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Summary

1. Due to the polymorphism in the ancestral species and the stochastic fluctuation of the coalescent process, the

divergence time between sequences from two closely related species varies throughout the genome. This variation

is described by an exponential distribution. Gene flow between the species causes additional variation in the

sequence divergence time, beyond the expected variation from the ancestral coalescent process. This prediction

can be used to test for gene flow between species using genomic sequence data.

2. A previous implementation of the model used an empirical beta distribution to describe the variation in spe-

cies divergence time across the genome, with numerical integration used to calculate the 3D integrals involved in

the likelihood function. However, with a huge number of loci, the numerical integration is not accurate enough,

so the false-positive rate of the likelihood ratio test may exceed the significance level.

3. In this study, we replace the beta model with a discretized version, so that the likelihood calculation involves

2D integrals. We implement the new discrete-beta model in the program 3S and also extend our previous imple-

mentation to accommodate loci with different data configurations. We use computer simulation to examine the

false-positive rate, the power and the robustness of the likelihood ratio test.

4. The results show that the test had low false-positive rates and had even higher power in detecting gene flow

than a likelihood ratio test based on a proper implementation of the isolation-with-migration model. It is, how-

ever, not robust to high levels of recombination within locus. Application of the test to two empirical data sets

(from the hominoid genomes and from theDrosophila fruit flies) suggests the presence of gene flow for both data

sets.
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Introduction

The mode and mechanism of speciation are fascinating ques-

tions in evolutionary biology since the time of Charles Darwin.

Different theories of speciationmake different predictions con-

cerning the role of gene flowduring species formation.Allopat-

ric speciation considers complete isolation of the populations

and lack of gene flow between them as prerequisites to forma-

tion of new species. Parapatric and sympatric speciation, in

contrast, allows gene flow during speciation. Allopatric specia-

tion has historically been considered the paramount mode of

speciation (Futuyma & Mayer 1980), although theoretical

modelling and empirical evidence appear to increasingly sup-

port the notion of speciation despite gene flow (see, e.g. Mallet

et al. 2009; Smadja & Butlin 2011 for recent reviews). As gene

flow causes different parts of the genome to diverge at different

times between the two species, the mode of speciation may

have left permanent marks in the genomes of modern species.

Thus, the different theories of speciation may be tested using

genomic sequence data.

Even under a model of complete isolation without gene flow

(that is, even if gene flow ceases as soon as one species diverges

into two), the time of sequence divergence between the two spe-

cies will vary among different regions of the genome because of

polymorphism and the coalescent process in the ancestral spe-

cies. Indeed, the coalescent time in the ancestral population

should follow an exponential distribution, with the mean to be

2N generations, where N is the effective population size of the

ancestral species (Langley & Fitch 1974). However, gene flow

after speciation introduces additional variation in sequence

divergence among genomic regions, beyond the expected vari-

ation from the exponential distribution. Furthermore, since

the information about the sequence divergence time comes

from the accumulated mutations, another complicating factor

is the possible variation in mutation rate along the genome,

which can also cause variable sequence divergences among

genomic regions. Thus, a test of gene flow should accommo-*Correspondence authors. E-mails: dxzhang@ioz.ac.cn (De-Xing
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date the natural stochastic fluctuation of the coalescent pro-

cess, as well as the accumulation of random mutations given

the sequence divergence time, and should be relatively robust

to possiblemutation rate variation along the genome.

A likelihood ratio test (LRT) was implemented by Yang

(2010), which uses a beta distribution to account for the varia-

tion in species divergence time between the two species caused

by gene flow. Given the species divergence time, the coalescent

waiting time has an exponential distribution. This is an exten-

sion of the test of Osada & Wu (2005; see also Wu & Ting

2004) for two species, which allows for two possible species

divergence times among loci. Yang’s (2010) implementation

compares two species (1 and 2), with an out-group species 3

used to provide additional information and to improve the

robustness of the test. With a pair of closely related species, the

variation in sequence divergence among loci may be seriously

confounded with the mutation rate variation (Yang 2010). Use

of a third out-group species alleviates this problem to some

extent. In the implementation of Yang (2010), the probability

of data at each locus is calculated by summing over the gene

tree topologies and integrating over the two coalescent times

and over the beta distribution, so that the likelihood calcula-

tion involves 3D integrals, achieved by numerical integration

(Gaussian quadrature). With K points used in each dimension

in the quadrature, the computation is proportional to K3. The

simulation of Yang (2010) generating data of up to 1000 loci

suggests that the test has good false-positive rate and good

power. Nevertheless, it was found later that the numerical inte-

gration does not achieve sufficient accuracy: when a large num-

ber of loci (≥10 000 loci, say) are used, the false-positive rate

may exceed the nominal 5%. Another limitation of the imple-

mentation of Yang (2010) is that it allows for only one type of

locus: there must be three sequences, with one sequence from

each species, at each locus.

Here in this paper, we replace the (continuous) beta model

with a discretized beta distribution. The model is then called

the discrete-beta model. The integration over the two coales-

cent times in the gene tree is then two-dimensional and the

computation is proportional to K2. Importantly, this formula-

tion allows accurate calculation of the likelihood function,

ensuring that the LRThas the false-positive rate under control.

We also extend the implementation to other data configura-

tions involving three sequences per locus. We conduct com-

puter simulation to examine the false-positive rate and power

of the LRT, as well as its robustness to violations of certain

model assumptions. We then apply the test to two empirical

data sets: one of genomic data from the human, chimpanzee

and gorilla (Burgess & Yang 2008), and another ofDrosophila

fruit flies (Wang&Hey 2010).

