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Species limits are traditionally determined based
on morphological, behavioral, and ecological traits. In
recent years, genetic sequence data have increasingly
been used to delimit species due to the advancement of
sequencing technologies and development of statistical
methods of data analysis (Wiens 2007; Fujita et al.
2012). Early methods relied on reciprocal monophyly in
the reconstructed gene trees, fixed sequence differences
between putative species, or simple cut-offs on migration
rates or genetic distances between putative species
(Sites and Marshall 2004). More recent methods are
based on the multispecies coalescent model (Rannala
and Yang 2003) and avoid arbitrary cut-offs (Knowles
and Carstens 2007). Among the recent methods,
the Bayesian method of Yang and Rannala (2010)
has a number of advantages over its competitors
(Fujita and Leaché 2011). The Bayesian method uses
Bayesian model selection to compare different species-
delimitation models in the multispecies coalescent
framework, and uses reversible-jump Markov chain
Monte Carlo (rjMCMC) to estimate the posterior
probabilities for different delimitation models. The
method accommodates multiple loci, and does not
require reciprocal monophyly of inferred gene trees.
The underlying multispecies coalescent model accounts
for incomplete lineage sorting and species-tree–
gene tree conflicts due to ancestral polymorphism.
The likelihood calculation on sequence alignments
allows the method to make a full use of the
information in the data while accounting for the
uncertainties in the gene tree topologies and branch
lengths. Compared with traditional morphology-
based taxonomic practice, which varies widely across
taxonomic groups, the Bayesian method infers species
status from a genealogical and population genetic
perspective and is arguably more objective (Fujita and
Leaché 2011; Fujita et al. 2012).

In computer simulations, the Bayesian method was
found to have good statistical properties (Leaché and
Fujita 2010; Zhang et al. 2011; Camargo et al. 2012), with
low false positives (the error of splitting one species
into two) and false negatives (the error of failing to
recognize distinct species). Simulations also suggest
that the method has good power in identifying distinct
species in the presence of small amounts of gene flow,
and is not misled to infer geographical populations as
distinct species when the migration rate is high (Zhang
et al. 2011).

To reduce the space of models to be evaluated
in the rjMCMC, the implementation of (Yang and
Rannala 2010; Rannala and Yang 2013) in the program
BPP (for Bayesian Phylogenetics and Phylogeography)
requires the user to specify a rooted phylogeny for
the populations, called the guide tree. The program
then evaluates only those models that can be generated
by collapsing nodes on the guide tree. The program
currently does not change the relationships among the
populations, nor does it split a population into different
species.

As a simple evaluation of the impact of the guide
tree on species delimitation by BPP, Leaché and Fujita
(2010) randomized the populations at the tips of a 10-
population guide tree for West African forest geckos
and found that the incorrect guide tree caused BPP
to over-split. When closely related populations that
belong to the same species are incorrectly separated
on the guide tree and are grouped with more distant
populations, BPP tends to infer all of them as distinct
species. However, the analysis of Leaché and Fujita
(2010) is on a small scale, and furthermore, the random
guide trees generated by permutation may be too wrong,
unlikely to be encountered in real data analysis when
the guide tree is estimated from real data. Here, we
conduct a simulation study to examine the performance
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of the method under more realistic scenarios, that is,
when the guide tree is inferred from the sequence
data.

A number of heuristic methods have been used to
construct the guide tree, including:

a) clustering algorithms such as STRUCTURE (Pritchard
et al. 2000; Falush et al. 2003), STRUCTURAMA
(Huelsenbeck and Andolfatto 2007), or BAPS
(Corander et al. 2004), which can assign
individuals to populations and even infer
a population tree. Those methods are often
applied to microsatellite data or single-nucleotide
polymorphisms (SNPs).

b) phylogenetic methods such as RAxML (Stamatakis
2006) and MrBayes (Ronquist et al. 2012) applied
to either a mitochondrial locus or concatenated
nuclear loci.

c) species-tree methods such as BEST (Liu 2008) or∗BEAST (Heled and Drummond 2010) applied to
multiple nuclear loci.

d) species-discovery methods such as that of O’Meara
(2010).

e) empirical population phylogeny based on
geographical distributions or morphological and
ecological characters.

A useful review of strategies for generating the guide
tree used in recent studies of species delimitation
by BPP has been provided by Carstens et al. (2013,
table 1). Geographical distributions and morphological
and ecological features of the populations are always
important to defining putative species. However, it is
difficult to consider such information in a simulation. In
this study, we examine strategies b and c for obtaining
a guide tree by analyzing DNA/RNA sequence data.
The first approach we examine (strategy b) uses
phylogenetic analysis of a mitochondrial locus. Note that
in vertebrates, the mitochondrial genome has a much
higher mutation rate than the nuclear genome so that the
sequence data are more variable and more informative
(e.g., Zhou et al. 2012). Furthermore, the effective
population size for a mitochondrial locus is only one-
fourth that for a nuclear locus, so that incomplete lineage
sorting is less likely to occur and the mitochondrial
gene tree is more likely to match the species/population
phylogeny. This method has been used by Leaché and
Fujita (2010), Hamback et al. (2013), Linde et al. (2014),
among others. We use the program RAxML (Stamatakis
2006) to infer the unrooted maximum-likelihood (ML)
tree and mid-point rooting to generate the rooted tree to
be used as the guide tree for BPP. The program is widely
used and provides a fast method to infer gene trees
using ML. We also used the Bayesian method to infer
rooted gene trees for the mitochondrial locus under the
molecular clock, using the program BEAST (Drummond
and Rambaut 2007), but we expect the results to be
similar to the ML method.

