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Research Article

The unbearable uncertainty of Bayesian divergence time estimation

Mario DOS REIS Ziheng YANG*

(Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK)

Abstract Divergence time estimation using molecular sequence data relying on uncertain fossil calibrations is an
unconventional statistical estimation problem. As the sequence data provide information about the distances only,
estimation of absolute times and rates has to rely on information in the prior, so that the model is only semi‐
identifiable. In this paper, we use a combination of mathematical analysis, computer simulation, and real data analysis
to examine the uncertainty in posterior time estimates when the amount of sequence data increases. The analysis
extends the infinite‐sites theory of Yang and Rannala, which predicts the posterior distribution of divergence times
and rate when the amount of data approaches infinity. We found that the posterior credibility interval in general
decreases and reaches a non‐zero limit when the data size increases. However, for the node with the most precise fossil
calibration (as measured by the interval width divided by the mid value), sequence data do not really make the time
estimate any more precise. We propose a finite‐sites theory which predicts that the square of the posterior interval
width approaches its infinite‐data limit at the rate 1/n, where n is the sequence length. We suggest a procedure to
partition the uncertainty of posterior time estimates into that due to uncertainties in fossil calibrations and that due to
sampling errors in the sequence data. We evaluate the impact of conflicting fossil calibrations on posterior time
estimation and point out that narrow credibility intervals or overly precise time estimates can be produced by
conflicting or erroneous fossil calibrations.
Key words finite‐sites theory, fossil calibration, infinite‐sites plot, molecular clock.

There has been great interest in estimating the
times of species divergences using molecular data since
the proposal of the molecular clock hypothesis 40 years
ago (Zuckerkandl & Pauling, 1965). The field has
moved a long way since then, and several sophisticated
computer programs that implement Bayesian estima-
tion of divergence times have been developed, such
as MULTIDIVTIME (Thorne et al., 1998; Kishino
et al., 2001), BEAST (Drummond & Rambaut, 2007),
MrBAYES (Ronquist et al., 2012b), MCMCTREE
(Yang, 2007), and PHYLOBAYES (Lartillot et al.,
2009), among others. Nevertheless, divergence time
estimation using molecular data is a complicated
problem. Molecular data provide information only
about the distances among species on a phylogeny,
but not about the geological ages of clades nor the
molecular evolutionary rate. The molecular rate r and
the divergence time t always appear as a product (the
distance d ¼ rt) in the likelihood function (the
probability of the sequence data). In other words, r
and t are confounded and cannot be estimated separately

from sequence data alone. If information on the times of
divergence of one or more pairs of species is available
(say from the fossil record or some geological event),
such information can be used to construct a prior on the
divergence times. The Bayesian method can then be
used to estimate the molecular rate as well as the
divergence times in the phylogeny from a sequence
alignment (Thorne et al., 1998).

Overcoming the identifiability problem of rates
and times is challenging even in the Bayesian context.
Yang & Rannala (2006) and Rannala & Yang (2007)
have shown that as the amount of molecular sequence
data approaches infinity, the joint posterior distribution
of times does not converge to a point mass on the true
times as occurs in a conventional estimation problem,
but to a one‐dimensional distribution. In other words,
the root age t1 has a posterior distribution, while the
posterior distribution of any other time ti in the phylo-
geny is simply a linear transform of the distribution of
t1. As a consequence, a plot of posterior credibility
interval (CI) widths of times vs. posterior mean times
approaches a straight line when the amount of sequence
data approaches infinity (Yang & Rannala, 2006;
Rannala & Yang, 2007). This plot is known as the
infinite‐sites plot. An example is shown in Fig. 1, from
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an analysis of a large primate dataset. The near perfect
fit of the straight line implies that nearly all the
uncertainty in the posterior time estimate is due to
uncertainties in the fossil calibrations, and adding more
sequence data is unlikely to produce more precise
estimates. The uncertainty of fossil information
therefore imposes a theoretical limit on the precision
that can be achieved in divergence time estimation
when the amount of sequence data increases.

Although Yang & Rannala (2006) and Rannala &
Yang (2007) derived the asymptotic distribution of
times for infinite sequence data, the behavior of the
posterior distribution of times in large but finite datasets
has not been explored. It is unclear whether the
uncertainty in posterior time estimates always decreases
when the amount of sequence data increases. In any real
data analysis, we will also be interested in knowing
whether the uncertainty in the posterior time estimates
is largely due to uncertainties in fossil calibrations or to
finite amount of sequence data. Another interesting
question is the asymptotic behavior of the posterior of
times when the molecular data and the prior fossil

information are in conflict. In a conventional Bayesian
analysis, conflicting priors are eventually overruled
by the data, and the posterior converges to the true
parameter values when the data size increases. In
divergence time estimation, the identifiability problem
precludes any guarantee that the posterior of times will
converge to the true values. In fact, the posterior of
times may converge to incorrect values with arbitrarily
small uncertainty, especially if some fossil calibrations
are wrong (Yang & Rannala, 2006) or if there are
conflicts among the calibrations.