Theory andmethods

MODEL OF NO GENE FLOW (M0)

Wefirst describe themodel of speciationwithout gene flow to introduce

the notation (Yang 2002, 2010). This is the complete isolation model,

referred to as modelM0 (no gene flow). Let the species tree be ((1, 2), 3)

(Fig. 1a). The two ancestral species are referred to as 4 and 5. The focus

of the analysis is on comparison of species 1 and 2, with species 3 used

as an out-group. There are at most seven parameters in model M0,

including two species divergence times: s0 and s1, and five population

size parameters: h1 = 4N1l, h2 = 4N2l and h3 = 4N3l for the three

modern species, and h4 = 4N4l and h5 = 4N5l for the two ancestral

species. Here, l is the mutation rate per site per generation, and the Ns

are the effective population sizes. Parameter hmeasures the population

size or the genetic variation maintained in the population: for instance,

h = 0�001means that two sequences sampled from the population have

on average one difference per kilobases. Similarly, the species diver-

gence times (ss) are scaled by the mutation rate and are measured by

the expected number of mutations per site. Let Θ0 = {s0, s1, h1, h2, h3,
h4, h5}. We note that h for a modern species is an estimable parameter

only if there are at least two sequences from that species at some loci.

We assume only one sequence from species 3 at each locus and h3 is not
a parameter in themodel. In this study, the term ‘loci’ refers to indepen-

dent or loosely linked short segments of the genome, such that recombi-

nationwithin each segment is rare and negligible while different loci are

so far apart that they are nearly free-recombining (Lohse & Barton

2011).

The data consist of DNA sequence alignments frommultiple neutral

loci. At each locus, there are two or three sequences from the modern

species 1, 2 and 3. We use the index of the species from which the

sequences are sampled to specify the data configuration at each locus.
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Fig. 1. The species tree ((1, 2), 3) for three species, showing the parameters in model M0: h4, h5, s0 and s1. The five possible gene trees for any locus
are shown in (b–f). For loci of configuration 123, gene trees G0–G3 are possible. For loci of configuration 113, gene tree G4 is also possible. The

branch lengths in gene treeG0 are defined as b0 forAB and b1 for branchB1, while those in other gene trees are defined similarly.
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Thus, configuration ‘123’ means three sequences at the locus, with one

sequence from each species, configuration ‘113’ means two sequences

from species 1 and one sequence from species 3, and so on. In this

paper, we consider only data configurations 123, 113 and 223, assum-

ing three sequences at each locus. The program 3S has been extended to

accommodate arbitrary data configurations with 2 or 3 sequences at

each locus. The details of the implementation will be described else-

where (Dalquen, Zhu andYang, pers. comm.).

We use the JC69 mutation model (Jukes & Cantor 1969). As the

sequences are expected to be very similar in such analysis and the role

of themutationmodel is to correct formultiple hits, JC69 appears to be

adequate. With three sequences at any locus i, the data can be summa-

rized as the counts of sites with five distinct site patterns: xxx, xxy, yxx,

xyx and xyz, where x, y and z are any distinct nucleotides. Let these be

Di = {ni0, ni1, ni2, ni3, ni4}. Also letD = {Di} be the data at allL loci.

Consider a locus with data configuration 123. The relationships

among the three sequences are described by one of four possible gene

trees: G0, G1, G2 and G3 (Fig. 1). Given the gene tree topology G1: ((1,

2), 3); G2: ((2, 3), 1); or G3: ((3, 1), 2), and the branch lengths b0 and b1
(Fig. 1), the probability of observing the site pattern counts is given by

themultinomial probability

PðDijG1; b0; b1Þ ¼ pni00 pni11 pni2þni3
2 pni44 ;

PðDijG2; b0; b1Þ ¼ pni00 pni21 pni3þni1
2 pni44 ;

PðDijG3; b0; b1Þ ¼ pni00 pni31 pni1þni2
2 pni44 ;

eqn 1

where the probabilities for the site patterns are (Saitou 1988; Yang

1994)

p0ðb0; b1Þ ¼ probðxxxÞ;¼ ð1þ 3e�8b1=3 þ 6e�8ðb0þb1Þ=3

þ 6e�ð8b0þ12b1Þ=3Þ=16;
p1ðb0; b1Þ ¼ probðxxyÞ ¼ ð3þ 9e�8b1=3 � 6e�8ðb0þb1Þ=3

� 6e�ð8b0þ12b1Þ=3Þ=16;
p2ðb0; b1Þ ¼ probðyxxÞ ¼ ð3� 3e�8b1=3 þ 6e�8ðb0þb1Þ=3

� 6e�ð8b0þ12b1Þ=3Þ=16;
p3ðb0; b1Þ ¼ probðxyxÞ ¼ p2ðb0; b1Þ;
p4ðb0; b1Þ ¼ probðxyzÞ ¼ ð6� 6e�8b1=3 � 12e�8ðb0þb1Þ=3

þ 12e�ð8b0þ12b1Þ=3Þ=16:

eqn 2

Note that gene treeG0 has the same topology asG1, so that P(Di|G0,

b0, b1) = P(Di|G1, b0, b1).

The probability of data at the locus f(Di|Θ0) is a sum over the gene

tree topologies and an integration over the two coalescent times (Yang

2002: eqn 8, 2010: eqn 3).

Note that the first term in the sum is for gene treeG0 while the second

term is forG1–G3, with e
�2ðs0�s1Þ=h5 to be the probability that sequences

1 and 2 do not coalesce in ancestral population 5.

For data configuration 113 (with two sequences sampled from spe-

cies 1 and a third sequence from species 3), it is possible for the two

sequences from species 1 to coalesce in species 1, in the interval (0, s1),
before reaching the common ancestor 5. Thus, the probability of data

at the locus involves one extra term corresponding to gene tree G4 of

Fig. 1. This is given in eqn 4 below, where the first two terms in the sum

correspond to gene trees G4 and G0 of Fig. 1, respectively, while the

third term is forG1–G3.Note that e�2s1=h1 and e�2ðs0�s1Þ=h5 are the prob-
abilities that the two sequences from species 1 do not coalesce in popu-

lation 1 and in ancestral population 5, respectively. Again G4 has the

same gene tree topology as G1 so that P(Di|G4, b0, b1) is given by

equation (1) forG1.