TABLE 1. Parameter values used in simulating sequences at the
nuclear loci

Species tree τs θs

Low-mutation rate
Tree 1 (0.001, 0.002, 0.003) 0.002
Tree 2 (0.001, 0.001, 0.003) 0.002

High-mutation rate
Tree 1 (0.01, 0.02, 0.03) 0.02
Tree 2 (0.01, 0.01, 0.03) 0.02

Notes: At the mitochondrial locus, the mutation rate is assumed to be 20
times as high as at a nuclear locus, and the population size is assumed
to be one-fourth as large. Thus, τmt = 20τnuc and θmt = 5θnuc.

The second approach we examine (strategy c) is use of
species-tree methods applied to multiple nuclear loci.
We use ∗BEAST (Heled and Drummond 2010) for this
purpose. We note that it is possible to apply a traditional
phylogenetic method such as ML to the concatenated
nuclear data, but concatenation is in general inferior
to species-tree methods based on the multispecies
coalescent model (see Degnan and Rosenberg [2009] and
Edwards [2009] for reviews). The strategy of using ∗BEAST
to infer the guide tree for species delimitation by BPP has
been used by Leaché and Fujita (2010), Linde et al. (2014),
Satler et al. (2013), among others.

To keep the complexity of our simulation manageable,
we do not consider the problem of assignment errors in
this study and assume that the individuals are correctly
assigned to the populations (see discussions later).

SIMULATION DESIGN

Simulation of Sequence Data
We used two species trees, each of four species,

to simulate the sequence data under the multispecies
coalescent model (Rannala and Yang 2003). Tree 1 is
balanced while tree 2 is unbalanced (Fig. 1). Parameters
in the model include three species divergence times (τs)
as well as seven population size parameters (θs) for the
extant and extinct species on the species tree. Both τ and
θ are measured by the expected number of mutations per
site. For example, τAB = 0.01 in species tree 1 of Figure 1a
means that the average sequence divergence from the
time of the AB ancestor to the present is 1%, whereas
θ= 0.02 means that two random sequences sampled from
the same population are 2% different on average. We
assumed that each of the four species (A–D) consisted of
two populations (labeled A1, A2, B1, B2, etc.), so that there
are eight populations on the guide tree. We consider two
sample sizes, with three or five sequences sampled at
each locus from each of the eight populations (i.e., with
24 or 40 sequences in the alignment for each locus). The
program MCCOAL in BPP version 2.1c was used to generate
gene trees with coalescent times (branch lengths) under
the multispecies coalescent model (Rannala and Yang
2003) and to simulate sequence alignments given the
gene trees. For each species tree, two sets of parameters
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FIGURE 1. a) Two true species trees used for simulating sequence data under the multispecies coalescent model. Parameters in the model
include the three species divergence times (τs) and the population size parameters (θs) for the seven species. Each species is split into two
populations in the species-delimitation analysis by BPP, with eight populations on the guide tree. Either three or five sequences are sampled
from each populations, with either 24 or 40 sequences in the alignment at each locus. b) Two inferred population (guide) trees, with interior
nodes labeled.

were used, mimicking two different mutation rates
(Table 1). We simulated either one or five nuclear loci
as well as one mitochondrial locus. We assumed that the
mutation rate at the mitochondrial locus was 20 times
as high as at a nuclear locus and that the population
size was one-fourth that for a nuclear locus so that
τmt = 20τnuc and θmt = 5θnuc (e.g., Zhou et al. 2012).
The JC69 mutation model (Jukes and Cantor 1969) was
assumed both to generate and to analyze the sequence
alignments. Note that the role of the mutation model
here is to correct for multiple hits to estimate the gene tree
topology and branch lengths, and that JC69 is deemed
adequate for analysis of such highly similar sequences
(Burgess and Yang 2008); in previous studies, even the
infinite sites model produced very similar results (Satta
et al. 2004).

The mutation rate was assumed to be constant over
lineages (i.e., the molecular clock holds), and across
the nuclear loci. The sequence length is 1000 sites for
the mitochondrial locus and 500 sites for each nuclear
locus. Sequences from the same species are assumed

to coalesce freely (i.e., there is random mating even
between individuals from different populations of the
same species). We therefore simulated either 6 or 10
sequences from each of the four species and then
randomly partitioned them into two populations of 3
or 5 sequences each.