In this paper we study the behavior of the posterior
distribution of times as the amount of data increases and
when the molecular clock holds. The fossil information
may either be adequate or conflictingwith themolecular
data. We develop a finite‐sites theory of divergence
time estimation, which should apply to all current
Bayesian methods, despite their idiosyncratic ways of
dealing with fossil calibrations. For example, while we
consider the uniform and gamma calibration densities,
the theory applies to other densities such as exponential,
log‐normal, etc.We analyze a few example phylogenies
containing from two to nine species, using a combina-
tion of mathematical analysis (for the simple cases) and
computer simulation. We use the data of six primate
genomes to demonstrate the same patterns in real data
sets.

1 The finite‐sites theory of uncertainty in
divergence time estimation

Under certain regularity conditions, the variance
V ðûÞ of a maximum likelihood estimator û is
asymptotically proportional to 1/n with n to be the
sample size. As n ! 1, V ðûÞ ! 0 and the estimator
converges to the true parameter value. Because for large
samples the likelihood function dominates the posteri-
or, the posterior variance is also asymptotically
proportional to 1/n and the posterior estimate also
converges to the true value. In contrast, in divergence
time estimation the posterior variance of the divergence
time does not converge to zero.

In general, calculating the posterior variance of
divergence times seems intractable. Therefore we
examine a generic, simpler case of parameter estimation
when the parameters are confounded. Although this
example is not directly related to divergence time
estimation, it sheds light on the asymptotic variance of
confounded parameter estimates in the Bayesian
setting. We wish to estimate parameters m1 and m2

when the data and likelihood depend on m ¼ m1 þ m2
only (Yang & Rannala, 2006). The data y ¼ ðyiÞ are an

Fig. 1. Infinite‐sites plot for the divergence times of human versus five
other primate species (see phylogeny in Fig. 7 later). Divergence times, in
millions of years ago (Ma), were estimated on an alignment of 8 708 584
sites using the Bayesian method with the program MCMCTREE. The
Bayesian analysis produces a posterior mean and the 95% posterior
credibility interval for each of the 5 interior nodes on the tree. The CI
width (the difference of the 2.5% and 97.5% limits) is plotted against the
posterior mean in the scatter plot. A line with intercept 0 is fitted to the
scatter plot. Despite the very long alignment, the uncertainty of time
estimates (as measure by the CI width w) does not go to zero, but
converges to a limiting value determined by the uncertainty in the fossil
calibrations. In this example, for every one million years of divergence,
0.322 million years are added to the CI width of time estimates. The data
set is analyzed later in this paper, where the details of the analysis are
given (see, e.g., legend to Fig. 7).

© 2012 Institute of Botany, Chinese Academy of Sciences

DOS REIS & YANG: Uncertainty in divergence time estimation 31



independent and identically distributed sample from
the normal distribution Nðm; 1Þ. We assign priors
m1 � Nð�1; v1Þ and m2 � Nð1; v2Þ. Yang & Rannala
(2006) gave the posterior variance of m1 as

V ðm1jyÞ ¼
v1ð1þ nv2Þ
1þ nv1 þ nv2

¼ V1ðm1jyÞ

þ v21
ðv1 þ v2Þ þ nðv1 þ v2Þ2

; ð1Þ

where

V1ðm1jyÞ ¼ lim
n!1V ðm1jyÞ ¼

v1v2
v1 þ v2

; ð2Þ

is the variance when n ! 1. For large n, Equation (1)
can be approximated by

V ðm1jyÞ � V1ðm1jyÞ þ
1

n
� v1

v1 þ v2

� �2

: ð3Þ

Thus the posterior variance in the finite data
approaches its limit at the rate 1/n:

V ðm1jyÞ � V1ðm1jyÞ/
1

n
: ð4Þ

The ratio

um1
¼ 1� V1ðm1jyÞ

V ðm1jyÞ
¼ 1

1þ v2
v1

� �
ð1þ nv2Þ

ð5Þ

is then the fraction of uncertainty (variance) in the
posterior estimate of m1 that is due to the finite data and
that can be reduced by increasing the amount of data.

In Fig. 2 we plot um1
as a function of n for four sets

of (v1, v2): (1, 1), (10, 10), (1, 10), and (10, 1). When
the prior on m1 is informative (v1 ¼ 1, v2 ¼ 10), the
posterior of m1 is similar to the prior even in large
datasets. Similarly, if v2 has an informative prior and v1
has a diffuse prior, then the posterior distribution will be
dominated by the prior on v2 instead.

Translating the results of this simple example to
divergence time estimation leads to the following
predictions. In large datasets, we expect the square of
the CI width w2 to be proportional to the variance. Thus
we expect w2 � w2

1 (where w1 is the width for infinite
data) to approach zero at the rate 1/n, with n to be
the data size or sequence length. Furthermore,
uF ¼ w2

1=w2 will be the fraction of uncertainty in
posterior time estimate that is due to uncertainties in the
fossil calibration (or in the prior for times and rate)

while uS ¼ 1� w2
1=w2 will be the fraction due to finite

amounts of sequence data. For ages of nodes with a very
informative calibration, we expect uS to be small even
in small sequence datasets. For nodes with a diffuse
calibration or no calibration, uS should be large initially
but goes to zero quickly when the amount of sequence
data increases.

Below we analyze several simple cases as well as a
real dataset to confirm these predictions.