Loci with data configuration 223 can be dealt with similarly to loci of

data configuration 113.

We assume that the different loci are evolving independently, so that

the log likelihood is a sum over theL loci

‘ðH0;DÞ ¼
XL
i¼1

log fðDijH0Þ: eqn 5

THE DISCRETE-BETA MODEL OF GENE FLOW (M1)

In the beta model, we use a beta distribution of s1 to describe the extra

variation in the sequence divergence time among loci due to gene flow

between species 1 and 2. This model does not describe the biological

process of isolation with migration exactly. It is an empirical model,

aimed at capturing the main features of the process, that is the extra

variation in sequence distance among genomic regions caused by gene

flow. In the case that gene flow is decreasing after species separation

and migration rate is variable over time, this model may be a good

approximation to the biological reality. Letx = s1/s0 for any locus have
the beta distribution x ~ beta(p, q), with density

fðxjp; qÞ ¼ Cðpþ qÞ
CðpÞCðqÞ x

p�1ð1� xÞq�1; 0\x\1: eqn 6

This has the mean E(x) = p/(p + q) and the variance V(x) =

pq/[(p + q)2 (p + q + 1)]. For a locus with the beta variable x, the two

species divergence times will be s0 and s1 = xs0. Model M1 involves

one more parameter than M0: instead of s0 and s1, we now have s0, p

fðDi H0j Þ ¼
Z 1

0

Z 2ðs0�s1Þ=h5

0

PðDi G0; s0 � s1 � 1
2

�� h5t1 þ 1
2h4t0; s1 þ 1

2h5t1Þ � e�t1 e�t0dt1dt0

þ e�2ðs0�s1Þ=h5
Z 1

0

Z 1

0

X3
k¼1

PðDi Gk;
1
2h4t0; s0 þ 1

2h4t1
�� Þ

" #
� e�3t1 e�t0dt1dt0

eqn 3

fðDijH0Þ ¼
Z 1

0

Z 2s1=h1

0

PðDijG4; s0 � 1
2h1t1 þ 1

2h4t0;
1
2h1t1Þ � e�t1 e�t0dt1dt0

þ e�2s1=h1

Z 1

0

Z 2ðs0�s1Þ=h5

0

PðDi G0; s0 � s1 � 1
2h5t1 þ 1

2h4t0; s1 þ 1
2h5t1

�� Þ � e�t1 e�t0dt1dt0

þ e�2s1=h1 e�2ðs0�s1Þ=h5
Z 1

0

Z 1

0

X3
k¼1

PðDi Gk;
1
2h4t0; s0 þ 1

2h4t1
�� Þ

" #
� e�3t1 e�t0dt1dt0:

eqn 4
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and q. We parametrize M1 to have Θ1 = {s0, �s1, h1, h2, h3, h4, h5, q},
with p ¼ q �s1

s0��s1. With this formulation, parameter q is inversely related

to the variance in s1, and the null model M0 of constant s1 is repre-
sented by q = ∞ inM1.

The probability of data at the locus is given as

fðDijH1Þ ¼
Z 1

0

fðDijs0;xs0; h1; h2; h4; h5Þfðxjp; qÞdx; eqn 7

where f(Di|s0, xs0, h1, h2, h4, h5) is f(Di|Θ0) of equation (3) for a locus of

configuration 123 or equation (4) for a locus of configuration 113. The

likelihood function is given again by equation (5). Note that equa-

tion (7) involves 3D integrals, over the two coalescent times (t1 and t0)

and over x. Yang (2010) used Gaussian quadrature to calculate those

3D integrals.

Here we replace the (continuous) beta model with a discretized ver-

sion.We cut the distribution intoB bins, each with probability 1/B. Let

the cutting points be y0 = 0, y1, y2, . . ., yB = 1, where yj is the 100j/B-th

percentile of the distribution. The percentiles are calculated by a linear

search using standard algorithms for the calculation of the cumulative

distribution function (CDF) F(x, p, q) for beta (p, q) (Steinbrecher &

Shaw 2008). We use the mean as the representative for all x values in

each bin. In other words,

�xj ¼ B�
Z yj

yj�1

xfðxjp; qÞ dx

¼ B� p

pþ q
� Cðpþ 1þ qÞ
Cðpþ 1ÞCðqÞ

Z yj

yj�1

xpþ1�1ð1� xÞq�1 dx

¼ B� p

pþ q
Fðyj; pþ 1; qÞ � Fðyj�1; pþ 1; qÞ� �

eqn 8

for j = 1, 2, . . .,B.

The species divergence time in the ith bin is thus s1 ¼ �xjs0. The inte-
gral of equation (7) is then replaced by an average over the B bins, so

that the probability of data at the locus becomes

fðDijH1Þ � 1

B

XB
j¼1

fðDijs0; �xjs0; h1; h2; h4; h5Þ: eqn 9

Thus, we have to calculate 2D integrals at every locus (equations 3

and 4), so that the computation involved in Gaussian quadrature is

proportional toBK2.We note that the number of binsB is not a param-

eter in themodel, and use a fixed valueB = 5 in our implementation.

Figure 2 illustrates the discretization of beta (1�408, 0�394), using
B = 5 bins. Those parameter values are maximum likelihood estimates

obtained from the Drosophila data, analysed later. In the analysis of

the simulated and real data sets, we usedB = 5 bins in the discrete-beta

model, and K = 16 or 32 in the numerical integration by Gaussian

quadrature.

THE LIKELIHOOD RATIO TEST

AsmodelM1 (discrete-beta) reduces to modelM0 (no gene flow) when

q = ∞, the two models are nested and can be compared using a LRT.

The test statistic will be 2D‘ = (‘1 – ‘0), where ‘0 and ‘1 are the log like-

lihood values under models M0 andM1, respectively. However, as the

value∞ for q is at the boundary of the parameter space under M1, we

cannot use v21 (the chi-square distribution with one degree of freedom)

to conduct the test. Instead, the null distribution is a 50 : 50 mixture of

the point mass at 0 and v21 (Self & Liang 1987). The critical values are

2�71 at 5% and 5�41 at 1%, as opposed to 3�84 for 5% and 6�63 for 1%
according to v21 (Yang 2010). We refer to this LRT comparing models

M0 (no gene flow) andM1 (discrete-beta) as test 1.