Generation of the Guide Tree from Phylogenetic Analysis
Applied to a Mitochondrial Locus(RAxML)

The gene tree was inferred by a ML analysis of the
mitochondrial locus using RAxML version 7.4.2. The
nuclear loci were not used. The correct population
assignment of sequences was assumed. The three or
five sequences from each of the eight populations were
constrained to be monophyletic. The substitution model
used was GTR, since RAxML does not implement the
JC69 model. Also, RAxML does not implement the
molecular clock and infers unrooted trees instead. We
used mid-point rooting to generate a rooted tree, which
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was used as the guide tree in later BPP analysis. As
an alternative phylogenetic method, we also used the
Bayesian method implemented in the program BEAST
(Drummond and Rambaut 2007) to infer a rooted gene
tree under the molecular clock, to be used as the guide
tree in the BPP analysis.

Generation of the Guide Tree using a Species-Tree Estimation
Method Applied to the Nuclear Loci (∗BEAST)

The species tree was inferred from the simulated
nuclear loci using ∗BEAST in BEAST2 (version 2.0.2). Only
the nuclear loci were analyzed, and the mitochondrial
locus was not used in the ∗BEAST analysis. Again
the correct population assignment of sequences was
provided to the program. In other words, the three or
five sequences for each of the eight populations (A1,
A2, B1, B2, C1, C2, D1, and D2) were assigned to the
same population, whereas the program estimates the
phylogenetic relationships among the eight populations.
Note that this is not the same as constraining the three
sequences from the same population to be monophyletic
on the gene tree. The multispecies coalescent model,
while placing constraints on the gene tree, allows non-
monophyly of sequences from the same species (see,
e.g., figure 1 in Rannala and Yang [2003]). We followed
the common practice and used the default improper
priors in *BEAST, but note that proper priors may be
preferable in real-data analysis. The prior on node ages
was specified using a Yule process with an improper
prior on the birth rate f (�) = 1/�, 0 < � < ∞. The
population size parameters (θs) were assigned improper
priors f (θ) = 1/θ, 0 < θ < ∞. The mutation model used
was JC69, as in the simulation. The mutation rate was set
to 1 so that time is measured by the number of mutations
per site. A total of 3000 species trees were collected from
the MCMC algorithm by sampling every 2000 iterations
(6 × 106 iterations in total). The last 2200 trees were
used to generate the maximum a posteriori (MAP) tree,
to be used as the guide tree in the BPP analysis. In pilot
runs, the same analysis was conducted twice to confirm
consistency between runs.

Note that as we assume the correct assignment, the
only errors that ∗BEAST and RAxML can make will
concern the relationships among the eight populations.
Figure 1b shows two possible inferred population
(guide) trees. The tree on the left is correct under species
tree 2, but the one on the right is wrong regardless of
whether species tree 1 or tree 2 is the true tree.

BPP Analysis
The guide tree was either the ML tree for the

mitochondrial locus inferred by RAxML or the MAP tree
inferred from the nuclear loci by ∗BEAST, as described
above. Given the guide tree, the nuclear sequence data
(either one locus or five loci) simulated above were
analyzed using BPP version 2.2 to delimit species. The
mitochondrial locus was not used in the BPP analysis.

The divergence time for the root of the guide tree
(τABCD or τ0) and the population size parameters (θs)
are assigned diffuse gamma priors G(�, �) with shape
parameter � = 1 and with the mean of the distribution
(�/�) matching the true value used in the simulation.
Thus, for the low-mutation rate case, the priors were
τ0 ~ G(1, 333), with mean 0.003 (3 differences per kb), and
θ ~ G(1, 500), with mean 0.002. For the high-mutation
rate case, the priors are τ0 ~ G(1, 33) and θ ~ G(1, 50).
Note that the prior for divergence times at other nodes
on the guide tree is generated from a uniform Dirichlet
distribution (Yang and Rannala 2010). Each analysis was
conducted twice, using rjMCMC algorithms 0 (with
ε= 2) and 1 (with �= 2 and m = 1) in BPP. The fine-tuning
parameters ε in algorithm 0 and � and m in algorithm 1
are used to propose new parameters in the multispecies
coalescent model (θ and τ) when a node on the guide
tree is split (Yang and Rannala 2010, equations 3 and
6). The two runs or algorithms were used to check for
consistency between runs. For each run, 20,000 samples
were collected by sampling every two iterations after a
burn-in of 5000 iterations. Samples from the two runs
were then combined.

In summary, we considered two species trees (trees
1 and 2 in Fig. 1a), two sample sizes (with three
or five sequences from each population), and two
mutation rates (Table 1), with a total of eight parameter
combinations. For each combination, 1000 replicate data
sets were generated. Each replicate data set consisted of
one mitochondrial locus and either one or five nuclear
loci. Every locus consisted of either 24 or 40 sequences,
with either three or five sequences from each of the
eight populations. The data were then analyzed using
two methods for inferring the guide tree: phylogenetic
analysis of the mitochondrial locus using RAxML (and
BEAST) and species-tree estimation from the nuclear loci
using ∗BEAST. Those analyses are referred to later as
RAxML + BPP (or BEAST + BPP if BEAST was used instead)
and ∗BEAST + BPP. In the RAxML + BPP analysis, RAxML
was used to analyze the mitochondrial locus to infer
the guide tree, which was then used by BPP to analyze
the nuclear data to delimit species. In the BEAST + BPP
analysis, BEAST was used as an alternative to RAxML. In
the ∗BEAST + BPP analysis, ∗BEAST was used to analyze
the one or five nuclear loci to infer the guide tree, which
is then used by BPP to analyze the same nuclear data to
delimit species.