2 Uncertainty in posterior time estimates
with finite sequence data

2.1 The case of two species
Consider an alignment of two nucleotide sequ-

ences with n sites and x differences. Suppose the true
divergence time is t ¼ 1 and the true rate is r ¼ 0.5. If
one time unit is 100 million years (My), this means a
divergence time of 100 My and an evolutionary rate of
10�8 substitutions per site per year. The true distance, or
expected number of changes per site between the two
sequences is d ¼ r � 2t ¼ 1. We use the Jukes &
Cantor (1969) model to calculate the likelihood of
observing the sequence alignment given r and t

Lðr; tÞ ¼ px 1� pð Þn�x

¼ 3

4
� 3

4
e�8rt=3

� �x 1

4
þ 3

4
e�8rt=3

� �n�x

;
ð6Þ

Fig. 2. The fraction of uncertainty in the posterior of m1, f ðm1jyÞ,
attributed to limited data when the likelihood depends on m ¼ m1 þ m2.
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or

LðdÞ ¼ 3

4
� 3

4
e�4d=3

� �x 1

4
þ 3

4
e�4d=3

� �n�x

; ð7Þ

where p ¼ 3
4 � 3

4 expð�8rt=3Þ is the expected pro-
portion of differences in the alignment. The maximum
likelihood estimate of the distance d is

d̂ ¼ � 3

4
� log 1� 4

3
p̂

� �
; ð8Þ

where p̂ ¼ x=n. However, neither r nor t has a unique
maximum likelihood estimate because the likelihood
surface of Equation (6) is maximized by all points along
the line r ¼ d̂=2t (Fig. 3: B, B0).

If prior information about r and t is available, we
may obtain estimates for these parameters using the
Bayesian method. Consider a gamma prior on the rate
r � Gð2; 4Þ with mean 0.5, and a gamma prior on the
time t � Gð2; 2Þ with mean 1. Note that the gamma
density with parameters a and b is

gðtja;bÞ ¼ bae�bt ta�1

GðaÞ ;

with mean a/b, variance a/b2 and mode ða� 1Þ=b
(if a > 1). The joint prior of rate and time is thus

fRT ðr; tÞ ¼ f RðrÞ fT ðtÞ ¼ 16re�4r � 4te�2t: ð9Þ

The joint prior is rather diffuse, with a mode at
t ¼ 0.5 and r ¼ 0.25 (Fig. 3: A, A0).

The joint posterior distribution of r and t is

fRTðr; tjxÞ ¼ 1

C
fRT ðr; tÞLðr; tÞ; ð10Þ

where C is a normalizing constant

C ¼
Z1
0

Z1
0

fRT ðr; tÞLðr; tÞdtdr: ð11Þ

We use an adaptive numerical algorithm (cubature
package in R) to calculate C.

Fig. 3. The prior, likelihood and posterior distribution of rate r and time t for two datasets of a pairwise sequence alignment. In (A) and (A0) the joint
prior of Equation (9) is shown. In (B) and (B0) the likelihood of Equation (6) is shown for x ¼ 55, n ¼ 100 and for x ¼ 550, n ¼ 1000. In (C) and (C0)
the joint posterior distribution of Equation (10) is shown. The true values are r ¼ 0.5, t ¼ 1, d ¼ 1 and the expected proportion of differences in the
alignment is p ¼ 3

4 � 3
4 expð�4=3Þ ¼ 0:5523. In both (B) and (B0) d̂ ¼ 0:9913. The likelihood surface resembles an L‐shaped ridge, with the maximum

along the r ¼ d̂=2t line (dashed line).
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The joint posterior distribution is shown in Fig. 3C
and C0 for two example data sets, with n ¼ 100,
x ¼ 55, or n ¼ 1000, x ¼ 550.

The marginal posterior distributions of r and t are

f ðrjxÞ ¼ 1

C

Z1
0

fRT ðr; tÞLðr; tÞdt; ð12Þ

f ðtjxÞ ¼ 1

C

Z1
0

fRT ðr; tÞLðr; tÞdr: ð13Þ

The posterior for infinite data can be obtained
following Yang & Rannala (2006), as the prior density
fRT ðr; tÞ conditioned on d ¼ d̂ . Using the variable
transform r ¼ d=2t, and noting that the Jacobian of the
transform is j@ðr; tÞ=@ðd; tÞj ¼ 1=ð2tÞ, we have

f 1ðtjd ¼ d̂ Þ ¼
fRT d̂

2t ; t
� �

� 1
2tR1

0 fRT d̂
2t ; t
� �

� 1
2t dt

: ð14Þ

Similarly, the posterior of r is

f1ðrjd ¼d̂Þ ¼
fRT r; d̂

2r

� �
� 1

2rR1
0 fRT r; d̂

2r

� �
� 1

2r dr
: ð15Þ

Fig. 4 shows the marginal prior and marginal
posterior densities of t and r for example data and for
infinite data. It can be seen that the posterior variances
of t and r are reduced with the increase of sequence

data, approaching a non‐zero limit. The posterior for
n ¼ 1000 and n ¼ 1 are indistinguishable, and even
that for n ¼ 100 is very close. An important implication
of Equation (14) is that if the prior on the rate is diffuse
(so that fRðrÞ � a, constant around d̂=2t), the posterior
variance of t is essentially the same as the prior variance,
and no amount of molecular data will affect the
inference of t. Note that the marginals (Fig. 4) appear to
approach their limits faster than the joint distribution of
t and r (Fig. 3). Also note that there is a single posterior
distribution for infinite data, so that if t is given, then r is
known with absolute precision.

