that can
be generated by collapsing nodes on the guide tree (Figure
1) (Yang and Rannala 2010).

Flexible prior for species-delimitation models

A new method was implemented for specifying prior
probabilities for species-delimitation models. Each interior
node in the guide tree is assigned a probability that the node
represents a true speciation event (i.e., the probability that
the daughter nodes represent distinct species). This proba-
bility is conditional on the mother node representing distinct
species. Biologically, for any interior node to exist, all its
ancestral nodes must also exist. In the example of Figure
1, only ancestral nodes 6 and 7 exist in the delimitation
1100. The prior probability of this model is 0.9 · 0.6 ·
(1 2 0.3) · (1 2 0.8) = 0.0756, where the first two terms
of the product are the probabilities that nodes 6 and 7 are
present in the tree and the final two terms are the probabil-
ities that nodes 8 and 9 are absent. Note that if a node’s
ancestor is absent, the probability that the decendent node is
absent becomes 1. For example, the delimitation 1000 has

Figure 1 (A) An example guide tree for five species with prior probabil-
ities specified for individual nodes (conditional on their mother nodes
being present). (B) The binary representation for each species delimitation
that can be obtained by collapsing or expanding nodes 6, 7, 8, 9 in the
guide tree and the prior probability (in parentheses) of that delimitation.
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probability 0.9 · (1 2 0.6) · (1 2 0.8) = 0.072. The first
term in the product is the probability that node 6 is present
and the last two terms are the probabilities that nodes 7 and
9, respectively, are absent. In this case, node 8 is absent with
probability 1.0 because its ancestor node 7 is absent. Note
that the model probabilities sum to 1 as required (Figure 1).

The new prior allows the user to specify arbitrary prior
probabilities for the species-delimitation models. One use
of this prior is to assign a prior of one to nodes that
represent well-established species divergences, so that
certain species-delimitation models, such as that of one
species, are disallowed by the prior. This strategy may be
useful for improving mixing, as both BPP 2.1c and BPP 2.2
are sometimes noted to become trapped in the one species
model, in analyses of both real and simulated data sets,
even if the model has negligibly small posterior probabil-
ities. At the start of a run the BPP program prints out a list
of all species-delimitation models allowed by the guide
tree and their prior probabilities. The user should examine
this output to ensure that the prior is reasonable. The
program also implements two other prior models on
species delimitations: the first assigns equal probabilities
for different labeled histories (Yang and Rannala 2010)
and the second assigns equal probabilities for different
rooted trees.

Rubber-band algorithm with proportional scaling

The poor mixing of the rjMCMC algorithms of Yang and
Rannala (2010) appears to be caused by the strong con-
straint posed by the gene trees when a new species diver-
gence time (ti) is proposed in the split move. When we split
a node on the guide tree, the gene trees (topology and
branch lengths) are not changed. Our model assumes that
two sequences can coalesce only if they belong to the same
species. Consider that node i, which has descendent nodes
j and k, is a candidate for splitting into two species. In the
current model (where j and k are a single species) the co-
alescence time between sequences from j and k can be arbi-
trarily small. In the proposed model (where j and k are
separate species) the coalescent time between the two
sequences must be older than the species divergence time
ti. Thus the minimum coalescent time between sequences
from j and k over all loci constitutes an upper bound tU
when we propose a new t*i . As a result, the proposed t*i
can be unrealistically small, leading to the rejection of the
proposal (Figure 2A).