RESULTS

Phylogenetic Errors in Guide-Tree Construction
We will focus on the small sample size, with three

sequences sampled from each population, and discuss
the results for the large sample size (with five sequences
from each population) later. We first examine the
phylogenetic errors in the guide-tree construction and
then describe their impact on species delimitation.

Given the species trees of Figure 1a and our simulation
design, the correct trees for the eight populations (i.e., the
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FIGURE 2. Frequency (out of 1000 replicates) at which each clade in the correct population (guide) tree is recovered by RAxML and ∗BEAST.
The numbers above the branch are for the low-mutation rate while those below the branch are for the high rate. In each case, the three numbers
are for RAxML for one mitochondrial locus, ∗BEAST with one nuclear locus, and ∗BEAST with five nuclear loci.

correct guide trees) are those shown in Figures 2 and 3.
The proportion of replicates (out of 1000) in which each
clade on the correct guide tree is recovered in the inferred
guide tree is also shown (Figs. 2 and 3), calculated using
the CONSENSE program in the PHYLIP package version
3.69 (Felsenstein 2005). Note that we used only the
population tree topology inferred by the two methods
(RAxML/BEAST and ∗BEAST), and ignored any support
measures for clades on the tree, such as the bootstrap
support values calculated by RAxML and the posterior
clade probabilities calculated by ∗BEAST. The results show
clear effects of the species phylogeny (in particular,
the lengths of the internal branches reflecting species
divergence times), the mutation rate, and the number
of loci. A longer internal branch on the species tree
makes the concerned clade easier to recover. A higher
mutation rate means that the sequences are more
divergent and more informative about the phylogeny
(Yang 1998). Similarly, more loci means more data so that
the inference is more reliable. Those patterns are easy to
understand and are similar to findings from numerous
simulation studies that examine the performance of
different phylogenetic methods (for review, see Yang
[2006, Chapter 6]).

The RAxML analysis of the mitochondrial locus
recovered almost all nodes with high probability, except

the difficult clade ABC in tree 1, for which the probability
is 93% and 96%, for the low- and high-mutation rates,
respectively (Fig. 2a). We also conducted a Bayesian
phylogenetic analysis of the same data using the
program BEAST (with the same prior settings as for the
single nuclear locus), with the results summarized in
Figure 3. The probability of recovering the difficult clade
ABC in tree 1 is 97% or 98% for the two mutation rates,
which are slightly higher than for RAxML (93% and 96%)
(Fig. 3a). The slightly poorer performance for RAxML
may be due to the fact that the RAxML analysis assumed
the more general GTR model with mid-point rooting,
which may not be as efficient as the use of the JC69 model
and molecular clock rooting (given that the data are
simulated under JC69 and the clock). In general, both the
ML and the Bayesian analysis of the mitochondrial locus
recovered the true clades with very high probability
(Figs. 2 and 3). Below we focus on the guide trees inferred
using RAxML.

The ∗BEAST analysis of one nuclear locus performed
poorly, especially at the low rate. For example, clade
ABC in tree 1 is recovered in only 55% of replicate
data sets at the low-mutation rate (Fig. 2a). A single
locus at the low-mutation rate does not contain enough
information to infer the correct guide tree. However,
performance improved dramatically if the mutation rate
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FIGURE 3. Frequency (out of 1000 replicates) at which each clade in the correct population (guide) tree is recovered by RAxML and BEAST in
the analysis of the mitochondrial locus. The numbers above the branch are for the low-mutation rate whereas those below the branch are for the
high rate. See legend to Figure 2.

was 10 times higher (with the probability of recovering
clade ABC in tree 1 to be 76%, Fig. 2a) or if five loci were
analyzed (with the probability of recovering clade ABC
in tree 1 to be 83%, Fig. 2a). The four clades grouping
the two populations of each species (A1A2, B1B2, C1C2,
and D1D2) were recovered with high probabilities on
both species trees by both methods except for the ∗BEAST
analysis under the combination of a low rate and one
nuclear locus.

False-Positive Rate in Species Delimitation
In the species delimitation analysis by BPP, we

considered a split of a node on the guide tree into
different species to be well supported only if the
posterior probability calculated by BPP was more than
or equal to 95%. Thus, we defined the “false-positive
rate” as the percentage of data replicates in which two
populations of the same species (A1 and A2, B1 and B2,
C1 and C2, or D1 and D2) are split into different species
with posterior probability more than or equal to 95%.
For example, if the true species tree is tree 2 of Figure 1a
and the inferred guide tree is the tree on the right in

Figure 1b, then we counted a false positive for splitting
A1A2 if the posterior probability for splitting node 11 was
more than or equal to 95%. The results are summarized
in Tables 2 and 3 for species trees 1 and 2 of Figure 1a,
respectively.

