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ABSTRACT The multispecies coalescent (MSC) model has emerged as a powerful framework for inferring species phylogenies while
accounting for ancestral polymorphism and gene tree-species tree conflict. A number of methods have been developed in the past few
years to estimate the species tree under the MSC. The full likelihood methods (including maximum likelihood and Bayesian inference)
average over the unknown gene trees and accommodate their uncertainties properly but involve intensive computation. The approximate
or summary coalescent methods are computationally fast and are applicable to genomic datasets with thousands of loci, but do not
make an efficient use of information in the multilocus data. Most of them take the two-step approach of reconstructing the gene trees
for multiple loci by phylogenetic methods and then treating the estimated gene trees as observed data, without accounting for their
uncertainties appropriately. In this article we review the statistical nature of the species tree estimation problem under the MSC, and
explore the conceptual issues and challenges of species tree estimation by focusing mainly on simple cases of three or four closely
related species. We use mathematical analysis and computer simulation to demonstrate that large differences in statistical performance
may exist between the two classes of methods. We illustrate that several counterintuitive behaviors may occur with the summary
methods but they are due to inefficient use of information in the data by summary methods and vanish when the data are analyzed
using full-likelihood methods. These include (i) unidentifiability of parameters in the model, (ii) inconsistency in the so-called anomaly
zone, (iii) singularity on the likelihood surface, and (iv) deterioration of performance upon addition of more data. We discuss the
challenges and strategies of species tree inference for distantly related species when the molecular clock is violated, and highlight
the need for improving the computational efficiency and model realism of the likelihood methods as well as the statistical efficiency
of the summary methods.
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In comparisons of genomic sequences frommultiple species,
it is often observed that different genes or genomic regions

may produce conflicting phylogenetic trees. A number of
biological processes may cause such gene tree-species tree
discordance, including (i) gene duplications and losses com-
bined with misidentification of orthologs, (ii) hybridization,
introgression or horizontal gene transfer across species
boundaries, and (iii) incomplete lineage sorting (ILS) due
to polymorphism in ancestral species (Maddison 1997;
Nichols 2001; Degnan and Rosenberg 2009; Szollosi et al.

2014). There is increasing empirical evidence that gene flow
(introgression or hybridization) occurs commonly between
sister or even non-sister species, especially during radiative
speciations (Turelli et al. 2014; Mallet et al. 2016), and in-
deedmany studies have highlighted gene flow and ILS as two
major challenges to inference of shallow species phylogenies
(Fontaine et al. 2015; Pease et al. 2016). Currently full likeli-
hood methods that deal with both gene flow and ILS are
lacking (Dalquen et al. 2016). In this article, we focus on
ILS only. ILS occurs when the coalescent process in ancestral
species causes the gene tree to differ from the species tree.
This is important whenever species divergences are close in
time (as occurs in radiative speciations) and the population
sizes of the ancestral species are large. The significance of ILS
to species tree inference was highlighted by the characteriza-
tion of the anomaly zone, regions of the parameter space

Copyright © 2016 by the Genetics Society of America
doi: 10.1534/genetics.116.190173
Manuscript received April 6, 2016; accepted for publication September 25, 2016
1Corresponding author: Department of Genetics, Evolution and Environment,
University College London, Gower St., London WC1E 6BT, United Kingdom. E-mail:
z.yang@ucl.ac.uk

Genetics, Vol. 204, 1353–1368 December 2016 1353

http://orcid.org/0000-0003-3351-7981
mailto:z.<?show $132#?>yang@ucl.ac.uk
ziheng
Highlight



(species tree with associated parameters) with short internal
branches and large population sizes, in which the majority-
vote approach of using the most common gene tree as an
estimate of the species tree is statistically inconsistent
(Degnan and Salter 2005; Degnan and Rosenberg 2006).
Intuitively one might think that coalescent is a population
genetics process and irrelevant to species tree estimation.
However, the issue lies with the length rather than the depth
of the internal branches on the species phylogeny (Edwards
et al. 2005). For example, the species tree of Figure 1A is hard
to reconstruct due to the short internal branches (this will be
discussed in detail later), but the task is notmade any easier if
the tip branches (A, B, C, and D) are extended by 300 MY of
evolution.