Here we modify the algorithm to allow larger values to be
proposed for the new divergence time ti during the split
move, modifying at the same time the coalescent times
(node ages) in the gene trees to avoid conflicts between
the gene trees and the proposed species tree. We adapt
our previously developed rubber-band algorithm Rannala
and Yang (2003) to achieve this. If the node to be split is
not the root of the (guide) species tree, we simply use the
age of the ancestral node as the upper bound. To determine
a reasonable upper bound for t when the root node is split,

we scan the sequence alignments at loci and calculate the
average sequence distance between the two sides of the
root. Let this be di for locus i. The di’s have expectation
�d ¼ t þ u=2 and variance v = (u/2)2 + (u/2). Note that
the coalescent times have an exponential distribution among
loci with mean (u/2) and variance (u/2)2 and, conditional
on the coalescent time, the number of mutations has a Pois-
son distribution. Thus from the mean �d and variance v of di
over loci, we get

~u ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4vþ 1

p
2 1;

~t ¼ �d2 ~u=2:
(1)

Those estimates do not appear to be stable and provide only
rough estimates of u and t. We set the upper bound for the
new t to tU ¼ ~t þ ui, where ~t is given in Equation 1 and does
not change during the MCMC while ui is the current value for
the node to be split and changes during the MCMC algorithm.

Figure 2 (A) In the old algorithm (Yang and Rannala 2010), the gene
trees are not changed during the split and join moves. To split one species
into two, the upper bound tU for the new species divergence time, t*, is
given by the youngest node age between sequences from the two species
across all loci. Here two gene trees are shown, with the youngest node
between populations A and B marked by circles. (B) In the new algorithm,
tU is determined without scanning the gene trees. After t* is generated,
node ages in each gene tree are modified to avoid conflicts. Affected
nodes (c1, c2, marked by squares) have descendents in both populations
A and B and must be older than t*. Their ages are pushed up to be older
than t* using the rubber-band algorithm. Within-move clades (clades
a and b, nodes marked by circles) have descendents in population A only
or in population B only. Their ages are not restricted and are modified
proportionally relative to the age of their immediate ancestor that is an
affected node: the ages of a1 and a2 are modified relative to the age of
c2, and the age of node b is modified relative to that of c1.
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Given the upper bound, tU, we construct a beta-distribution
to generate the new t* for the split move. The density is

f ðt*; tU; p; qÞ ¼ 1
Bðp; qÞ

�
t*

tU

�p21�
12

t*

tU

�q21 1
tU

;   0, t*, tU:

(2)

This is equivalent to assuming that the transformed variable
x = t*/tU has the familiar two-parameter beta-distribution:
x � beta(p, q) with 0 , x , 1. The distribution has mean
tUp/(p + q) and variance t2Upq=½ðpþ qÞ2ðpþ qþ 1Þ�, so that
larger values of p and q mean that the proposal density is
more concentrated. In practice, p = 2 and q = 8 provide
good performance. This beta-proposal is now used for the
non-root nodes as well; the power distribution of Yang and
Rannala (2010) is no longer used.

After t* is generated, we scan the gene trees and modify
them to avoid conflicts. At each locus, we define an affected
node as a node in the gene tree that resides in current spe-
cies i (the candidate node for split) and that has descendents
in both populations j and k. Let m be the number of affected
nodes. The age of each affected node, t, must be older than
t* and so we modify it as

tU 2 t*

tU2 t
¼ tU 2 t*

tU 20
;

so that

t* ¼ t* þ
�
12

t*

tU

�
t and    t ¼ tUðt* 2 t*Þ

tU2 t*
:

This is the rubber-band algorithm of Rannala and Yang
(2003) (i.e., their Equation A.7). The gene trees are then
scanned to identify so-called within-move clades. A within-
move clade is a descendent of an affected node whose nodes
all reside either in population j (or its descendents) or in
population k (or its descendents). The ages of nodes in
a within-move clade do not have to be older than t* so their
ages are transformed proportionally upward by the affected
node. The ages of all nodes of a within-move clade are mul-
tiplied by a proportionality factor c . 1 that is the ratio of the
new age to the old age for the affected node (see Figure 2B).
This proportional scaling algorithm incurs a proposal ratio of
cw for each within-move clade, where w is the number of
nodes in the within-move clade (Yang 2006, p. 170). This is
done for all within-move clades. Suppose that collectively all
nodes in the within-move clades incur a proposal ratio of C.