The false-positive errors have contributions from two
sources: errors in the inferred guide tree and errors in
species delimitation by BPP. In the ∗BEAST + BPP analysis,
the false-positive rate is much lower when five nuclear
loci are used than when only one locus is used (Tables 2
and 3). For example, the error rate for splitting clades
A1A2 and B1B2 on species tree 1 at the low-mutation
rate was 8.3% for one nuclear locus and approximately
0.7% for five loci. This performance difference is due
both to the improved accuracy of guide-tree inference
(see Fig. 2) and to increased information content in the
BPP analysis. In contrast, in the RAxML + BPP analysis,
the performance improvement due to the increased
number of nuclear loci is much less dramatic. For
example, the error rate for splitting A1A2 and B1B2
on species tree 1 at the low-mutation rate was 1.2%
for one nuclear locus and approximately 0.7% for five
loci. In this analysis, there is no reduction in guide-tree
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TABLE 2. Percentage of false positives splitting one species into
two by BPP with posterior more than or equal to 95% in data simulated
using tree 1, with three sequences sampled from each population

Nuclear Loci Method A1A2 B1B2 C1C2 D1D2

Low-mutation rate
1 locus RAxML 0.012 0.012 0.015 0.010

∗BEAST 0.083 0.083 0.047 0.037
5 loci RAxML 0.009 0.004 0.004 0.004

∗BEAST 0.009 0.006 0.007 0.007

High-mutation rate
1 locus RAxML 0.034 0.042 0.035 0.026

∗BEAST 0.044 0.035 0.031 0.027
5 loci RAxML 0.000 0.000 0.000 0.000

∗BEAST 0.000 0.000 0.000 0.000

Notes: Method refers to two methods for generating the guide tree:
phylogenetic method applied to the mitochondrial locus (RAxML),
and species-tree inference method applied to the nuclear loci (∗BEAST).

TABLE 3. Percentage of false positives splitting one species into
two by BPP with posterior more than or equal to 95% in data simulated
using tree 2, with three sequences sampled from each population

Nuclear Loci Method A1A2 B1B2 C1C2 D1D2

Low-mutation rate
1 locus RAxML 0.007 0.009 0.003 0.011

∗BEAST 0.053 0.057 0.058 0.064
5 loci RAxML 0.004 0.006 0.006 0.002

∗BEAST 0.006 0.005 0.009 0.006

High-mutation rate
1 locus RAxML 0.030 0.036 0.030 0.030

∗BEAST 0.043 0.037 0.040 0.036
5 loci RAxML 0.001 0.001 0.002 0.002

∗BEAST 0.000 0.000 0.001 0.000

See note to Table 2.

estimation errors when more nuclear loci are used and
the performance improvement is entirely due to the
increased information content in the BPP analysis of the
nuclear loci. Thus, errors in the guide-tree construction
clearly contribute to false-positive errors in species
delimitation by BPP.

However, the false-positive rates in those simulations
are overall quite low. In all cases except one, the false-
positive rates were near or below the nominal rate of 5%.
The exception is the case of ∗BEAST + BPP analysis of one
nuclear locus at the low rate for species tree 1, in which
BPP splits clades A1A2 and B1B2 in approximately 8% of
replicates, slightly above the nominal 5%. In this case,
phylogenetic errors in the guide tree inferred by ∗BEAST
are very common, with clades A1A2 and B1B2 recovered
in only 77% of the replicates (Fig. 2a). To understand
why such high errors in the guide-tree inference did
not lead to very high false positives in BPP species
delimitation, we plot in Figures 4 and 5 the distributions
(histograms) of posterior probabilities calculated by BPP
(see also Tables 4 and 5 for the medians and quartiles,
and online supplementary Figs. S1–S16 for other cases).
With one locus (Fig. 4), the posterior probabilities for
splitting clades A1A2 and B1B2 are spread-out. With five

loci (Fig. 5), they shift towards 0 and become highly
concentrated. Thus, in the data of a single nuclear locus,
the posterior probabilities calculated by BPP did not often
reach the 95% cut-off due to the lack of information. With
more loci or at the higher mutation rate, the data become
far more informative and the posterior probabilities
become more extreme. However, in such cases, the guide
tree tends to be correctly reconstructed (Fig. 2a) and BPP
becomes increasingly accurate with lower rates of false
positives and false negatives (Table 2).

The posterior probabilities for splitting clades AB and
ABC on species tree 1 reflect the power of BPP to identify
distinct species (Figs. 4 and 5 and Tables 4 and 5). Power is
high even in the least informative data set of one nuclear
locus at the low rate (Fig. 4), and is nearly 100% when
five loci are analyzed (Fig. 5).