The multispecies coalescent (MSC) model provides a nat-
ural framework for estimating the species tree in presence of
ILS, and indeed the use of the coalescentmodel in species tree
inference has been described as a paradigm shift in molecular
phylogenetics (Edwards 2009). Nearly all coalescent-based
species tree estimation methods were developed within the
last 10 years. Two classes of methods have been developed
side by side: the full likelihood methods (including maxi-
mum likelihood, ML, and Bayesian inference, BI) and ap-
proximate or summary methods. Full likelihood methods
involve averaging over the gene trees and are computation-
ally intensive. The ML method integrates over the coales-
cent times numerically so that the computation is possible
for three species only but tens of thousands of loci can be
handled (Yang 2002; Dalquen et al. 2016). Bayesian meth-
ods such as BEST (Liu and Pearl 2007; Edwards et al. 2007;
Liu 2008), *BEAST (Heled and Drummond 2010), and BPP

(Yang and Rannala 2014; Rannala and Yang 2016) use
Markov chain Monte Carlo algorithms to average over gene
trees (topologies and branch lengths) and parameters. They
can deal with more species but are currently impractical for
large datasets with.1000 loci. Furthermore, current Bayes-
ian implementations do not deal with the violation of the
molecular clock adequately and do not appear to work very
well for deep species phylogenies (Ogilvie et al. 2016). At
the same time, over a dozen approximate methods have
been proposed for estimating the species tree despite gene
tree conflicts. Most of them take a two-step approach of
estimating the gene trees at the individual loci using phylo-
genetic methods and then treating the estimated gene trees
as observed data. These are also called summary methods,
as gene trees may be viewed as summary statistics derived
from the original sequence data. However traditional sum-
mary statistics are features or observations of the data,
while gene trees are estimates and may differ from the true
unobserved gene trees. Approximate or summary methods
are fast and applicable to genomic datasets with hundreds
or thousands of loci and have been more commonly used
than likelihood methods. For recent reviews on species tree
methods, the reader may consult Yang (2014, Chap. 9), Liu
et al. (2015), Edwards et al. (2016), and Mallo and Pasada
(2016).

In this article we review the statistical nature and concep-
tual issues of species tree estimation under theMSC.We focus
mainlyonsimple cases involving threeor four species, because
theyaremore likely tobe tractableandbecausemost summary
methods are based on insights from small species trees (e.g.,
triplet and quartet trees). We assume that the species are
closely related so that the molecular clock approximately
holds, but will discuss the additional challenges for inferring
deep species trees. We demonstrate that counterintuitive be-
haviors of species tree methods discussed in the literature,
such as the existence of the anomaly zone, the singularity of
the likelihood surface, and worse performance with more
data, apply to the two-step summary methods, but not to
the full-likelihood methods. We first study the case of three
species and three sequences per locus, which is the simplest
species tree problem. Then we discuss the anomaly zone, re-
gions of the parameter space within which the most frequent
gene tree differs from the species tree, so that the simple ma-
jority-vote method of species tree estimation is inconsistent.
Lastly we use simulation to confirm that more data can indeed
cause summary methods such as MP-EST (Liu et al. 2010a) to
perform worse, but show that this is due to inefficient use of
information in the data by summary methods and does not
occur with the full likelihood methods (ML and BI).

The Multispecies Coalescent

The coalescent describes the stochastic process of lineage
joining when one traces the genealogical history of a sample
of sequences from a population backward in time until their
most recent common ancestor (MRCA) (Kingman 1982a,b;
Hudson 1983; Tajima 1983). The theory provides a powerful
framework for inference of population genetic processes us-
ing genetic sequence data (Hudson 1990; Hein et al. 2005;
Nordborg 2007; Wakeley 2009). The coalescent waiting time

Figure 1 (A) Asymmetrical species tree (S) for four species and (B) sym-
metrical and asymmetrical gene trees (G1 and G2). When the two internal
branch lengths in the species tree are �0, all three coalescent events on
the gene tree occur in the common ancestor ABCD, so that all 18 labeled
histories have equal probabilities ( 118) (Figure. 2), with P(G2) � 2P(G1).
When the internal branch lengths are nonzero but very small, it is possible
to have P(G2) . P(G1), in which case the species tree S is in the anomaly
zone.
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for two randomly sampled sequences from a diploid species
with population size N has an exponential distribution with
themean of 2N generations, or equivalently coalescent between
two sequences occurs at the Poisson rate of 1=ð2NÞ per gener-
ation. In analysis of sequence data, it is convenient to measure
time by themutational distance, so that one time unit is defined
as the amount of time taken to accumulate onemutation per site
in the sequence. Then coalescent between two sequences occurs
at the rate of 2u per time unit, and the average coalescent waiting
time is u=2; where u = 4Nm is the expected number of muta-
tions per site between two randomly drawn sequences and m is
the mutation rate per site per generation. For example, uH �
0.0006 for the humanmeans that two human genomes have on
average �0.6 differences per kilobase.