We now calculate the expected credibility interval
(CI) width w, for the posterior time t, averaging over
possible data sets. This is tedious to do analytically so
for each sequence length n ¼ 10, 102, 103, 104, and 105,
we use the program EVOLVER to simulate 1000
pairwise sequence alignments. We then use the
program MCMCTREE to calculate the posterior of t,
r and the CI‐width w for each simulated alignment.
EVOLVER and MCMCTREE are part of the PAML
software package (Yang, 2007). Table 1 shows that
as the number of sites approaches infinity, the CI
width decreases until reaching a limiting value. At
d ¼ r � 2t ¼ 1, the sequence data are very informative
so that with only 100 or 1000 sites in the alignment, the
CI width is close to the infinite‐data limit.

2.2 The case of three species
To consider s > 2 species, evolving under the

strict clock, note that for infinite data the marginal

Fig. 4. The marginal prior (dashed line) and posterior (solid lines) of t (left) and r (right). The prior densities are f T ðtÞ ¼ gðtja ¼ 2; b ¼ 2Þ and
f RðrÞ ¼ gðrja ¼ 2; b ¼ 4Þ. The posterior densities for finite data are calculated using Equations (12) and (13), and for infinite data using Equations (14)
and (15). In all cases p̂ ¼ 0:55 and d̂ ¼ 0:9913. The posterior densities for n ¼ 1000 and n ¼ 1 are almost identical in both cases.
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posterior distribution of the root age t1 in a phylogeny is
given by Yang & Rannala (2006)

f ðt1jd ¼ d̂Þ / fR
d̂1
t1

 !
� fT t1;

d̂2

d̂1
t1; . . . ;

d̂s�1

d̂1
t1

 !

� t1

d̂1

� �s�2

� 1

t1
; ð16Þ

where fR(r) is the prior for rate r, f Tðt1;…; ts�1Þ is
the joint prior of node ages ðt1;…; ts�1Þ, and d̂ ¼ ðd̂ iÞ
are the maximum likelihood estimates of the distances
from interior nodes of the phylogeny to the present time
(note that di’s here differ from the two‐sequence case
above by a factor of 2).

We now consider the three‐species phylogeny of
Fig. 5A, with root age t1 ¼ 1, the age of the internal
node t2 ¼ 0.5, and the rate r ¼ 1. We use an
exponential prior with mean 1 for the rate,
fRðrÞ ¼ expð�rÞ, and a gamma prior on the root age
t1 � Gð100; 100Þ. This is nearly the same as a normal
distributionwithmean 1 and standard deviation 0.1, and

represents a fairly informative calibration with the 95%
prior interval to be (0.814, 1.205). The prior on t2 is
conditioned on t1, and is uniformly distributed between
0 and t1. The joint time prior is

f Tðt1; t2Þ ¼ gðt1j100; 100Þ � 1

t1
: ð17Þ

From Equation (16), the posterior of the root age
for infinite data, given the distances d̂ ¼ ðd̂1; d̂2Þ is

f ðt1jd̂Þ / fR
d̂1
t1

 !
fT t1;

d̂2

d̂1
t1

 !
� 1

d̂1:
ð18Þ

For finite data we use computer simulation. The
program EVOLVER is used to generate sequence
alignments of three species using the phylogeny of
Fig. 5A under the Jukes–Cantor model. One thousand
alignments were simulated for each of n ¼ 102, 103,
104, 105, and 106 sites. The programMCMCTREE was
used to estimate the posterior distribution of the rate and
the times.

Table 2 shows the posterior CI widths for t1 and t2
for the different alignment lengths, averaged over the
1000 replicates. Because the prior on the rate is diffuse,
the prior CI width for t1 is essentially the same as the
posterior CI width, so that the molecular data do not
really reduce the uncertainty in the posterior estimate of
t1. Molecular data are informative only about the
relative ages of the nodes (i.e., about t2/t1) and as the
amount of molecular data increases, the posterior CI
width of t2 is progressively reduced until it is exactly
half that of t1 for infinite data. We note that the widthw2

for t2 decreases very rapidly, and 10
4 sites are nearly as

informative as infinite data. Fig. 6 shows the plot of
w2
2 � w2

2;1 versus 1/n. The trend is expectedly close to a
straight line.

2.3 The case of nine species
We now consider the nine‐species phylogeny of

Fig. 5B. The rate is r ¼ 1, with prior f RðrÞ ¼ expð�rÞ.
The age of the root is t1 ¼ 1 and the ages of the other
nodes are t2 ¼ 0.7, t3 ¼ 0.2, t4 ¼ 0.4, t5 ¼ 0.1, t6 ¼
0.8, t7 ¼ 0.3, and t8 ¼ 0.1. Four nodes have fossil
calibrations: t1 � Bð0:5; 1:5Þ, t3 � Bð0:1; 0:3Þ,
t4 � Bð0:3; 0:5Þ, and t7 � Bð0:2; 0:4Þ. We use a soft
uniform distribution, B(a,b), with 2.5% probability
mass added at each tail (for details see Yang &
Rannala, 2006).