Note that the false-positive rate we calculate here is
a Frequentist property, and there is no theory leading
one to expect that the false-positive rate for a Bayesian
method (BPP) will be less than 5%. In practice, however,
many Bayesian methods are known to also have good
Frequentist properties (e.g., Huelsenbeck and Rannala
2004). The BPP method of species delimitation appears
to be one such method. Similarly, when the amount
of data (e.g., the number of loci) or the amount of
information in the data increases, the false-positive rates
of BPP for splitting clades A1A2, B1B2, C1C2, and D1D2
approach zero, rather than staying at the nominal 5%
as in a likelihood ratio test. This is clearly seen from
the dramatic reduction in the false-positive rates when
the mutation rate was increased by 10-fold or when the
number of loci was increased from 1 to 5 (Tables 2 and 3),
and from the distribution of the posterior probabilities
calculated by BPP for the four clades A1A2, B1B2, C1C2,
and D1D2 (compare Figs. 4 with 5).

The Impact of the Sample Size
We examined the effect of the sample size by

increasing the number of sequences sampled from
each population at each locus from 3 to 5, so that
there are 40 sequences in the alignment at each locus.
The probabilities with which the clades on the correct
guide tree are recovered are shown in Figure 2c,d.
The recovery probabilities are either very similar to or
higher than the corresponding probabilities for the small
sample size of Figure 2a,b. For example, in the RAxML
analysis of the mitochondrial locus, the probability of
recovering clade ABC in tree 1 is 95% and 97% for
the low- and high-mutation rates, respectively, when
five sequences per population are sampled (Fig. 2c),
compared with 93% and 97% for the small sample size
of three sequences per population (Fig. 2a). Note that
for both the small and large sample sizes, a phylogeny
of eight populations is inferred, so that the parameter
space (and the number of parameters) of the inference
problem remains unchanged even though the gene trees
are larger. Thus, a larger sample means more data and
more information.
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FIGURE 4. Histogram of posterior probabilities for splitting clades into different species by BPP in data of one locus, with three sequences
sampled from each population at the locus, simulated using tree 1 at the low-mutation rate, when the guide tree was inferred using ∗BEAST. Each
bin is of size 0.05. The frequencies in the last bin for splitting clades A1A2, B1B2, C1C2, and D1D2 are the false-positive rates listed in Table 2.

The histograms of posterior probabilities for splitting
clades on the correct guide tree for the large sample
size are presented in online Supplementary Figures
S17–S32. Compared with the corresponding results for
the small sample size (Supplementary Figs. S1–S16),
species delimitation by BPP performed in general better
with the large sample size. For example, in the∗BEAST + BPP analysis of one nuclear locus at the
low-mutation rate (Supplementary Figs. S1 and S17),

the posterior probabilities for splitting clades A1A2,
B1B2, C1C2, andD1D2 (false positives) are lower in the
large sample, indicating lower false positives, whereas
the probability for splitting clade AB is higher, indicating
higher power. The probability for splitting ABC is
approximately 100% for both sample sizes. The better
performance of BPP for the large sample size appears to
be largely due to the increased information content for
species delimitation since the improvement in guide-tree
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FIGURE 5. Histogram of posterior probabilities for splitting the clades by BPP in data of five loci, with three sequences per population at each
locus, simulated using tree 1 with low-mutation rate, when the guide tree was inferred using ∗ BEAST. See legend to Figure 4.

inference is moderate. A previous simulation found
that increasing the number of sequences sampled from
the same species improves species delimitation by BPP,
leading to both reduction of false positives (over-splitting
errors) and increase of power (correctly delimiting
distinct species) (Zhang et al. 2011).

DISCUSSION

Impact on Species Delimitation of Errors in the Estimated
Guide Tree

We investigated the impact of possible errors in the
guide tree on Bayesian species delimitation by BPP,

using two approaches for constructing the guide tree:
(i) phylogenetic analysis of a mitochondrial locus using
ML and Bayesian methods (RAxML and BEAST) and
(iii) species-tree estimation using independent nuclear
loci (∗BEAST). When the mutation rate was high, both
approaches had a good chance of inferring the correct
guide tree. When the mutation rate was low, the
estimated guide trees might involve considerable errors,
especially if only one nuclear locus was used. However,
even in this case the false-positive rate in Bayesian species
delimitation by BPP was not very high (the highest error
rate being ~8% when the nominal value is 5%). This is
because when the sequence data lack information, the
posterior probabilities calculated by BPP tend to be low
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TABLE 4. Median and quartiles (in parentheses) of posterior probabilities for splitting the specified clades by BPP in data simulated using
tree 1, with three sequences per population

Nuclear Loci Method A1A2 B1B2 C1C2 D1D2 AB ABC

Low-mutation rate
1 locus RAxML 0.315 0.308 0.269 0.223 0.990 1.000

(0.171, 0.480) (0.164, 0.484) (0.120, 0.454) (0.101, 0.407) (0.915, 1.000) (1.000, 1.000)
∗BEAST 0.310 0.322 0.262 0.228 0.996 1.000

(0.153, 0.533) (0.157, 0.556) 0.142, 0.467) (0.109, 0.430) (0.933, 1.000) (1.000, 1.000)
5 loci RAxML 0.135 0.135 0.080 0.061 1.000 1.000