For the reverse join move, the affected nodes are
identified in the same way. The age of each affected node
with current age t is modified as

t* ¼ tUðt2 t*Þ
tU2 t*

:

Again the within-move clades are identified and the ages of
nodes in each within-move clade are multiplied by c, the

ratio of the new age, t*, to the old age, t, for the affected
node. Note that c , 1. Again, let C be the proposal ratio
incurred by all nodes in the within-move clades. Instead of
Equations 4 and 5 in Yang and Rannala (2010), the accep-
tance ratios are

Rsplit ¼
x
y
pðL*Þ
pðLÞ tUðeu*j Þðeu*kÞ

�
tU2t*

tU

�m

C;

and

Rjoin ¼ x
y
pðL*Þ
pðLÞ

1
tUðeujÞðeukÞ

�
tU

tU2t

�m

C;

where p(L) denotes the product of the prior and likelihood
for delimitation L.

Computational Efficiency of New Algorithm

We conducted a small simulation study and analyzed two
empirical data sets to assess the performance of the new
algorithm in comparison with that of Yang and Rannala
(2010), using BPP version 2.2 and BPP version 2.1c, respec-
tively. Our focus here is on computational efficiency. Al-
though the new prior (with probabilities assigned to nodes
of the guide tree) may be used to change the posterior
model probabilities, by disallowing the one-species model,
for example, we envisage that this will be done only when
there is overwhelming evidence in the sequence data (and
possibly from other sources) against the disallowed models.
In short, we expect the old and new algorithms to support
the same biological conclusion if both have converged. It is
thus the computational effort required to calculate the same
posterior model probabilities to the same precision that we
are measuring. We used two measures of computational
efficiency. The first is the average model-jump probability
or acceptance rate of between-model moves (Pjump). Unlike
within-model MCMC for which intermediate acceptance
rates are optimal, for between-model moves a higher accep-
tance rate in general means higher efficiency (see Discus-
sion). The second measure is the variance (or standard
deviation) of the estimated posterior model probability, with
smaller variance indicating higher efficiency.

Simulation study

We simulated sequence data on the tree of five species
illustrated in Figure 3. We used parameter values of u = 0.02
for all populations and tAB = 0.01, tABC = 0.02, tABCD =
0.03, and tABCDE = 0.04. We analyzed the data in three ways:
(1) using BPP version 2.1c, which does not include the mod-
ifications described in this article; (2) using BPP version 2.2,
with the rubber-band algorithm and a uniform prior on
rooted species trees; and (3) using BPP version 2.2, with
both the rubber-band algorithm and the prior constraint
assigning prior probability 1.0 on all nodes except the
node-splitting populations A and B, which has prior
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probability 0.5. This corresponds to a case in which there is
strong support for four species (C, D, E, and AB) but some
uncertainty about whether A and B are good species. The
data sets generated in our simulation are of this nature. Two
independent sequence data sets were simulated on the tree
of Figure 3 using the program MCcoal (distributed in the
BPP package), with 3 sequences sampled from each of the 5
species (15 sequences in total for each locus). We simulated
15 loci for each data set, each composed of 1000 bp, under
the JC69 model. Each data set was analyzed using 100
independent MCMC runs with random starting species-
delimitation models and parameter values for each set of
conditions (300 runs in total). The runs were carried out
with 20,000 burn-in iterations and 100,000 sample itera-
tions (sampling every 2 iterations) to estimate the posterior
model probabilities and to compare the efficiency of esti-
mates obtained using the three different algorithms. Because
we use an identical number of iterations, the relative efficiency
is informative about the statistical performance of each algo-
rithm given a fixed computational effort. We also compared
the run times of the different algorithms (see below) as the
new moves will incur some computing cost, potentially in-
creasing the run time for a given number of iterations. The
acceptance rate for between-model moves was recorded. Ac-
ceptance rates varied little among runs analyzing the same
data set and using the same algorithm.