For comparison, we also applied the LRT of Zhu & Yang (2012),

which compares models M0 (no gene flow) and M2 (SIM3s). M2 is a

proper implementation of the isolation-with-migration (IM) model.

The test is referred to as test 2, andwe use the v22 distribution to conduct
the test (Zhu&Yang 2012).

COMPUTER SIMULATION TO EXAMINE THE FALSE-

POSIT IVE RATE AND POWER OF THE TEST

We conducted computer simulations to examine the statistical proper-

ties of the LRT based on the discrete-beta model. To examine the false-

positive rate, we simulated sequence data at multiple loci under model

M0 (no gene flow), using the program MCCOAL in the BPP package

(Rannala &Yang 2003; Yang&Rannala 2010). Two sets of parameter

values were used, roughly based on estimates from the hominoids (Bur-

gess & Yang 2008) and the mangroves (Zhou et al. 2007). They are as

follows: h = 0�005 for all populations, s0 = 0�006 and s1 = 0�004 (hom-

inoids); and h = 0�01 for all populations, s0 = 0�02 and s1 = 0�01 (man-

groves).

To examine the power of the test, we simulated the gene trees and

sequence alignments under the IM model for three species, with

M12 = M21 = M, using the programMCCOAL. This is the symmetrical

IM model for three species (M2: SIM3s) of Zhu & Yang (2012), and

differs from the discrete-betamodel that test 1 is based on. InMCCOAL,

the (scaled) migration rate from species i to j is defined asMij = Njmij,

wheremij is the proportion of individuals in population j that are immi-

grants from population i. Thus,Mij is the expected number of migrants

from population i to population j per generation. In this study, we con-

sidered only the symmetrical case withM12 = M21 = M and assume no

migration to or from species 3. We used three values: M = 0�1, 1 and

10. Data of multiple loci were simulated by first generating the gene

trees and branch lengths and then generating sequence alignments

given the gene trees. See Zhang et al. (2011) for a detailed description

of the simulation strategy.

Our simulation considered different proportions of loci of three data

configurations: 123, 113 and 223. For example, a total number of 1000

loci with the ratios 4 : 3 : 3means that each data set consists of 400 loci

of configuration 123, 300 loci of 113 and 300 loci of 223. There were

500 bp at every locus. The number of replicates was 1000. The data

were analysed using the program 3S, which implements all three mod-

els: M0 (no gene flow), M1 (discrete-beta) and M2 (SIM3s). The JC69

x

f(x
)

0·0 0·2 0·4 0·6 0·8 1·0
0

2

4

6

8

Fig. 2. Discretization of the beta distribution beta (1�408, 0�394), with
estimates obtained from the Drosophila data. The four vertical lines

are at x = 0�5750, 0�8112, 0�9351 and 0�9890, and are the 20th, 40th,

60th and 80th percentiles of the distribution and cut the density into five

categories, each of proportion 1/5. The mean in the five categories is

0�3575, 0�7054, 0�8803, 0�9667 and 0�9969.
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mutationmodel (Jukes&Cantor 1969) was used in both the simulation

and analysis of the data.

We conducted simulation to examine the robustness of the test to the

assumption of no recombination within each locus.We considered two

scenarios, related to the hominoid and Drosophila data sets analysed

later. In the hominoid case, we used h = 0�005 for all populations,

s0 = 0�006 and s1 = 0�004. Rough estimates of the recombination rate

for the human are about r = 0�37 cM Mb�1 (with the 95% CI to be

0�27–0�47) (Arnheim, Calabrese & Tiemann-Boege 2007). With an

effective population size ofN = 10 000, this gives q = 4Nr = 0�148 per
kilo base pairs or 0�074 for a 500 bp locus. We used a range of values

for q. In the Drosophila case, we used h = 0�01 for modern species and

h = 0�02 for ancestral species, and s0 = 0�025 and s1 = 0�013. Estimates

of recombination rates in Drosophila are around r = 2 cM Mb�1

(Fiston-Lavier et al. 2010; Langley et al. 2012). With a population size

of about 106 (Li, Satta & Takahata 1999), this gives q = 4Nr = 0�08
per base pair, or 32 per locus (with 400 sites per locus). We also used

q values that are half or twice as large.

We also examined the power of the test in a few complex scenarios of

gene flow, mimicking gradual build-up of reproductive isolation after

speciation or secondary contact. The details will be described later

when we present the results. The program MS (Hudson 2002) was used

to simulate gene trees under the model of recombination and under

complex migration scenarios, and the program SEQ-GEN (Rambaut &

Grassly 1997) was used to generate the sequence data under the JC69

model. The data were then analysed using 3S under the JC69model.

Results

THE FALSE-POSIT IVE RATE AND POWER OF THE LRT

The false-positive rate of the test is shown in Table 1 for differ-

ent data sizes (the number of lociL), different parameter values

and different data configurations. The false-positive rate is

<5% in most cases. In a few other cases, it is slightly higher

than 5%, which may be attributed to random sampling errors.

Overall the type-I error rate of the LRT based on the discrete-

beta model is acceptable. Note also that the percentage of data

sets in which the test statistic 2D‘ = 0 becomes close to 50%

when the number of lociL is large, consistent with the theoreti-

cal expectation (Self & Liang 1987).

The power of the test is shown in Table 2. The power is

influenced by the parameter values, the data configurations of

the loci and the number of loci. For the hominoid set of param-

eter values, the test has virtually no power when L = 100, but

relatively high power is achieved whenL = 1000. For theman-

grove set of parameter values, the power is close to 100% even

with L = 100 when all loci are of configuration 123 and is even

higher with L ≥ 1000. Note that compared with the hominoid

set of parameter values, the mangrove set has much larger hs
and ss, so that the sequences are more divergent and the data

are more informative. Furthermore, loci of configuration 123

are more informative, with the test achieving higher power,

than loci of configurations 113 or 223. It is unclear what pro-

portions of the loci of different configurations are optimal and

achieve the highest power for the test. Such issues of experi-

mental design are beyond the scope of our small simulation

study.