(0.077, 0.258) (0.074, 0.258) (0.046, 0.166) (0.032, 0.132) (1.000, 1.000) (1.000, 1.000)
∗BEAST 0.130 0.137 0.082 0.063 1.000 1.000

(0.077, 0.245) (0.075, 0.270) (0.046, 0.161) (0.033, 0.131) (1.000, 1.000) (1.000, 1.000)
High-mutation rate
1 locus RAxML 0.042 0.046 0.024 0.018 1.000 1.000

(0.021, 0.130) (0.021, 0.150) (0.011, 0.077) (0.008, 0.060) (0.995, 1.000) (1.000, 1.000)
∗BEAST 0.039 0.039 0.025 0.019 1.000 1.000

(0.019, 0.124) (0.019, 0.112) (0.011, 0.074) (0.008, 0.065) (0.993, 1.000) (1.000, 1.000)
5 loci RAxML 0.008 0.007 0.003 0.002 1.000 1.000

(0.003, 0.017) (0.003, 0.017) (0.001, 0.009) (0.000, 0.006) (1.000, 1.000) (1.000, 1.000)
∗BEAST 0.007 0.007 0.003 0.001 1.000 1.000

(0.003, 0.016) (0.003, 0.018) (0.001, 0.009) (0.000, 0.005) (1.000, 1.000) (1.000, 1.000)

Notes: The probability for splitting clade ABCD (the root) is 1 in every replicate data set.

TABLE 5. Median and quartiles (in parentheses) of posterior probabilities for splitting the specified clades by BPP in data simulated using
tree 2, with three sequences per population

Nuclear Loci Method A1A2 B1B2 C1C2 D1D2 AB CD

Low-mutation rate
1 locus RAxML 0.268 0.275 0.266 0.257 0.986 0.988

(0.138, 0.427) (0.144, 0.446) (0.127, 0.418) (0.140, 0.443) (0.896, 0.999) (0.916, 0.999)
∗BEAST 0.289 0.260 0.291 0.270 0.993 0.993

(0.146, 0.504) (0.136, 0.464) (0.145, 0.503) (0.136, 0.488) (0.925, 1.000) (0.916, 1.000)
5 loci RAxML 0.106 0.107 0.110 0.109 1.000 1.000

(0.062, 0.218) (0.061, 0.215) (0.062, 0.221) (0.064, 0.207) (1.000, 1.000) (1.000, 1.000)
∗BEAST 0.113 0.110 0.112 0.107 1.000 1.000

(0.062, 0.201) (0.062, 0.219) (0.063, 0.234) (0.062, 0.204) (1.000, 1.000) (1.000, 1.000)
High-mutation rate
1 locus RAxML 0.034 0.040 0.036 0.037 1.000 1.000

(0.016, 0.133) (0.018, 0.113) (0.017, 0.120) (0.018, 0.118) (0.992, 1.000) (0.992, 1.000)
∗BEAST 0.036 0.032 0.040 0.038 1.000 1.000

(0.018, 0.504) (0.015, 0.464) (0.018, 0.503) (0.018, 0.488) (0.990, 1.000) (0.991, 1.000)
5 loci RAxML 0.004 0.005 0.005 0.004 1.000 1.000

(0.002, 0.012) (0.002, 0.011) (0.002, 0.012) (0.002, 0.010) (1.000, 1.000) (1.000, 1.000)
∗BEAST 0.004 0.005 0.004 0.005 1.000 1.000

(0.002, 0.010) (0.002, 0.012) (0.002, 0.011) (0.002, 0.011) (1.000, 1.000) (1.000, 1.000)

Notes: The probability for splitting clade ABCD (the root) is 1 in every replicate data set.

and do not reach the 95% threshold. With more data, the
posterior probabilities become more extreme, but in that
case both guide-tree inference and species delimitation
become highly accurate.

For multilocus nuclear data, one could conduct a
phylogenetic analysis of the concatenated sequence
alignment to generate a guide tree, using for example,
RAxML. However, concatenation assumes that the same
gene tree underlies all loci and fails to accommodate
incomplete lineage sorting due to polymorphism in the
ancestral species. We have not examined this alternative
method since it is expected to be inferior to species-tree
methods (such as ∗BEAST), which use the multispecies
coalescent model to account for gene tree discordance
across loci. For the mitochondrial locus, RAxML and