The results (Table 1) show a large increase in the accep-
tance rate of between-model moves in the new algorithms.
The rubber-band algorithm alone produces a nearly three-
fold increase in the acceptance rate over the algorithm of
Yang and Rannala (2010) for data set 1 (an increase from 5
to 14%) and the use of the prior constraint further improves
acceptance by �2%. Similarly, for data set 2 there is a near
threefold increase (from 2.4 to 6.4%) due to the rubber-
band algorithm and a further increase of about half a percent
due to the prior constraint. The absolute improvement in
this case is smaller because the posterior probability for data
set 2 is larger than for data set 1 (0.95 vs. 0.82). The max-
imum acceptance rate possible for data set 2 is 0.05 · 2 =
0.10 while that for data set 1 is 0.18 · 2 = 0.36 (see Dis-
cussion). In both cases, the achieved acceptance rate is about
half the theoretical maximum. The efficiency of the MCMC
estimates of the posterior model probabilities is also increased
due to the improved mixing. Relative to the algorithm of Yang
and Rannala (2010), we see a �35% reduction in the stan-
dard deviation of the posterior probability among replicate
runs in the new rubber-band algorithm with prior constraint
in both data sets. This translates to a threefold increase in
efficiency since relative efficiency is measured by the ratio of
the variances of the estimates.

An additional set of 100 independent MCMC runs were
performed on data set 1 to compare the performance of BPP
2.2 either using only the 6 sequences from species A and B
or instead using all 15 sequences from species A, B, C, D,
and E and a prior that places probability 1.0 on all nodes
except the node-splitting populations A and B, which has

prior probability 0.5. This allows one to compare both the
efficiency (and acceptance probabilities) for these two
strategies of delimiting two species and also the resulting
posterior probabilities. By including the additional sequen-
ces for species C, D, and E one potentially includes
additional information about shared parameters that in-
fluence the posterior probability that A and B are separate
species. The results (Table 2) suggest that strategy 2 (using
fixed outgroup species) is superior to strategy 1 (using
sequences from A and B only). First, the probability that A
and B are distinct species, Pr(AB), is larger (0.82 vs. 0.28)
under strategy 2, indicating that this approach has more
power. Second, Pjump is more than four times larger under
strategy 2 despite the fact that the larger Pr(AB) makes it
harder to jump between models. Third, the standard devia-
tion is nearly three times smaller under strategy 2, so that
the Markov chain is about nine times more efficient.

Figure 3 Species tree of five species used for simulation study.

Table 1 Summary of results for 100 independent MCMC
analyses of two simulated data sets using each of three
different algorithms

Data set Algorithm Pjump SD(P)

1 BPP 2.1c 0.054 0.0082
1 BPP 2.2 0.139 0.0052
1 BPP 2.2 + prior 0.164 0.0054
2 BPP 2.1c 0.024 0.0039
2 BPP 2.2 0.064 0.0026
2 BPP 2.2 + prior 0.067 0.0025

Pjump is the average (across 100 independent MCMC runs) of the model-jump
acceptance rate. SD(P) denotes the standard deviation (across 100 independent
MCMC runs) of the posterior probability of the true model (five species). For data
sets 1 and 2 the posterior probabilities of the true model were 0.82 and 0.95,
respectively, determined by running very long chains.
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We compared the run times of the old algorithm (BPP
2.1) and the new one (BPP 2.2), with and without an
informative prior, in analyses of the two simulated data sets.
The same number of iterations (120,000) and the same
computer are used. For data set 1 the run times (in minutes
and seconds) for BPP 2.1, BPP 2.2 with a prior constraint,
and BPP 2.2 without a prior constraint were 19:10, 19:45,
and 19:46, respectively, and for data set 2 they were 19:32,
19:49, and 19:29. Thus, the improvement in efficiency of the
new algorithm appears to add no extra computational cost.

Analysis of real data

We analyze two empirical data sets to evaluate the
computational efficiency of the different rjMCMC algorithms
discussed in this article. In all data sets we tested, the new
algorithm (BBP2.2) was more efficient (as judged by
improved acceptance rate and reduced standard error of
the posterior model probability). The performance differ-
ence, however, depends on the particular data set and
parameter settings of the analysis.