For a sample of n sequences, the genealogical history is
described by a succession of coalescent lineage-joining
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the same probability (1=H). Here the genealogical tree is a
rooted tree with the internal nodes ordered by time, called a
labeled history (LH) by Edwards (1970). Figure 2 shows all the
18LHs for four sequences. The joint probability distributionof the
genealogical tree (G) and the coalescent times, t = {tj}, is thus
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Themultispecies coalescent (MSC) is a simple extensionof the
single-population coalescent to multiple species (Figure 3).
The different species are related by a phylogeny (species
tree), and they may have different population sizes. There
are two sets of parameters in the MSC model: the species
divergence times (ts) and the population size parameters
(us) on the species tree, with both ts and us measured by
the number of mutations or substitutions per site. For exam-
ple, for the species tree of Figure 3A, Q = {tAB, tABC, uAB,
uABC}. Within each species (either modern or ancestral), se-
quences coalesce at random, at the rate 2

ui
for each pair in

population i, as in the standard coalescent, independently
of other populations. However at the time of species diver-
gence, two or more lineages may leave the population and
enter the ancestral population. Different aspects of the MSC
model have been discussed by a number of authors, including
Gillespie and Langley (1979), Hudson (1983), Pamilo and Nei
(1988), Felsenstein (1988), and Takahata (1989). The proba-
bility density of the gene tree and branch lengths (coalescent

times) for an arbitrary species tree and arbitrary sampling of
sequences at a locus is given by Rannala and Yang (2003). An
important feature of the process is that the sequence divergence
time is greater than the species divergence time, or more intui-
tively, that gene trees must “fit inside” the species tree.

Full Likelihood Methods of Species Tree Estimation
Under the MSC

Full likelihood methods of species tree estimation under the
MSC follow standard statistical theory. Let S be the species
tree topology, andQ be the parameters in the MSC model on
the species tree (ts and us). S is a statistical model whileQ are
its parameters. The data consist of sequence alignments at L
loci. The ideal loci for this kind of analysis are loosely linked
short genomic segments that are far apart from each other so
that recombination within a locus is rare while different loci
are nearly independent (e.g., Takahata 1986; Burgess and
Yang 2008; Lohse et al. 2011). For distantly related species,
a locus may correspond to a gene or exon. The MSC model
assumes that the gene trees at different loci are independent
while all sites at the same locus share the same history (gene

Figure 2 The 18 labeled histories for four sequences sampled from a
population (a, b, c, d), with the node ages drawn to reflect the expecta-
tions of the coalescent times. A labeled history is a rooted tree with the
interior nodes rank-ordered by age. Thus the rooted tree ((a, b), (c, d))
corresponds to two labeled histories, depending on whether sequences a
and b coalesce before or after sequences c and d. Under the coalescent
model, all possible labeled histories (but not the rooted trees) have equal
probabilities. For four sequences, each of the 12 asymmetrical rooted
trees is compatible with only one labeled history and has probability
1/18, while each of the three symmetrical rooted trees is compatible with
two labeled histories and has probability 2/18.
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tree topology and coalescent times). The assumption of shared
history at the same locus is commonly considered to be equiv-
alent to the assumption of no recombination throughout the
gene tree. For distantly related species, a locus without recom-
bination throughout the gene tree (called a coalescent-gene
or c-gene by Springer and Gatesy 2016) must be very short.
For example, for a eutherian mammal dataset, Springer and
Gatesy (2016) used empirical estimates of primate recombi-
nation rates to calculate the c-gene size to be�12 bp.However,
this calculation is unnecessarily stringent. All sites at the locus
will have the same gene tree topology and coalescent times so
that theMSC density of Rannala and Yang (2003)will be valid
as long as there is no recombination during the parts of the
gene tree where coalescent events occur (Lanier and Knowles
2012; Edwards et al. 2016). See Figure 4 for an illustration
of the assumption using the human and chimpanzee as an
example.