BEAST perform similarly, but RAxML runs several orders
of magnitude faster than BEAST. Our discussion has thus
focused on RAxML analysis of the mitochondrial locus
but we note that Bayesian programs such as BEAST and
MrBayes are usable as well. We stress that our objective
in this study is not to compare different phylogenetic
reconstruction methods (such as RAxML and BEAST) but
is instead to evaluate the impact of errors in estimated
guide trees on the false-positive and false-negative errors
in the downstream species delimitation analysis by BPP.
In this regard, our results suggest that the false-positive
errors are rather minor when the guide tree is generated
using sampled sequence data. Our results complement
rather than contradict the previous finding by Leaché
and Fujita (2010) that BPP tends to over-split and generate

 at U
C

L
 L

ibrary Services on N
ovem

ber 3, 2014
http://sysbio.oxfordjournals.org/

D
ow

nloaded from
 

http://sysbio.oxfordjournals.org/


[15:53 3/10/2014 Sysbio-syu052.tex] Page: 1003 993–1004

2014 POINT OF VIEW 1003

excessive false positives if a random guide tree, which is
most likely to be grossly wrong, is used. Users of BPP
should take precautions against using grossly wrong
guide trees for species delimitation analysis by BPP.
If there are uncertainties concerning the phylogenetic
relationships of the populations, the sensitivity of BPP
analysis to the guide tree should be examined by using
multiple guide trees derived using different strategies
(as reviewed early). Furthermore, there is clearly a need
to extend the algorithms in BPP to account properly for
uncertainties in the guide tree.

The Impact of Gene Flow
In our simulation, we assumed no gene flow

(migration, hybridization, or introgression) after species
divergence, and conflicts between gene trees from
different genomic regions or between mitochondrial and
nuclear loci are entirely due to ancestral polymorphism
and incomplete lineage sorting. A previous simulation
study has examined the impact of gene flow on Bayesian
species delimitation by BPP (Zhang et al. 2011). It
was found that small amounts of migration (with �1
expected immigrant per generation) had little impact
on the performance of the method, whereas a single
species was inferred if migration between populations
was prevalent (say, with �1 immigrants per generation).
In that study, gene flow was assumed to affect all
loci uniformly and the guide tree was assumed to be
correct. The effect of migration may be more difficult to
predict if migration affects different parts of the genome
differently, due to natural selection. For example, the
pattern of gene flow may vary considerably across
genome regions because some loci are responsible for
species adaptations to different ecological habitats and
are thus under strong selection whereas other loci are
neutral and can cross species boundaries quite freely.
As a result, incipient species may show “islands” of
divergence between their genomes amidst a sea of gene
flow (Ellegren et al. 2012; Martin et al. 2013). Discordance
between mitochondrial and nuclear phylogenies may
also result from such selective gene flow, which makes
the use of the mitochondrial locus to construct the guide
tree problematic.

The Impact of Assignment Errors
In this study, we assumed that the population

assignments were correct. In a recent simulation
study, Olave et al. (2014) used STRUCTURAMA to assign
individuals to populations and then used ∗BEAST to
infer the guide tree, to evaluate the impact of errors
in the upstream analysis (assignment and guide-tree
construction) on the performance of BPP. They found
that the error rates may be high when individuals are
incorrectly assigned to populations, although BPP had
excellent performance when assignment errors were
absent. The results highlight the importance of reliable
assignments to species delimitation by BPP. They also

point to an interesting mismatch in the different steps of
the delimitation process: although a few loci appeared to
be sufficient for BPP to delimit species given the correct
assignment, they were not enough for STRUCTURAMA to
assign individuals to populations reliably. Nevertheless,
a few issues with the design of the Olave et al. study
make their results somewhat difficult to interpret. First,
Olave et al. (2014; Fig. 2) used the number of inferred
species to measure performance and failed to distinguish
between the errors of over-splitting and under-splitting.
Over-splitting appears to be a more serious error than
under-splitting, as failure to delimit distinct species may
simply be due to lack of power of the method or lack
of information in the data. Second, Olave et al. (2014)
used STRUCTURAMA to analyze the multilocus sequence
data (treated as genotypes) to cluster the individuals
into populations. The procedure mimics an unrealistic
scenario in which multiple sympatric cryptic species
exist in a sample with nothing to distinguish them
a priori. Although the results suggest that a few loci
of sequence data are insufficient for STRUCTURAMA to
assign individuals to populations reliably, the impact of
assignment errors on species delimitation by BPP under
more realistic scenarios remains unknown. As discussed
by Olave et al., traditional taxonomic boundaries, and
morphological and geographical data may be available
to determine the number of putative species and
assign individuals to populations. Moreover, SNPs and
microsatellites across multiple loci may be better suited
than sequences for assigning individuals to populations.

SUPPLEMENTARY MATERIAL

Supplementary Figures S1–S32: Distributions or
histograms (out of 1000 replicate data sets) of posterior
probabilities for splitting the clades on the correct guide
tree, calculated by BPP. The 32 figures correspond to 32
simulation parameter settings, with two sample sizes
(three or five sequences per population), two species
trees (trees 1 or 2 in Fig. 1a), two mutation rates (Table 1),
two guide-tree inference methods (RAxML: ML tree
for the mitochondrial locus and ∗BEAST: species-tree
inference from the nuclear loci), and two numbers of loci
(one or five nuclear loci), with the last factor changing
first. Thus, Supplementary Figures S1–S16 are for the
small sample size of three sequences per population and
Supplementary Figures S17–S32 are for the large sample
size of five sequences per population. Supplementary
Information related to this article has been deposited at
Dryad under http://dx.doi.org/10.5061/dryad.m1r32.
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