We use MCMCTREE to obtain the posterior
distribution of the rate and times for simulated data sets.
We simulated 1000 alignments for each of n ¼ 102,
103, 104, 105, and 106 sites. Table 3 shows the average

Table 1 Posterior means, 95% credibility intervals and interval widths
of divergence time between two species

n t ¼ 1 95% CI w

0 1.000 (0.121, 2.784) 2.663
10 1.186 (0.324, 2.836) 2.514
102 1.140 (0.393, 2.571) 2.179
103 1.119 (0.397, 2.516) 2.121
104 1.118 (0.397, 2.513) 2.117
105 1.119 (0.398, 2.514) 2.117
1 1.119 (0.398, 2.516) 2.118

Note: The results are averages over 1000 replicate datasets.

Fig. 5. The two tree topologies used in the simulations. Grey circles
denote nodes with calibrations. (A) Tree of three species. (B) Tree of nine
species. In (A), the calibration for the root is t1 � Gð100; 100Þ. In (B) the
calibrations are t1 � Bð0:5; 1:5Þ, t3 � Bð0:1; 0:3Þ, t4 � Bð0:3; 0:5Þ and
t7 � Bð0:2; 0:4Þ. Here t � Bða; bÞ means uniform over a < t < b,
although soft‐bounds are used; that is, there is a 2.5% probability
mass for t < a, and 2.5% for t > b.
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posterior CI width wi for each of the eight node ages.
Note that for node 4 with the most precise calibration,
the interval width stayed largely constant (minor
differences may be due to random sampling errors).
For all other nodes the posterior CI widths of the node
ages are progressively reduced until reaching their
limits at n ¼ 1. In the limit the posterior CI widths are
proportional to the times.

2.4 Analysis of genomic data from six primate
species

We estimate the divergence times on a phylogeny
of six primate species (Fig. 7). We work with two
sequence alignments for the six species: (1) the 1st
and 2nd codon positions and (2) the 3rd codon
positions from 14 631 orthologous protein‐coding
genes. After removing ambiguous sites the alignments
are 8 708 584 and 4 354 292 sites long, respectively.
This is a subset of a larger 36 species alignment
analyzed by dos Reis et al. (2012). The fossil
calibrations (Fig. 7) are also from dos Reis et al.

(2012).We estimate the five divergence times assuming
the molecular clock. The clock can be easily rejected
using a likelihood ratio test because of the large amount
of data (results not shown). However the deviations
from the clock are small (Fig. 8), and are not expected to
have a great impact on time estimation. The divergence
times were estimated with MCMCTREE, using the
HKY þ G5 substitution model (Hasegawa et al., 1985;
Yang, 1994). Table 4 shows the priors used for the rate
r, the transition‐transversion rate ratio k, and the shape
parameter a for the gamma model of among‐site rate
variation. Table 5 shows the posterior time estimates for
the two alignments. The alignments are so long that they
can be effectively treated as infinite data, and the
posterior CI widths w, are nearly perfectly proportional
to the posterior times t (Fig. 1).

We are interested in the behavior of the posterior
CI width, w, as the sequence length increases. We
generated alignments of lengths n ¼ 102, 5 � 102, 103,
5 � 103, 104, 105, and 106 sites by sampling sites
randomly without replacement from each of the two
large alignments. The number of replicates is 500 for
lengths n ¼ 102–105, 250 for 105 and 100 for 106. We
then estimated the divergence times for each replicate
sample with MCMCTREE, using the HKY þ G5

model and the priors of Table 4. The results are
summarized in Fig. 9. The CI widths for all nodes are
reduced with the increase of sequence length. However
for nodes 8 and 11 (Catarrhini and Hominini) the
changes in w8 and w11 are very small, apparently
because these two nodes have the most precise
calibrations. The calibration uncertainty, which may
be measured by the (interval width)/(mid value) is 0.91,
0.37, 1.00, and 0.56 for nodes 7, 8, 9, and 11. The most
precise calibrations on t8 and t11 largely determine the
limit of precision achievable with infinite data. As the
sequence length is increased, the slope of the infinite‐
sites plot decreases.

In Fig. 10 we plot w2 � w2
1 against 1/n for nodes

7–11 for the two alignments. Here we treat the interval
width w for the full data (Table 5) as w1 as the original
datasets are large. All the points fall on a straight line as

Table 2 Posterior means, 95% credibility intervals and interval widths of divergence times t1 and t2 for the three‐species tree of Fig. 5A

n t1 ¼ 1 95% CI w1 t2 ¼ 0.50 95% CI w2

0 1.000 (0.814, 1.205) 0.392 0.500 (0.025, 1.026) 1.001
102 1.003 (0.817, 1.207) 0.390 0.510 (0.211, 0.859) 0.648
103 1.001 (0.815, 1.205) 0.390 0.496 (0.363, 0.646) 0.283
104 1.000 (0.815, 1.204) 0.390 0.501 (0.404, 0.608) 0.204
105 1.000 (0.815, 1.204) 0.390 0.500 (0.407, 0.603) 0.196
106 1.000 (0.815, 1.204) 0.390 0.500 (0.407, 0.602) 0.195
1 1.000 (0.815, 1.204) 0.390 0.500 (0.407, 0.602) 0.195

Note: There is a fossil calibration for the age of the root t1.