The lizard data set: The first data set we analyze is a nuclear
exon (RAG-1) from coast horned lizards, published by
Leaché et al. (2009). Leaché et al. (2009) sequenced two
nuclear exons (RAG-1: 132 sequences, 529 bp, and BDNF:
136 sequences, 1100 bp), as well as two fragments of the
mitochondrial genome (1.6 kb in total), to investigate the
speciation history of the coast horned lizard species complex
(Phrynosoma). They quantified a diversity of operational
species criteria, including divergence in mitochondrial
DNA and nuclear loci, ecological niches, and cranial horn
shapes. The phylogenetic analysis of mtDNA recovered five
phylogeographic groups arranged latitudinally along Cali-
fornia and Baja California. The phylogeny among those five
populations (phylogeographic groups) is used as the guide
tree in our analysis (Figure 4). If we used both nuclear loci,
the species-delimitation model 1111, which has five species,
had posterior probability �100%. Here we use one locus,
the RAG-1 exon, to evaluate the rjMCMC algorithms.

We used a burn-in period of 104 iterations, so that the
chain is very likely to have reached stationarity. After the
burn-in, the chain was run for either 2 · 105 or 8 · 105

iterations, using rjMCMC algorithm 0 (with e = 2) in Yang
and Rannala (2010, Equation 3). We analyzed the data in

three ways, as in the analysis of the simulated data: (1)
using BPP 2.1c, which implements the algorithms of Yang
and Rannala (2010); (2) using BPP 2.2, which implements
the rubber-band algorithm with proportional scaling; and
(3) using BPP 2.2, with the new prior constraint in addition
to the rubber-band algorithm with proportional scaling. The
prior constraint is specified as (((NCA, SCA):0.5, (NBC,
CBC):0.5):0.8, SBC):1.0; so that the five species-delimita-
tion models 1000, 1100, 1101, 1110, and 1111 are assigned
prior probabilities 1/5 each, while model 0000 is assigned
prior probability 0. The priors on parameters are t � G(2,
1000) for the root on the guide tree and u � G(2, 100) for
all u’s. Very long chains using all three methods gave the
posterior probabilities for delimitation models 1111 and
1110 as 0.58 and 0.42, respectively. In other words, the only
uncertainty in the Bayesian analysis concerns the species
status of the Northern Baja California (NBC) and Central
Baja California (CBC) populations. We ran each algorithm
100 times, using different starting species tree models and
parameter values. The results are summarized in Table 3.
Compared with BPP2.1c, the rubber-band algorithm and
proportional scaling implemented in BPP2.2 increased the

Table 2 Summary of results for 100 independent MCMC analyses
of simulated data set 1 using two strategies

Data and Analysis Pjump SD(P) Pr(AB)

BPP 2.2 (AB only) 0.036 0.0137 0.28
BPP 2.2 (ABCDE) + constraint 0.164 0.0054 0.82

Strategy 1 analyzes only the 6 sequences from species A and B. Strategy 2 analyzes
all 15 sequences from the 5 species with the prior constraint that all populations
except A and B are distinct species (that is, with probability 1.0 assigned on all
nodes except the node ancestral to A and B in Figure 3). Pjump is the average
acceptance rate. SD(P) is the standard deviation (across runs) of the posterior prob-
ability of the true model (1111). Pr(AB) is the estimated posterior probability that
populations A and B are good species.