Note that the null hypothesisM0 (no gene flow) is true when

the migration rate M = 0. However, the power of the test to

rejectM0 does not always increase with the increase ofM. Bio-

logically, whenM = ∞ (or evenM = 10), populations 1 and 2

will be in effect one single species, so that the simulation model

is one of two species, with different population size parameters

for the time period (0, s1) and (s1, s0), rather than a model of

three species with frequent migration. The null modelM0 does

not match this true model, which explains the relative high

power of the test at M = 10 (Table 2). Test of migration

should be interpreted with caution when the estimates of

migration rate are very high.

ROBUSTNESS OF THE TEST TO RECOMBINATION

We examined the robustness of the LRT based on the discrete-

beta model to recombination. Note that our model assumes

complete linkage within each locus, so that the model assump-

tion is violated when recombination occurs between sites in the

locus. The results of this simulation are shown in Table 3.

For the hominoid set of simulation, the false-positive rate is

acceptable when q = 4Nr ≤ 0�148 9 10�3 per base pair, which

is based on the estimate for humans (Arnheim, Calabrese &

Tiemann-Boege 2007). When the recombination rate is much

higher, say at q ≥ 2 9 10�3, excessive false positives are gener-

ated. By comparison with previous results of Zhu & Yang

Table 1. False-positive rate of the LRT1 in simulations

Data configuration L = 100 L = 1000 L = 5000 L = 10 000

Hominoid set

Configurations 1 : 0 : 0 0�009 (0�608) 0�039 (0�510) 0�052 (0�506) 0�049 (0�512)
Configurations 4 : 3 : 3 0�031 (0�521) 0�051 (0�527) 0�050 (0�477) 0�057 (0�509)
Configurations 2 : 3 : 5 0�050 (0�535) 0�061 (0�520) 0�051 (0�511) 0�049 (0�509)

Mangrove set

Configurations 1 : 0 : 0 0�050 (0�541) 0�039 (0�528) 0�048 (0�543) 0�050 (0�538)
Configurations 4 : 3 : 3 0�043 (0�563) 0�044 (0�528) 0�049 (0�518) 0�043 (0�542)
Configurations 2 : 3 : 5 0�048 (0�574) 0�039 (0�543) 0�042 (0�539) 0�056 (0�525)

The test is conducted at the 5% level (with critical value 2D‘ = 2�71). In parentheses is the percentage of replicates in which the test statistic is

2D‘ = 0. Data ofL loci are simulated underM0.We use three experimental designs, in which the numbers of loci of configurations 123, 113 and 223

are in proportions 1 : 0 : 0, 4 : 3 : 3 and 2 : 3 : 5, respectively.

© 2015 The Authors. Methods in Ecology and Evolution © 2015 British Ecological Society, Methods in Ecology and Evolution
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Table 2. Power of the LRT1 in simulations

Simulationmodel L = 100 L = 1000 L = 5000 L = 10 000

Hominoid set

M = 0�1 (1 : 0 : 0) 0�194 0�991 1�000 1�000
M = 0�1 (4 : 3 : 3) 0�159 0�768 1�000 1�000
M = 0�1 (2 : 3 : 5) 0�105 0�519 0�988 1�000
M = 1 (1 : 0 : 0) 0�183 0�906 1�000 1�000
M = 1 (4 : 3 : 3) 0�141 0�462 0�884 0�977
M = 1 (2 : 3 : 5) 0�105 0�345 0�681 0�841
M = 10 (1 : 0 : 0) 0�109 0�841 0�999 1�000
M = 10 (4 : 3 : 3) 0�128 0�798 1�000 1�000
M = 10 (2 : 3 : 5) 0�116 0�758 0�999 1�000

Mangrove set

M = 0�1 (1 : 0 : 0) 0�957 1�000 1�000 1�000
M = 0�1 (4 : 3 : 3) 0�618 1�000 1�000 1�000
M = 0�1 (2 : 3 : 5) 0�344 0�998 1�000 1�000
M = 1 (1 : 0 : 0) 0�703 1�000 1�000 1�000
M = 1 (4 : 3 : 3) 0�402 0�965 1�000 1�000
M = 1 (2 : 3 : 5) 0�316 0�849 0�997 1�000
M = 10 (1 : 0 : 0) 0�469 0�988 1�000 1�000
M = 10 (4 : 3 : 3) 0�444 0�960 0�999 1�000
M = 10 (2 : 3 : 5) 0�414 0�951 0�998 1�000

The test is conducted at the 5% level (with critical value 2D‘ = 2�71). Data of L loci are simulated underM2 (SIM3s), with the migration rateM to

be the expected number ofmigrants per generation. See notes for Table 2.

Table 3. False-positive rate of the LRT1 in presence of recombination

Recombination rate (q) L = 100 L = 1000 L = 5000 L = 10 000

(a)Hominoid set,N = 500 bp

0�037 9 10�3 0�007 0�035 0�051 0�059
0�074 9 10�3 0�011 0�044 0�052 0�049
0�148 3 10�3 0�008 0�038 0�073 0�077
0�3 9 10�3 0�006 0�052 0�069 0�086
2 9 10�3 0�018 0�083 0�193 0�306
8 9 10�3 0�041 0�195 0�537 0�813

(b) Drosophila set,N = 400 bp

0�04 0�154 0�803 0�998 1�000
0�08 0�034 0�399 0�900 0�981
0�16 0�010 0�078 0�408 0�634

Recombination rate q = 4Nr is per base pair, with the value 0�148 9 10�3 to be the estimate for the human, and 0�08 to be the estimate forDrosoph-

ila melanogaster. The values of parameters hs and ss for the hominoid set are h = 0�005 for all populations, s0 = 0�006 and s1 = 0�004. For the
Drosophila set, hs are 0�01 for modern species and 0�02 for ancestors, and s0 = 0�025 and s1 = 0�013. The sequence length is 500 bp for the hominoid

set and is 400 bp for the flies set. All loci have the configuration 123. Results highlighted in bold are for recombination rates estimated for the human

andDrosophila, respectively.