Fig. 6. Plot of w2 � w2
1 versus 1/n for the internal node in the three

species phylogeny.
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expected, except for nodes 8 and 11. For those two
nodesw2 � w2

1 is close to zero, so that the estimates are
prone to sampling errors, and there appears to have
more scatter. We can calculate the uncertainty in
posterior time estimates due to sequence data, uS, for the
root age for different sample lengths. For example, for
the 1st and 2nd codon position data, we have w2

1 ¼
335:15 (Fig. 1). For samples of length n ¼ 102, the
average w2 ¼ 3076.21, and the fraction of uncertainty
due to finite sequence length is then uS ¼ 1� w2

1=
w2 ¼ 1� 335:15=3076:21 ¼ 89:1%. In contrast, the
proportion is much smaller in larger datasets. For
example, uS ¼ 7.3% when sequence length n ¼ 105,
and uS is effectively zero for n ¼ 106. The sequence
dataset is so large that essentially all the uncertainty in
the posterior time estimates is due to uncertainties in the
fossil calibrations.

To do similar calculations in other datasets, note
that the ws are generated by a Bayesian analysis of the
real data, and the w1s can be calculated using the
estimated distances d̂ i using Equation (16) (see Yang &
Rannala, 2006). This equation may be hard to calculate
analytically for most datasets, and the program
MCMCTREE can be used to obtain w1 using
MCMC sampling (see the program’s manual for
details).

Table 3 Average 95% interval widths of divergence times among nine species in the tree of Fig. 5B

n w1 (t1 ¼ 1) w2 (t2 ¼ 0.7) w3 (t3 ¼ 0.2) w4 (t4 ¼ 0.4) w5 (t5 ¼ 0.1) w6 (t6 ¼ 0.8) w7 (t7 ¼ 0.3) w8 (t8 ¼ 0.1)

0 0.997 0.949 0.200 0.200 0.421 0.994 0.200 0.352
102 0.724 0.594 0.154 0.191 0.114 0.683 0.180 0.113
103 0.565 0.396 0.118 0.192 0.062 0.486 0.163 0.063
104 0.503 0.352 0.102 0.195 0.051 0.409 0.152 0.052
105 0.490 0.343 0.098 0.195 0.049 0.393 0.147 0.049
106 0.487 0.341 0.098 0.195 0.049 0.390 0.146 0.049
1 0.487 0.341 0.097 0.195 0.049 0.390 0.146 0.049

Note: Nodes 1, 3, 4 and 7 have fossil calibrations.

Fig. 8. The maximum likelihood estimates of branch lengths for the six‐
primate tree estimated under the HKY þ G5 model without assuming the
clock, for (A) the alignment of 1st and 2nd codon positions, and (B) the
alignment of 3rd codon positions. Branch lengths (in substitutions per
site) are estimated using unrooted trees but the trees are here midpoint‐
rooted for clarity.

Fig. 7. The tree of six primate species showing fossil calibrations, and
divergence times estimated with MCMCTREE, strict clock, HKY þ G5

using the alignment of 1st and 2nd codon positions. The alignment is over
8.7 million sites long, with all ambiguous sites removed. Species are:
human (Homo sapiens), chimpanzee (Pan troglodytes), gorilla (Gorilla
gorilla), orangutan (Pongo abelii), macaque (Macaca mulatta), and
marmoset (Callithrix jacchus). Minimum bounds are 1% soft and
maximum bounds are 5% soft. For node 10 (Homininae), a truncated
Cauchy distribution is used as the calibration density with p ¼ 0.1 and
c ¼ 1 (for details see Inoue et al., 2010).
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3 Uncertainty of time estimation in the
presence of conflicting fossil information

Our analysis above has assumed that correct fossil
calibration information is used, and there is no conflict
among fossils and between fossils and molecules. In
this section we examine how the posterior CI width is
affected by conflicts between fossil calibrations and by
the use of one versus two fossil calibrations. Because of
the identifiability problem of times and rates, conflict-
ing fossil calibrations are expected to cause a great deal
of problem.

We consider infinite sequence data evolving under
a strict clock and use the infinite‐sites theory (Eq. 16,
see also Yang&Rannala, 2006) to calculate the limiting
posterior distribution of times t1 (the root age) and t2 on
the three‐species tree of Fig. 5A. The true rate is r ¼ 1,
and the true ages of nodes are t1 ¼ 2 and t2 ¼ 1. In all
cases the prior of the rate is f RðrÞ ¼ expð�rÞwithmean
1. We consider uniform calibrations first with four
scenarios of fossil calibrations (Fig. 11: A–D; Table 6):
(a) Both nodes have good calibrations, that is, the mean
of the calibration densities are the true times. (b) Only
the root has a (good) calibration and node 2 has no
calibration, so the prior on t2 is uniform and conditioned
on t1: t2jt1 � Uð0; t1Þ. (c) Node 2 has a good calibration
and the root has a bad calibration (i.e., the mean of the
calibration density is younger than the true root age). (d)
Both nodes have bad calibrations. The mean of the
calibration density for t2 is too young, and that for t1 is
too old. We then consider gamma calibrations, with
four corresponding cases (a0) to (d0) (Fig. 11: A0–D0;
Table 6).