Figure 4 The guide tree for five populations of coast horned lizard (Phry-
nosoma): NCA (Northern California), SCA (Southern California), NBC
(Northern Baja California), CBC (Central Baja California), and SBC (South-
ern Baja California). Those populations were identified by Leaché et al.
(2009) from an mtDNA genealogy. Estimates of u’s for modern (in pa-
rentheses) as well as ancestral populations under the multispecies coales-
cent model are shown, as well as estimates of t’s, all measured by the
expected number of mutations per kilobase. In the species-delimitation
analysis (using the new prior), probabilities were assigned to the nodes as
(((NCA, SCA):0.5, (NBC, CBC):0.5):0.8, SBC):1.0 with probabilities 1.0,
0.8, 0.5, and 0.5 for the presence of nodes 6, 7, 8, and 9, respectively,
so that the five species-delimitation models 1000, 1100, 1101, 1110, and
1111 have prior probabilities 1/5 each. This way, model 0000 (the one
species model) is disallowed.
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model-jump probability from 1.4 to 7.6%, a more than five-
fold improvement. The maximum limit to Pjump is 2(1 2
0.58) = 0.84, achievable if all parameters (including u’s,
t’s, and the gene trees) are proposed from their posterior
during the split and join moves. Compared with this limit,
the Pjump values achieved in both BPP 2.1c and 2.2 are very
low. Consistent with the improved model-jump probability,
the different runs of the same algorithm are more consistent,
with smaller SDs for P(1111), the posterior for the best-
fitting model, in BPP2.2 than in BPP2.1c. The variance ratio
is 2–3 and suggests that the new algorithm is two to three
times more efficient in estimating the posterior model
probability.

The results for the two chain lengths (N) (Table 3) are
consistent with our expectation that increasing the number
of iterations by fourfold halves the standard deviation. The
prior constraint had virtually no effect on either Pjump or SD
(P) in this comparison (Table 3). However, the prior is useful
for preventing the chain from getting stuck at model 0000
(one species).

The cavefish data set: The second data set we analyze
consists of 22 individuals of a cavefish (Typhlichthys subterra-
neus) sequenced at five nuclear gene loci (with one allele for
each individual at each locus), published by Niemiller et al.
(2012). T. subterraneus is a teleost fish widely distributed in
Eastern North America. Species delimitation based on mor-
phology in subterranean animals such as cavefish is difficult
as morphological differentiation is often obscured by conver-
gent evolution. Genetic data thus constitute a valuable source
of information for species delimitation in such organisms.
Niemiller et al. (2012) sequenced multiple loci to delimit
species in T. subterraneus. They used the method of O’Meara
(2010) to assign individuals to populations/species and then
*BEAST (Heled and Drummond 2010) to infer the species
tree. The authors conclude that the genetic data do not
support the picture of a single, widely distributed species
of T. subterraneus. Instead, there exist several cryptic species
with only slight morphological divergence.

The authors nevertheless found that both the species
assignment and species tree inference were sensitive to the
number of individuals and the number of genes sampled,
indicating that alternative strategies for generating the
species guide tree should be explored. Here we use the
20-individual 6-gene data set of Niemiller et al. (2012) to
evaluate the rjMCMC algorithms implemented in the differ-
ent versions of BPP. We exclude the mitochondrial nd2 locus
and use the five nuclear loci only (s7, rag1, myh6, plagl2,
and tbr1). The guide tree derived by Niemiller et al. (2012,
Figure 4) is used (Figure 5). We use the same settings (pri-
ors, number of iterations, etc.) as in the analysis of lizard
data set, except that rjMCMC Algorithm 1 (with a = 2 and
m = 1) of Yang and Rannala (2010, Equation 6) is used.

Posterior means of t’s and u’s when the guide tree is
treated as a fixed species tree are shown in Figure 5. Rela-
tive to the estimates for the lizard data set (Figure 4), the u’s

are comparable but the t’s are larger, indicating that the fish
populations are genetically more divergent than the lizards.
Computational efficiencies of the different rjMCMC algo-
rithms are summarized in Table 4. Compared with BPP2.1c,
the rubber-band algorithm and proportional scaling imple-
mented in BPP2.2 increased the model-jump probability
from 2.3 to 5.2%. The SDs for P(111111), the posterior
probability for the-delimitation model 111111, is smaller
in BPP2.2 than in BPP2.1c. The results suggest that the
modifications we have introduced here generally cause bet-
ter gene trees to be proposed, with improved acceptance
rates, whatever the algorithm for proposing model parame-
ters in the rjMCMC move (Yang and Rannala 2010).