Let Xi be the alignment of ni sequences at locus i, with X=
{Xi}. The sequences are assumed to be neutrally evolving. Let
Gi be the gene tree (or more precisely, the labeled histories,
Edwards 1970) and coalescent times (ti) at the locus. The
gene trees (Gi and ti) are unobserved random variables (la-
tent variables) with well-specified distributions given the
species tree and parameters. The log likelihood function for
estimating S and Q averages over the gene trees

ℓðS;QÞ ¼
X
i

log fðXijS;QÞ

¼
X

i
log
�X

Gi

� Z
f ðGi; tijS;QÞ fðXijGi; tiÞdti

��
;

(2)

where f(Gi, ti | S,Q) is the MSC density for the gene tree and
coalescent times at locus i (Rannala and Yang 2003) and
f(Xi | Gi, ti) is the probability of the sequence data given

the gene tree, known as the phylogenetic likelihood (Felsenstein
1981). If the mutation/substitution model assumed in
the likelihood calculation involves parameters (such as
the transition/transversion rate ratio k), they should be
included in Q as well; in this paper, we use the simple JC
mutation model (Jukes and Cantor 1969). The ML method
estimates S and Q by maximizing ℓ(S, Q). The difficulty
with ML lies in the sum over all possible gene trees and the
integral over the coalescent times, because the number of
possible gene trees is huge and the integral over ti for each
gene tree is (ni21)-dimensional. The only ML implemen-
tation appears to be that of Yang (2002), which is limited
to only three species and three sequences per locus (one
sequence from each species).

With the Bayesian approach, we assign a prior on the
species trees, f(S), and a prior on the parameters, f(Q | S).
The posterior of S and Q averages over the gene tree topol-
ogies (Gi) and coalescent times (ti):

f ðS;QjXÞ ¼ 1
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fðSÞfðQjSÞ3
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i
fðXijS;QÞ ¼ 1
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f ðSÞfðQjSÞ
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where C is the normalizing constant, to ensure that the pos-
terior integrates to 1. Equation 3 is not practical because both
the normalizing constant C and the marginal likelihood f(Xi |
S, Q) involve huge sums and high-dimensional integrals. In-
stead, Bayesian programs such as BEST (Liu and Pearl 2007),
*BEAST (Heled and Drummond 2010) and BPP (Yang and Ran-
nala 2014; Rannala and Yang 2016) useMarkov chainMonte
Carlo (MCMC) algorithms to generate a sample from the

Figure 4 The MSC assumes that all sites at the same locus share the
same gene tree (topology and branch lengths). This assumption is valid if
there is no recombination around the time periods when coalescent
events occur (highlighted by thick bars on the time axis), even though
recombination may occur in other parts of the gene tree, when there is
only one sequence ancestral to the sample in a population. In the exam-
ple, humans and chimpanzees diverged at 6 MA, while the MRCA for the
human sample is at 0.6 MA. Recombination events over the time period
(0.6, 6) do not affect the MSC density of gene trees.

Figure 3 (A) The species tree ((A, B), C) for three species, showing the
parameters in the MSC model, Q = {tABC, tAB, uABC, uAB}. Both ts and us
are measured by the expected number of mutations per site. If multiple
sequences are sampled for the same locus from the same species (say, A),
the population size parameter for that species (say, uA) will also be a
parameter. (B–E) The possible gene trees for a locus with three sequences
(a, b, c), one sequence from each species. Under the MSC, gene trees
G1b, G2, and G3 have the same probability, so that the species tree-gene
tree mismatch probability is PSG = P(G2) + P(G3) = 12P(G1).
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joint posterior distribution of species tree (S andQ) and gene
trees (Gi and ti for each locus i):

f ðS;Q; fGi; tig j XÞ} fðSÞ f ðQjSÞ
Y
i
f f ðGi; tijS;QÞfðXijGi; tiÞg:

(4)

Then by ignoring the gene trees {Gi, ti} in the MCMC sample,
we obtain the marginal posterior of the species tree: f(S | X)
as well as the within-tree parameter posterior f(Q | X, S).
While the Bayesian method is commonly described as a joint
estimation of both the species tree and the gene trees, it
should be noted that themaximum a posteriori (MAP) species
tree, which is the Bayesian point estimate, maximizes the
marginal posterior f(S | X), instead of the joint posterior
f(S,Q, {Gi, ti} | X) or f(S,Q | X). Recall that given a table of
counts representing a joint distribution, f(X, Y), with rows
for X and columns for Y, the “marginal” distribution for X is
generated by summing the counts along each row and writ-
ing the sum in the right margin, with the columns ignored.
In effect, the summation and integration over the gene
trees of Equation 3 is achieved numerically in the MCMC
algorithm.