We first discuss the limiting posterior distributions
for the four cases of uniform calibrations.

In case (a) (Fig. 11: A), the limiting posterior
distribution of t1 is

f ðt1jd1 ¼ 2Þ / e�2=t1 � Uðt1j1:8; 2:2Þ
� Uðt1=2j0:9; 1:1Þ;

ð19Þ

where Uðtja; bÞ ¼ 1=ðb� aÞ is the uniform density for
t. Note that both calibrations on t1 and t2 include the true
values right at the mid‐points of the bounds, and also
the interval width for t2 is exactly half that for t1. The
(marginal) posterior distribution of times is very similar
to the prior.

In case (b) (Fig. 11: B), the limiting posterior
distribution of t1 is

f ðt1jd1 ¼ 2Þ / e�2=t1 � 1

t1
� Uðt1j1:8; 2:2Þ: ð20Þ

Here only t1 has a calibration. The posterior
distribution of times is very similar to that in case (a),
indicating that a single calibration is as good as two
consistent calibrations. However we suggest that this
result may be due to our assumption of the clock and of
an infinite amount of sequence data. Without the clock
assumption or with finite amount of data, it should be
better to use multiple calibrations.

In case (c) (Fig. 11: C), the limiting posterior
distribution of t1 is

f ðt1jd1 ¼ 2Þ / e�2=t1 � Uðt1j1:6; 2:0Þ
� Uðt1=2j0:9; 1:1Þ:

ð21Þ

In this case, there is a good calibration on t2, but the
calibration on t1 is too young and causes the posterior of
both t1 and t2 to be highly concentrated compared with
(a).

In case (d) (Fig. 11: D), the limiting posterior
distribution of t1 is

f ðt1jd1 ¼ 2Þ / e�2=t1 � Uðt1j1:99; 2:41Þ
� Uðt1=2j0:81; 1:01Þ:

ð22Þ

Table 4 Priors used in the analysis of the primate data

1st and 2nd 3rd

r G(2, 8000) G(2, 2000)
k G(2, 0.5) G(2, 0.3)
� G(2, 20) G(2, 4)

Table 5 Posterior means and 95% CI’s for divergence times for the primate dataset

Node 1st and 2nd position 3rd position

t 95% CI w t 95% CI w

7 root 57.0 (46.8, 65.2) 18.3 62.5 (58.6, 66.8) 8.21
8 human/macaque 30.3 (24.9, 34.7) 9.76 32.8 (30.8, 35.1) 4.30
9 human/orang 17.2 (14.1, 19.7) 5.54 17.6 (16.5, 18.8) 2.29
10 human/gorilla 8.89 (7.31, 10.2) 2.86 7.99 (7.50, 8.55) 1.05
11 human/chimp 7.05 (5.79, 8.06) 2.27 6.03 (5.66, 6.45) 0.79

rate (� 10�9/site/year) 0.270 (0.236, 0.327) 0.982 (0.917, 1.040)

Note: Times are in My before present.
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In this case, the calibration on t2 is too young while
that on t1 is too old. The conflicting calibrations lead to
extremely narrow posterior CIs.

The corresponding results for the gamma calibra-
tions are shown in Fig. 11: A0–D0.

In case (a0) (Fig. 11: A0), the limiting posterior
distribution of t1 is

f ðt1jd1 ¼ 2Þ / e�2=t1�gðt1j200, 100Þ�gðt2j200; 200Þ:
ð23Þ

In this case, both calibrations (on t1 and t2) are good
and consistent. The posterior is more concentrated than
the prior, which is different from the uniform case (a).

In case (b0) (Fig. 11: B0), the limiting posterior
distribution of t1 is

f ðt1jd1 ¼ 2Þ / e�2=t1 � 1

t1
� gðt1j200; 100Þ: ð24Þ

Here there is only one calibration on t1 and for that node
the prior and posterior are nearly identical. Compared

Fig. 9. Posterior distribution of divergence times in the primate tree of six species in random samples of sites from the original large alignments. In (A) and
(A0) the posterior mean (continuous line) and 95% CI (dashed lines) for each time ti are plotted as a function of the sequence length. In (B) and (B0) the
posterior CI width, w, is plotted as a function of the sequence length; and in (C) and (C0) the slope of the infinite‐sites plot is plotted against the sequence
length.

© 2012 Institute of Botany, Chinese Academy of Sciences

DOS REIS & YANG: Uncertainty in divergence time estimation 39



with case (a0), the posterior intervals are wider and use
of one calibration is not as good as use of two. This
pattern is different from that for the uniform calibration
cases (a) and (b).

In case (c0) (Fig. 11: C0), the limiting posterior
distribution of t1 is

f ðt1jd1 ¼ 2Þ / e�2=t1 � gðt1j180; 100Þ
� gðt1=2j200; 200Þ:

ð25Þ

In this case, there is a good calibration on t2 but the
calibration on t1 is too young. The poor calibration
causes narrow CIs (compared with a0). However, the
situation is not as bad as in the uniform case (c).