The informative prior (Figure 5) disallows four delimita-
tion models (000000, 100000, 110000, and 110001) and
assigns the prior probability 0.125 to the eight remaining
delimitation models. This does not lead to improvements in
the acceptance rate or the precision of the posterior model
probability. However, the prior constraint is effective in pre-
venting the chain from getting stuck at the one-species
model.

Discussion

The rjMCMC algorithm is very flexible in terms of possible
proposals. However, it often suffers from poor mixing when
applied to real data. This is particularly true when the data
are highly informative and the posteriors of the parameters
within each model are highly concentrated. Proposed
between-model jumps tend to be rejected, so that the chain
becomes trapped in one model, even if that model has low
posterior probability. It is more difficult to construct efficient
proposals for rjMCMC than for conventional MCMC. In
conventional MCMC, the distance between the current value
and the proposed value of a parameter can be used to adjust
the acceptance rate and to construct an optimal algorithm,
but in rjMCMC we lack such a measure of distance. For
example, in conventional MCMC using a sliding-window
proposal for a continuous target distribution, a small win-
dow size will lead to small moves with Pjump � 1, whereas
a large window size will lead to large moves and a small
Pjump. Therefore, if the window size is adjusted to obtain
a near-optimal Pjump, the conventional MCMC algorithm
can work well regardless of whether the posterior is concen-
trated or diffuse. In rjMCMC, there is no obvious parallel to
such a scale adjustment because there is no guide as to what

Table 3 The average model-jump probability Pjump and the standard
deviation for the posterior probability for the delimitation model
1111, SD(P), in 100 replicate runs of three rjMCMC algorithms

N BPP 2.1c BPP 2.2 BPP 2.2 + prior

Pjump 1.4% 7.6% 7.6%
SD(P) 2 · 105 0.024 0.014 0.015
SD(P) 8 · 105 0.010 0.007 0.007

P(1111) = 0.58. N is the chain length (the number of iterations).
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is a “local move” when the chain is jumping between mod-
els. As Green and Hastie (2009) pointed out, “For across-
model proposals the lack of a concept of closeness means
that frequently it is the problem of low acceptance probabil-
ities that makes efficient proposals hard to design; it is usual
for across-model moves to display much lower acceptance
probabilities than within-model moves.”

We note here several important differences between
conventional MCMC and cross-model rjMCMC. First, for
within-model MCMC, there is an optimal acceptance pro-
portion (say �30–40% for 1-D moves). For cross-model
rjMCMC, the higher Pjump is, the more efficient the chain
tends to be (Peskun 1973). Second, Pjump is maximized by
proposing parameters for the new model from its posterior.
Third, for conventional MCMC, Pjump can be made arbitrarily
close to 1 by decreasing the step size. With rjMCMC, the
posterior model probabilities place an upper bound on Pjump;
it cannot exceed twice one minus the posterior probability of
the best-fitting model. Thus Pjump � 0 does not necessarily
mean poor mixing. If the best model has posterior probabil-
ity 99.9%, the chain must stay in the model 99.9% of the
time and it therefore cannot accept .�0.1% of the pro-
posals to move away from it.

With conventional MCMC, taking a sufficiently small step
virtually guarantees acceptance (although the resulting
chain may mix slowly). One might think that the same
would apply to rjMCMC and that to move from a simpler

model (with fewer parameters) to a more complex one
(with more parameters), proposing parameter values for the
more complex model that closely correspond to the current
parameters of the simpler model would guarantee accep-
tance. This is not the case for rjMCMC, yet it appears to be
a widespread misconception concerning rjMCMC proposals.
For example, Brooks et al. (2003) describe a “weak non-
identifiability centering” proposal based on this idea that
they claim will lead to high probabilities of between-model
jumps (in fact, they argue that between-model acceptance
rates of 1 can be achieved using this proposal). Clearly this is
incorrect because the acceptance rate is always limited by
the posterior probability of the best model. If one model
dominates in the posterior, the acceptance rate of be-
tween-model moves can never be high. The prior, if it is
diffuse, also works against the parameter-rich model. Even
though the likelihood stays essentially the same, the pro-
posal is very likely to be rejected.