The statistical properties of the ML and BI methods when
the number of loci (L) and/or the number of sites per locus (n)
increases have yet to be carefully investigated. Under the
MSC model, the data (sequence alignments) at the different
loci are independently and identically distributed. Statistical
consistency of the ML and Bayesian estimates of the species
tree when L increases then follows automatically as long as
the MSC model is identifiable (e.g., Dawid 2011). In other
words, when L/N, the estimate will converge in probabil-
ity to the true species tree and true parameter values. Iden-
tifiability under commonly used substitutionmodels has been
discussed by Steel (2013) and Chifman and Kubatko (2015).
The efficiency of the methods, while very important, appears
intractable analytically.

Approximate Methods of Species Tree Estimation

The MSC makes simple predictions about different aspects of
the gene trees. If the gene trees are known or estimated, those
properties can be used to devise methods for species tree
estimation. Almost all approximate methods take this two-
stepapproachand treatgene trees inferredusingphylogenetic
methods as observed data. We review some of them here to
illustrate the strategies taken, but do not attempt an exhaus-
tive list.

Methods that use gene tree topologies

A number of authors have studied the probabilities of gene
tree topologies under theMSC. The case of three species (A,B,
and C), with the species tree ((AB)C), and of three sequences
per locus (a, b, and c) was considered byHudson (1983), who
derived themismatch probability that the species tree (S) and
the gene tree (G) differ to be 2

3 the probability that sequences
a and b do not coalesce in the ancestral species AB (Figure 3)

PSG ¼ 2
3
e2

ðTABC2TABÞ
2NAB ¼ 2

3
e2

2ðtABC2tABÞ
uAB : (5)

Note that for a Poisson process with rate l (or with exponen-
tial waiting time of mean 1/l), the probability of no event
over time interval t is e–lt. Here the exponent, (TABC2TAB)/
(2NAB), is known as the internal branch length of the species
tree in coalescent time units, since a coalescent time unit is
2N generations. Equation 5 was used to estimate the ancestral
population size of the human and chimpanzee in the so-called
“trichotomy” or “tree-mismatch”method (Takahata et al. 1995;
Chen and Li 2001; Yang 2002). Equation 5 also gives the most
common gene tree as the estimate of the species tree to-
pology. This underlies the rooted triples (Ewing et al.
2008) and MP-EST (Liu et al. 2010a) methods of species tree
estimation.

Gene tree probabilities for four or more species have been
studied by Pamilo and Nei (1988). Degnan and Salter (2005)
and Degnan and Rosenberg (2006) designed general algo-
rithms that apply to arbitrary numbers of species. Given a
collection of gene trees, the likelihood function — the prob-
ability of the gene tree topologies given the species tree S and
internal branch lengths in coalescent units (t’)—will simply
be the product of the probabilities for the gene tree topologies
at the multiple loci.

ℓðS; t9Þ ¼
XL

i¼1
log PðGiÞ; (6)

where the probability of gene tree Gi at locus i can be calcu-
lated using the algorithms of Degnan and Salter (2005) and
Degnan and Rosenberg (2006) (see also Wu 2012). This
likelihood method treating gene tree topologies as data are
implemented in the STELLS program (Wu 2012) and is a spe-
cial case of the network method of Wen et al. (2016), with
gene flow disallowed. The multinomial likelihood leads to a
statistically consistent method for species tree estimation, as
the distribution of rooted gene tree topologies determines the
rooted species tree topology and internal branch lengths (in
coalescent units) (Allman et al. 2011).