Table 4. Power of LRT1 andLRT2when the rate of gene flow varies over time

Model L = 100 L = 1000 L = 5000 L = 10 000

LRT1 (M0–M1)

Constantmigration 0�189 0�930 1�000 1�000
Gradual isolation 0�146 0�797 1�000 1�000
Secondary contact 0�112 0�450 0�968 0�997

LRT2 (M0–M2)

Constantmigration 0�060 0�687 0�938 0�968
Gradual isolation 0�050 0�506 1�000 1�000
Secondary contact 0�026 0�171 0�677 0�944

The test is conducted at the 5% level, with critical value 2D‘ = 2�71 for test 1 and 5�99 for test 2. With constant migration, the scaled migration rate

M is 1. With gradual isolation,M is 0�1, 1 and 5 during the three time periods 0; 13s1
� �

; 1
3s1;

2
3s1

� �
and 2

3s1; s1
� �

. With secondary contact,M is 0, 10

and 0, during the three periods. Parameters hs and ss are from the Hominoid set. L is the number of loci, with the sequence length to be 500. All loci

have the configuration 123.

© 2015 The Authors. Methods in Ecology and Evolution © 2015 British Ecological Society, Methods in Ecology and Evolution
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(2012) (Table 2), we note that test 1, based on the discrete-beta

model, is more sensitive to recombination than test 2. For

example, when L = 1000 and q = 8 9 10�3 per base pair, the

false positive is 0�195 for test 1 but only 0�047 for test 2.
For the Drosophila set of simulation, the sequences are

much more divergent and the recombination rate is much

higher. The false-positive rate is unacceptably high, especially

in large data sets with L > 1000 loci. Interestingly, the false-

positive rate decreases rather than increases with the increase

of the recombination rate (Table 3). We suggestion caution

should be exercised when applying the test to species with very

high recombination rate.

THE POWER OF THE TEST IN COMPLEX SCENARIOS OF

GENE FLOW

We considered a few complex migration scenarios in which the

migration rate M changes over time to examine the power of

the LRT to detect gene flow. The results are summarized in

Tables 4 and 5. One scenario, called gradual isolation

(Table 4), mimics the gradual build-up of reproductive isola-

tion after speciation with the migration rate decreasing over

time. We break the time interval (0, s1) after speciation into

three equal-width periods: 2
3s1; s1
� �

; 1
3s1;

2
3s1

� �
and 0; 13s1

� �
and

let M be 5, 1 and 0�1 during the three periods. Another sce-

nario, called secondary contact (Table 4), has M to be 0, 10

and 0 during the three time periods. Other parameter values

(hs and ss) are from the hominoid set, and all loci have the con-

figuration 123. We also include the case of constant migration

(with M = 1) for comparison. In addition to test 1 based on

M1 (discrete-beta), we also apply the LRT of Zhu & Yang

(2012) (test 2) to those data, which compares models M0 (no

gene flow) and M2 (SIM3s). Similar to results of Table 2

(hominoid set), L = 1000 loci appear to be necessary for the

tests to have any substantial power. It is interesting to note that

test 1 hasmore power than test 2 in all three scenarios: constant

migration, gradual isolation and secondary contact.

Next, we consider a scenario in which there is considerable

gene flow following speciation but then gene flow stops com-

pletely a certain time later. The time interval (0, s1) is broken
into two segments, with M = 0 in the interval (0, cs1) and

M = 5 in the interval (cs1, s1). We consider five different val-

ues for the fraction c: 0, 1/5, 2/5, 3/5 and 4/5, referred to as

cases A, B, C, D and E, respectively. Note that case A (c = 0)

is the case of constant migration, with ongoing gene flow for

the whole period, as in the simulation of Table 2, while in

case E (c = 4/5), gene flow ceased a long time ago. The results

are summarized in Table 5. The longer the time since gene

flow had ceased (e.g. case E), the more difficult it is to detect

gene flow. Indeed, for case E, the power is only 0�112 for the

hominoid set even with 10 000 loci. A short period of gene

flow followed by complete isolation is very difficult to distin-

guish from complete isolation with more recent species diver-

gence. Again we note that test 1 is more powerful than test 2

in all those cases (A–E).

ANALYSIS OF GENOMIC DATA FROM DROSOPHILA AND

THE HOMINOIDS

We apply the discrete-beta model to the genomic sequences of

the human (H), chimpanzee (C) and gorilla (G) (Burgess &

Yang 2008). The data set included 9861 neutral autosomal loci

and 510X-linked loci. The average sequence length per locus is

about 508 bp. Each locus has three sequences, with one

sequence from each of the three species, so that all loci have the

configuration 123. These data were analysed by Yang (2010)

using the (continuous) beta model. Here we re-analyse the

same data using the new discrete-beta model for comparison.

We also apply test 2, which compares models M0 (no gene

flow) andM2 (SIM3s) (Zhu&Yang 2012).

The results are summarized in Table 6. For the autosomal

data set, the results underM1 (discrete-beta) whenK = 16 and

32 points are used in the Gaussian quadrature are very similar.