The mixing problems discussed here are due to the
change of dimensions and/or change of probability spaces
in between-model moves, that is, the change from the
probability space of one model to the probability space of
another model. Here we are not using Green’s formalism in
which all models share one general space (Green and Hastie
2009), but consider each model having its own probability
space. Mixing problems can arise in moves between models
of the same dimension, but a change of dimension introdu-
ces additional difficulty. While Green (2003) suggested that
mixing problems may have more to do with high dimension-
ality than with change of dimension, our experience is
somewhat different. The within-model MCMC algo-
rithms implemented in BPP have been successfully used to
analyze as many as 50,000 loci (Burgess and Yang 2008),
which involves extremely high dimensions in the gene trees
and node ages, but the program may begin to have mixing
problems with small numbers of loci when using rjMCMC
for species delimitation.

Recognizing the difficulty of achieving generic improve-
ments to rjMCMC algorithms due to some of the problems
outlined above, in this article we focused on improving the
rjMCMC mixing of the species-delimitation program by
making algorithmic modifications that are specific to our
particular model. First, we have modified our algorithm to
jointly propose divergence times and multilocus gene trees
to reduce the strong constraint that species divergence time
vs. gene-tree conflicts impose during the split move, which
leads to reduced acceptance rates. This constraint becomes
increasingly severe with the addition of more loci and/or
sequences in the old algorithm. The rubber-band algorithm
we implemented helps to reduce the effect of this constraint
and results in a several-fold improvement in the accep-
tance rates of between-model jumps. The between-model
jump acceptance rates are still often much less than the
theoretical maximum, however, suggesting that other
improvements remain to be found. A second modification
changed the prior on the guide tree to allow certain species

Figure 5 The guide tree for seven populations of cavefish (Typhlichthys),
from Niemiller et al. (2012). Estimates of u’s for modern (in parentheses)
as well as ancestral populations under the multi-species coalescent model
are shown, as well as estimates of t’s, all measured by the expected
number of mutations per kilobase. In the species-delimitation analysis
(using the new prior), probabilities were assigned to the nodes as ((((A,
E):0.5, (B, F):0.5):1.0, (C, D):0.5):1.0, Sp):1.0, so that four species-delim-
itation models 000000, 100000, 110000, and 110001 are disallowed by
the prior while the other eight are assigned prior probability 0.125 each.
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delimitations to be given larger prior probability (even
a probability of 1.0). This allows biologists to incorporate
other sources of information in the analysis and helps in
reducing the dimension of the inference problem without
reducing sequence information (as would occur if one re-
moved the species with fixed delimitations, for example).
Analyses of the simulated data indicated that including ad-
ditional species with fixed delimitations could increase pos-
terior probabilities for target group of species and also helps
to improve the mixing of the rjMCMC.

We note that in analyses of both real and simulated data
sets the posterior probability of the best fitting model tends
to increase quickly with the addition of more loci, with the
posterior probability for one model reaching 100% when
between 10 and 20 loci are used (Zhang et al. 2011). While
genome-scale data sets are becoming increasingly common,
there appears to be no need to use hundreds of loci for the
purpose of species delimitation. Instead it may be more im-
portant to examine variable patterns of species divergences
across the genome, as speciation-related adaptation is likely to
leave signals in isolated regions of the genome (Dasmahapatra
et al. 2012).

BPP2.2, which implements the new algorithms developed
in this article, is distributed at its website at http://abacus.
gene.ucl.ac.uk/software/. The program is written in ANSI C
and can be compiled on various platforms. Both the coast
horned lizard and the cavefish data sets are included in the
package as example data sets.
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Table 4 The average model-jump probability Pjump and the
standard deviation for the posterior probability for the
delimitation model 111111, SD(P), in 100 replicate runs of three
rjMCMC algorithms

BPP 2.1c BPP 2.2 BPP 2.2 + prior

Pjump 2.3% 5.2% 5.2%
SD(P) 0.011 0.008 0.009

The number of iterations is 2 · 105. P(111111) = 0.60.
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