In case (d0) (Fig. 11: D0), the limiting posterior
distribution of t1 is

f ðt1jd1 ¼ 2Þ / e�2=t1 � gðt1j230; 100Þ
� gðt1=2j170; 200Þ:

ð26Þ

In this case the calibration on t1 is too young, while
the calibration on t2 is too old. Interestingly, the
posteriors look very reasonable, and centered around
the true values. They also appear slightly more precise

than in case (a0), where two good calibrations are used.
The pattern is very different from the uniform case (d).

4 Discussion

Due to the confounding effect of rates and times,
the posterior estimates of times will involve uncertain-
ties even if an infinite amount of sequence data is used.
In this paper we have developed a procedure for
partitioning the uncertainty in posterior time estimates
into two components, due to the uncertainty in the fossil
calibrations (the prior for times and rates) and due to the
finite nature of the sequence data, respectively.We have
also suggested a measure uS, which is the fraction of the
uncertainty (variance) in the posterior time estimates
attributable to limited sequence data. While uS goes to
zero with the increase of the sequence data for all nodes
in the tree, different nodes may behave very differently.
For nodes with very precise calibrations the prior and
posterior intervals are similar and uS is close to zero
even for small amounts of sequence data. For nodes
with very diffuse calibrations or with no calibrations, uS
is initially large, but decreases very quickly with the
increase of sequence data. The limiting posterior

Fig. 10. Plot of w2 � w2
1 versus 1/n for the primate data set. All nodes show a good linear trend.
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distribution of times, which is one‐dimensional, is thus
dominated by the nodes with precise calibrations, so
that their accuracy is critical.

The finite‐sites theorywe developed in this paper is
based on the molecular clock. Under relaxed‐clock

models (e.g., the auto‐correlated and independent‐rates
models, Thorne et al., 1998; Drummond et al., 2006;
Rannala & Yang, 2007; Linder et al., 2011), there is
more uncertainty due to rate variation over lineages,
which can be reduced by the use of a huge number of

Fig. 11. Uncertainty in divergence time estimation for the three‐species tree of Fig. 5A in the presence of conflicting fossil calibrations (uniform or gamma
calibrations). The dashed line indicates the marginal prior distribution for a given time (t1 or t2), while the solid line indicates the corresponding marginal
posterior distribution. The green wiggly line shows the results of calculating some of the priors (or posteriors) numerically by MCMC sampling
(MCMCTREE). This was done for some of the distributions to confirm the accuracy of the analytical calculations. The true ages are t1 ¼ 2 and t2 ¼ 1. In
(A) and (A0), two good calibrations are used on t1 and t2. In (B) and (B0) a single calibration on t1 is used. In (C) and (C0), there is a bad calibration on t1 and a
good calibration on t2. In (D) and (D0) both calibrations are poor: the one on t1 is too old and the one on t2 too young.
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loci evolving with different rate trajectories. In this
regard, the molecular clock case may be considered a
best‐case scenario. Rannala &Yang (2007) showed that
when both the number of sites and the number of loci
increase to infinity, the posterior distribution of
divergence times approaches a theoretical limit, as in
the case of the molecular clock. The dynamics when the
number of loci or the number of sites goes to infinity
merits further study.

We have also examined whether using two
consistent fossil calibrations leads to more precise
posterior time estimates, compared with using only one
calibration; two fossil calibrations are consistent if
the calibration means are close to the true times, and if
the calibrations have similar uncertainties (measured by
the prior CI width to prior mean ratio). We found that
the behavior is different for the uniform and the
gamma calibrations. Use of multiple consistent uniform
calibrations does not seem to improve the precision
compared with use of a single calibration, but use of
multiple gamma calibrations does. Conflicting fossil
bounds are found to lead to very precise and over-
confident posterior time estimates, and the bias is not
corrected by the use of a huge amount of sequence data.
In contrast, conflicting gamma calibrations lead to more
reasonable posterior time estimates. Our results suggest
that one should not automatically use uniform bounds
as calibrations and it may be beneficial to use non‐
uniform probability curves such as the gamma, which
may capture the information in the fossil record more
accurately.

Despite the development of the inifinite‐sites
theory (Yang & Rannala, 2006; Rannala & Yang,
2007) which gives the limit of precision in Bayesian
time estimation, the nature of the estimation problem
does not appear to be well appreciated in many
empirical dating analyses. For example, Mulcahy
et al. (2012) observed that confidence intervals on
ages estimated using the program BEAST were not
significantly different when sampling 2 versus 25 loci
for the reptile dataset they analyzed. The authors
considered the result to be disturbing. Nevertheless it is
not surprising. Even with infinite amount of sequence
data, we will not reach full precision if the fossil
calibrations involve uncertainties. In fact, infinite‐sites

plots in most dating analyses (e.g., Inoue et al., 2010;
dos Reis et al., 2012) suggest that in a typical analysis
much of the uncertainty is due to uncertainties in fossils,
rather than limited amount of sequence data. Deriving
reliable and precise calibration densities is thus
extremely important to molecular dating analyses,
and probabilistic modelling and statistical analysis of
the fossil data appears to be the most promising
approach (Wilkinson et al., 2011; Ronquist et al.,
2012a). Similarly statistical methods that aim to
investigate continuous trait evolution or species diver-
gence rates should take into account the considerable
uncertainty in divergence time estimates, rather than
relying on point estimates.
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