The test statistic for test 1 (which compares M0 with M1) is

Table 5. Power of LRT1 andLRT2when gene flow ceased a certain time after speciation

LRT1 LRT2

L = 100 L = 1000 L = 10 000 L = 100 L = 1000 L = 10 000

Hominoid set

A (0%) 0�120 0�852 1�000 0�041 0�401 0�683
B (20%) 0�141 0�628 1�000 0�029 0�290 0�989
C (40%) 0�080 0�360 0�995 0�020 0�083 0�791
D (60%) 0�052 0�160 0�617 0�008 0�035 0�203
E (80%) 0�018 0�061 0�112 0�009 0�004 0�025

Mangrove set

A (0%) 0�530 0�994 1�000 0�233 0�717 0�907
B (20%) 0�509 0�987 1�000 0�190 0�706 1�000
C (40%) 0�384 0�983 1�000 0�082 0�415 0�999
D (60%) 0�158 0�736 1�000 0�031 0�129 0�879
E (80%) 0�074 0�142 0�626 0�009 0�016 0�064

The test is conducted at the 5% level, with critical value 2D‘ = 2�71 for test 1 and 5�99 for test 2. All loci have the configuration 123. The migration

rate isM = 0 for 0 ≤ t ≤ cs1 andM = 5 for cs1 ≤ t ≤ s1, with the fraction c = 0%, 20%, 40%, 60% and 80% for cases A, B, C, D and E, respec-

tively. Note that case A corresponds to constantmigration, withM = 5.

Testing gene flow after speciation 7
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2D‘ = 26�92, as opposed to 2D‘ = 36�92 from Yang (2010),

using K = 16. The difference is consistent with the expectation

that the inaccuracies in the numerical integration under the

(continuous) beta model of Yang (2010) tend to inflate the test

statistic. However, the result of the test stays the same with the

use of the discrete-beta model. The null hypothesis is rejected,

and the data suggest gene flow between the human and the

chimpanzee.

The estimate of q is 0�39–0�49 under the discrete-beta model,

compared with 1�189 under the continuous-beta model (Yang

2010). It is obvious that at the same parameter value q, the dis-

crete-beta model involves less variation in s1 among loci than

the continuous beta. Thus, we expect the estimate of q under

the discrete-beta model to be smaller than the estimate under

the continuous beta. We note that parameter h5 is very poorly
estimated under M1. The model (incorrectly) attributes much

of the variation in sequence divergence between species 1 and 2

to variation in s1, rather than to the natural fluctuation in the

coalescent process in the ancestor of species 1 and 2. As a

result, the ancestral population size (h5) is seriously underesti-

Table 6. Maximum likelihood estimates of parameters and LRT statistic for human, chimpanzee and gorilla (9861 loci of configuration 123)

Model h4 h5 hH = hC s0 s1 q M ‘ 2D‘

(a) 9861 nuclear autosomal loci

K = 16

M0 0�00358 0�00431 0�00661 0�00432 �649 936�62
M1 0�00368 0�00044 0�00656 0�00564 0�491 �649 923�16 26�92
M2 0�00362 0�00369 0�0260 0�00659 0�00459 0�125 �649 930�90 11�44

K = 32

M0 0�00359 0�00430 0�00660 0�00432 �649 936�86
M1 0�00371 0�00026 0�00655 0�00571 0�394 �649 923�27 26�98
M2 0�00363 0�00368 0�0260 0�00659 0�00460 0�125 �649 932�12 9�48

(b) 510X loci

K = 16

M0 0�00305 0�00143 0�00521 0�00362 �25 600�75
M1 0�00309 0�00061 0�00519 0�00401 2�04 �25 600�41 0�68
M2 0�00308 0�00120 0�0147 0�00520 0�00381 0�117 �25 600�37 0�76

K = 32

M0 0�00304 0�00143 0�00522 0�00362 �25 600�77
M1 0�00309 0�00061 0�00519 0�00401 2�04 �25 600�44 0�66
M2 0�00307 0�00119 0�0147 0�00520 0�00381 0�117 �25 600�39 0�76

h4 is for theHCGancestor while h5 is for theHC ancestor.K is the number of points in theGaussian quadrature.

Table 7. Maximum likelihood estimates of parameters and LRT statistic for theDrosophila data

Model h4 h5 hM hS s0 s1 q M ‘ 2D‘

(a) Assuming different hM and hS
K = 16

M0 0�0782 0�0228 0�0060 0�0129 0�0258 0�0109 �6 174 221�95
M1 0�0809 0�0022 0�0062 0�0147 0�0251 0�0192 0�454 �6 173 207�77 2028�36

K = 32

M0 0�0803 0�0226 0�0060 0�0130 0�0256 0�0109 �6 173 854�16
M1 0�0841 0�0018 0�0062 0�0147 0�0247 0�0193 0�394 �6 172 742�35 2222�63

(b) Assuming hM = hS
K = 16

M0 0�0806 0�0227 0�0126 0�0256 0�0109 �6 174 155�00
M1 0�0854 0�0017 0�0143 0�0246 0�0193 0�391 �6 173 055�45 2199�10
M2 0�0814 0�0195 0�0121 0�0254 0�0131 0�0146 �6 173 972�72 364�56

K = 32

M0 0�0803 0�0227 0�0126 0�0256 0�0109 �6 173 925�14
M1 0�0841 0�0018 0�0143 0�0247 0�0193 0�394 �6 172 827�76 2194�74
M2 0�0810 0�0195 0�0121 0�0254 0�0131 0�0147 �6 173 742�79 364�69

(c)Wang&Hey (2010)

M0 0�0085 0�0059 0�0135 0�0158
M2 0�0069 0�0055 0�0135 0�0172 M21 = 0�0067

M12 = 0�0

Wang & Hey (2010) analysed loci with two sequences only and allowed different migration rates:M21 for the migration rate fromDrosophila simu-

lans toDrosophilamelanogaster andM12 in the opposite direction.
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mated. This is in contrast to models M0 and M2, which pro-

duced similar andmore reliable estimates of h5. The strong cor-
relation between estimates of h5 and s1 means that M1

underestimate h5 and overestimate s1. Parameters h4 and s0 are
muchmore stable.

For the data set of X-linked loci, the test statistic for the

M0–M1 comparison is 2D‘ = 0�68, as opposed to D‘ = 0�70
fromYang (2010) usingK = 16. In neither case is the LRT sig-

nificant.