The method of minimizing deep coalescence (MDC)
(Maddison 1997) is based on gene tree topologies but does
not use all information in them. Maddison (1997) defines
deep coalescence as the phenomenon that two or more line-
ages pass through an ancestral species when one traces the
gene genealogy backward in time. If ancestral populations
are very small, all lineages should coalesce as soon as they
enter an ancestral species, and deep coalescence does not
occur. Then the gene trees will track the species tree faith-
fully. A parsimony-like argument suggests that given a collec-
tion of gene trees, the species tree that minimizes the number
of deep coalescence events (Figure 5) is likely to be the true
species tree (Maddison 1997; Than and Nakhleh 2009).
Than and Rosenberg (2011) demonstrate that anomaly
zones or inconsistency zones exist for MDC for asymmetric
species trees for four species, and for all species trees with
five or more species.
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Many gene tree-based summary methods make use of
properties for small gene trees with three or four sequences
and then assemble the triplet or quartet trees into a big tree,
which is the estimate of the species tree for all species. The
rooted triples method (Ewing et al. 2008) and the MP-EST

method (Liu et al. 2010a) use different strategies to assemble
triplet trees. In the rooted triples method, rooted triplet trees
are extracted from all gene trees and their consensus tree is
constructed as an estimate of the species tree for all species.
In the MP-EST method, the probability of the three alternative
gene trees given a triplet species tree can be calculated from
the trinomial distribution (see Equation 5 and our discussion
below on the three-species case). For each species tree (for all
species), a likelihood is then calculated by multiplying the
trinomial probabilities across all species triplets induced by
the specie tree. As the species triplets are not independent,
this likelihood function is not the correct one and the method
is thus a pseudo-likelihood approach. Both the rooted triples
and the MP-EST methods are statistically consistent, as the
probability distribution of rooted triplet gene trees deter-
mines the species tree topology and internal branch lengths
(in coalescent units) (Allman et al. 2011). The program
ASTRAL (Mirarab et al. 2014; Mirarab and Warnow 2015) as-
sembles quartet trees. It takes a collection of unrooted gene
trees, collects all their quartets into a set, which may have
many identical quartet trees, and then judges each species
tree by howwell its quartet trees match those in the set. Thus
ASTRAL produces the maximum quartet support species tree
(MQSST) (Mirarab et al. 2014).

Some gene tree-based summary methods use gene tree
topologies to define a distance between species, such that the
distance tracks the species tree under the MSC. Liu et al.
(2009) used the rank of the interior nodes on the gene trees
as a measure of distance between species, and developed the
method of species tree estimation using average ranks of
coalescences (STAR) (Figure 6A). This is based on the obser-
vation that the expected ranks of the coalescences among
sequences tracks the order of species divergences in the spe-
cies tree. The method is consistent when the correct gene
trees are given as data. For unrooted gene trees, Liu and Yu

(2011) defined the distance between two species as the num-
ber of internodes between the two species on the gene tree,
and use the average gene-tree internode distance to construct
the NJ tree (Saitou andNei 1987) (Figure 6B). This is the NJst
method of species tree estimation. Liu and Yu (2011) show
that for any four species, the expected gene-tree internode
distance satisfies the four-point condition, and thus NJst is
statistically consistent in estimating the unrooted species
tree.

In theory if the data are the gene tree topologies, the ML
method(Equation6)uses all information in thedataabout the
species tree, and summary methods such as MDC, STAR, ASTRAL,
and NJst should suffer from an information loss and reduced
efficiency. Not much effort has been made to quantify the
information loss.

Methods that use gene tree branch lengths

Aclass of summarymethodsuse branch lengths (or coalescent
times) in gene trees, perhaps in addition to the gene tree
topologies. Amajor feature of theMSCmodel is that genes split
before species or gene trees run inside the species tree: the se-
quence divergence between any two species must be greater
than the species divergence, or tab. tAB for any two species A
and B and any two sequences a and b from the two species. As
a result, the expected coalescent time between species tracks
the species phylogeny. If species A and C diverged earlier than
species A and B, with tAB , tABC (Figure 3), the expected
sequence divergences will track that relationship: E(tab) ,
E(tac). Indeed, if all species have the same population size
(u), the expected sequence divergences are simply E(tab) =
tAB + 1

2 u and E(tac) = tABC + 1
2 u; so that E(tab) , E(tac)

follows from tAB , tABC. If we define the distance between
two species as twice the average coalescent time (node age)
between the species, the resulting distance matrix can be
used to construct a NJ tree, which will be a consistent esti-
mate of the species tree. This is species tree estimation using
average coalescence times (STEAC) of Liu et al. (2009).

Takahata (1989) considered the case of three species with
multiple sequences sampled per species, and argued that
the minimum sequence divergence between species (over

Figure 5 Deep coalescence, marked by
thick segment of a gene-tree branch,
means that two or more lineages pass
through an ancestral species when one
traces the gene genealogy backward in
time (Maddison 1997). The given rooted
gene tree, (((a, b), c), d), is fitted to two
species trees: (((A, B), C), D) in (A) and
((A, (B, C)), D) in (B). In (A), at most one
lineage leaves each ancestral species so
that the number of deep coalescence is
0. In (B), two lineages (sequences b and
c) pass ancestral species BC and one of
them is counted as a deep coalescence.
The method of minimum deep coales-
cence for species tree estimation (MDC)
minimizes the total number of deep co-
alescence over all gene trees.
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all sequence pairs and over all loci) may be more informative
about the species tree than the average sequence divergence
between species. Maddison and Knowles (2006) proposed to
cluster species by the shallowest (minimum) coalescences
occurring between two species. The method is formalized
as the ML method of species tree estimation when the data
are rooted gene trees with branch lengths (node ages). This is
maximum tree (MT) method of Liu et al. (2010b), imple-
mented in the STEM program (Kubatko et al. 2009), or the
GLASS algorithm (for Global LAteSt Split) (Mossel and Roch
2010). Under the assumption of equal population size, MT,
STEM, and GLASS are equivalent. It is remarkable that the ML
solution is analytically tractable in this case, and here we use
the case of two species to illustrate the result.

In the case of two species with one sequence from each
species at every locus, the MSC model involves two param-
eters:Q={tAB, uAB}. Suppose the sequence divergence times
at L loci are given: X= {xi}, i=1, . . ., L. The likelihood is then
the product of the exponential densities:

f ðXjtAB; uABÞ ¼
YL
i¼1

2
uAB

e2
2

uAB
ðxi2tABÞ; uAB. 0; tAB,minðxjÞ:

(7)

The MLEs are easily found to be t̂AB = min(xi) and
ûAB ¼ 2ð�x2 t̂ABÞ; where �x is the mean sequence divergence
across loci. The MLE of the species divergence is the mini-
mum sequence divergence.

This holds true in general with an arbitrary number of
species.Givenacollectionof rootedgene treeswithnodeages,

the ML species tree under the assumption of equal population
size is the one inwhich the species divergencebetweenany two
species is equal to theminimumsequence divergence across all
gene trees for the two species (Liu et al.2010b). TheML species
tree or the maximum tree achieves the maximum species di-
vergences allowed by the gene trees. However, if the different
species are allowed to have independent population sizes (us),
theMLmethod is noted to encounter singularities on the likeli-
hood surface (Liu et al. 2010a). This will be discussed later.

While in theory the MT method uses information in both
the branch lengths and the gene tree topologies, it did not
perform particularly well in simulations (Liu et al. 2009;
Leaché and Rannala 2011), apparently because of its sensi-
tivity to estimation errors in branch lengths. Estimation of
branch lengths or node ages in the ultrametric rooted gene
tree may be affected by the mutation model, by rate variation
among loci and among sites of the same locus, and by viola-
tion of the molecular clock. Thus methods that use branch
lengths may not necessarily perform better than topology-
only methods. Similarly, Liu et al. (2009) found that STAR

(which ignores branch lengths) consistently outperforms STEAC

(which uses branch lengths) when the molecular clock is seri-
ously violated. Nevertheless, for closely related species, the
clock should be adequate, and the impact of the mutation
model should be minor. In this case, the information gain from
the use of branch lengths relative to the sensitivity to sampling
errors in branch length estimation may be an interesting topic
for further research, as are possible strategies for accommo-
dating sampling errors in branch length estimation.

The two-step summary methods suffer from a few weak-
nesses.First, theyuseonlypartof thedata suchas thegene tree
topology, resulting in information loss. Second, they ignore the
phylogenetic errors in gene tree reconstructiondue to thefinite
number of sites at each locus (called the mutation variance by
Huang and Knowles 2009). For closely related species, the
sequences may be highly similar, with very limited phyloge-
netic information so that gene tree topologies may be unre-
solved or highly uncertain. Simulations using both the true
and estimated gene trees often suggest large differences, high-
lighting the importance of phylogenetic reconstruction errors
(Mirarab and Warnow 2015). However, accounting for uncer-
tainties in the gene trees using multilocus bootstrap did not
lead to consistent improvement to species tree estimation and
sometimes made things worse (Mirarab et al. 2014). This ap-
pears to be due to the fact that the bootstrap proportions are
not appropriate weights for alternative gene trees at the same
locus. Even the Bayesian posterior probabilities may not be the
appropriate weights, if they are not calculated under the MSC
model with a species tree underlying all gene trees. From
Equation 2, the gene tree density f(Gi, ti | S, Q) depends on
the species tree and parameters, and the gene trees should be
correlated among loci.