We then apply the model to the genomic sequences from

three fruit fly species in theDrosophila melanogaster subgroup:

D. melanogaster (M), D. simulans (S) andD. yakuba (Y). The

data are from Wang & Hey (2010) and include 19 889 MSY

loci, 10 056 SSY loci and 378 MMY loci. The average locus

length is 426 bp. The data are analysed using the program 3S.

We also apply LRT 2, which compares M0 (no gene flow) and

M2 (SIM3s) (Zhu & Yang 2012). The current implementation

of M2 assumes that the two h parameters for species 1 and 2

are equal: h1 = h2, while this restriction is not enforced inM1.

The results are summarized in Table 7. TheDrosophila data

are far more divergent and informative than the hominoid

data. As a result, the numerical integration by quadrature does

not work as well as for the hominoid data, and the log likeli-

hood values calculated using K = 16 or 32 points show much

larger differences. Nevertheless, the parameter estimates and

the test results are virtually identical between K = 16 and 32.

The estimates of hs for modern species are very stable

among models and also very similar to those of Wang & Hey

(2010): hM = 0�006 and hS = 0�014. Drosophila melanogaster

apparently has a smaller effective population size than

D. simulans (e.g. Aquadro, Lado &Noon 1988; Langley et al.

2012). Under the assumption of hM = hS, the estimate is 0�012,
very close to hS, at 0�014. This is apparently because the data

include many more 223 loci than 113 loci; in other words, the

population data are mostly fromD. simulans rather than from

D. melanogaster. As discussed earlier, model M1 does not

provide reliable estimates of ancestral parameters: it underesti-

mates h5 and overestimates s1. Models M0 and M2 produced

quote stable estimates, with h5 = 0�020 and s1 = 0�013. In

comparison, the estimates from Wang & Hey (2010) are

h5 = 0�007 and s1 = 0�017. The differences may be partly due

to the fact that Wang and Hey analysed doublet data (with

two sequences per locus) while we analysed triplet data. Note

that parameters h5 and s1 tend to be strongly negatively

correlated (see, e.g. Zhu &Yang 2012; Table 4), so that under-

estimation of one means overestimation of the other in the

same analysis.

Both tests 1 and 2 suggest gene flow betweenD. melanogas-

ter andD. simulans, whether K = 16 or 32 is used in the calcu-

lation. Our simulation results described early suggest that the

tests (in particular test 1) may generate excessive false positives

at high recombination rates typical of Drosophila. Thus, cau-

tion should be exercised in the interpretation of the results of

Table 7. Nevertheless, we note that previous analyses byWang

& Hey (2010) and Lohse & Barton (2011) both suggested gene

flow. The estimate of the migration rate (the expected number

of migrants per generation) from model M2 is M = 0�015,

which is very small. Wang & Hey (2010) assumed different

migration rates in the two directions, with estimates M12 = 0

from D. melanogaster to D. simulans andM21 = 0�0067 in the

opposite direction. Those estimates are even smaller than our

estimates. It seems that migration between the two species if

present occurs only at very low rates.

Discussion

The betamodel of variable species divergence times (s1) among

loci is an empirical model that attempts to describe the main

features of the sequence data without modelling the biological

mechanisms that have generated those features. In this case,

the main feature is the variation in sequence divergence

between species across the genome. Neither the continuous-

beta nor the discrete-beta is a mechanistic biological model. In

this regard, they are both wrong models. The fact that the dis-

crete-beta model has the false-positive rate under control while

the continuous-betamodel does not is due to themathematical

construction of the model, and has nothing to do with the bio-

logical realism of either model. With the same number of

points (K) used in each dimension, numerical quadrature is far

more reliable for calculating 2D integrals than for 3D integrals.

Thus, the discrete-betamodel does not suffer from the problem

of numerical inaccuracies of the continuous-beta model, which

involve calculation of 3D integrals.

In our simulation where the data are generated under M2

(SIM3s), test 1 (which compares modelM0withM1) has more

power than test 2 (which compares model M0 with M2). The

analysis of real data shows similar patterns with larger values

of test statistic for test 1 than for test 2, even though both tests

are significant in both data sets. This may appear counter-intu-

itive. In particular, in the case of comparing two sharp hypoth-

eses, the LRT is known to have the highest power among tests

that have the same false-positive rate, a result known as the

Neyman–Pearson lemma (Neyman & Pearson 1933). Here,

both hypotheses are composite hypotheses with unknown

parameters. In this regard, test 1 may be viewed a test based on

summary statistics. The higher power of test 1 than test 2 may

be explained as follows. First, the additional variation in

sequence divergence among loci may be the most important

feature in the sequence data that distinguishes models M0 and

M2, which is captured in the empirical modelM1. Secondly, in

test 2, the v22 distribution (chi-square with 2 degrees of free-

dom) is not the correct null distribution (Zhu & Yang 2012),

because M = 0 is at the boundary of the parameter space

under model M2, and because parameters h1 and h2 are not

identifiable and become redundant when M = 0. As the cor-

rect null distribution is unknown, Zhu & Yang (2012) recom-

mended the use of v22 to conduct the test, but this apparently

has made test 2 extremely conservative. At any rate, test 1

based on model M1 (discrete-beta) appears to be a powerful

test of gene flow, whether migration is constant as in a simple

IMmodel or it is decreasing over time.

A major difficulty with model M1 is that parameter q does

not have an easy biological interpretation, and estimates of cer-

tain parameters such as h5 and s1 are seriously biased and unre-
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liable. Both a large h5 and a small qwill cause the sequence dis-

tance between species 1 and 2 to vary among loci, so that the

use of the beta model with parameter q to describe the effect of

migration makes it impossible to estimate h5 reliably under the
model. The strong correlation between h5 and s1 means that s1
will be affected as well. We suggest that caution be exercised in

interpretation of parameter estimates underM1. In this regard,

the mechanistic modelM2 (SIM3s) may be very useful for esti-

mating biologically important parameters such as the migra-

tion rateM.
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