The invariance method SVDquartets

SVDquartets (for Singular Value Decomposition for quartets)
is a quartet-basedmethod recently developed byChifman and

Figure 6 Gene tree topologies can be used to define a distance between
two species and the resulting distance matrix can be used to construct the
species tree using, e.g., NJ (Saitou and Nei 1987). (A) In the STAR method
(for species tree estimation using average ranks of coalescences, Liu et al.
2009), the distance between two species is defined as the rank of the
ancestral node for the two species on the rooted gene tree. In the exam-
ple tree, species A and B have the distance or rank 5, while species A and
C have the rank 6. The rank for the root is the number of sequences, and
the rank decreases from the root to the tips of the gene tree. Note that
distantly related species tend to have large distances or ranks. A distance
matrix is constructed by averaging the ranks across all gene trees, and
then analyzed using NJ (Liu et al. 2009). (B) The NJst method (Liu and Yu
2011) uses the gene-tree internode distance, defined as the number of
internal nodes in the unrooted gene tree between the two species. If
multiple sequences are sampled from the same species, the internode
distance is averaged across all pairs from the two species. In the example,
the internode distance is 3 between species B and E and is 1.5 between
A and B. The matrix of average internode distances between species
(averaged across loci) is used to construct a species tree using NJ.
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Kubatko (2014), and uses a quartet assembly algorithm to
generate a species tree estimate. However, it differs from the
two-step summary methods in that it generates quartet trees
from the 256 observed site pattern counts, not from esti-
mated gene trees. SVDquartets assumes that different sites
in the sequence data have independent histories given the
species tree, and is thus similar to the SNAPP method for single
nucleotide polymorphism data (SNPs) (Bryant et al. 2012).

Let the observed site pattern counts be ok, with k= 1, . . .,
256. The standard statistical approach to analysis of such
data is to use a goodness-of-fit criterion such as ℓ =P256

k¼1ok log
ok
npk

or X2 =
P256

k¼1
ðok2npkÞ2

npk
to estimate the parame-

ters for each species tree, where the expected site pattern
probability pk is calculated as a function of the species tree
and parameters by summing over the 18 labeled histories and
integrating over three coalescent times in each (Figure 2). In
other words, pk is f(Xi|S, Q) of Equation 2 with Xi being an
alignment of only one site. This calculation can be achieved
analytically under the JC model (Chifman and Kubatko
2014). Maximization of ℓ to obtain the MLE of Q or minimi-
zation of X2 to obtain the minimum X2 estimate of Q also
leads to the optimized ℓ or X2 as a score for species tree
estimation.

Chifman and Kubatko (2014) did not use such optimiza-
tion, and instead relied on phylogenetic invariance to gener-
ate the quartet tree. The expected site pattern probabilities
(pk), when arranged into a 16 3 16 matrix according to the
true species tree, has rank #10, while the rank is .10 if the
matrix is arranged according to an incorrect species tree.
Note that the rank of a matrix is equal to the number of
nonzero singular values or eigenvalues, and that a nonsingu-
lar 16 3 16 matrix has rank 16, but linear relationships
among rows or columns reduce its rank. In other words,
the site pattern probabilities generated by a species tree
should satisfy a number of linear relationships, depending
on the assumedmutation or substitutionmodel. The criterion
used by the method examines whether the 11th–16th eigen-
values are close to 0. The SVDquartets method for generating
the quartet tree is thus similar to the evolutionary parsimony
method by Lake (1987), which is also an invariance-based
method for quartet data. Evolutionary parsimony makes use
of only a few site patterns and is known to be inefficient and
sensitive to the details of the substitution model (Jin and Nei
1990). In contrast, SVDquartets uses all 256 site patterns. Its
statistical performance has yet to be carefully evaluated. In
one simulation study, SVDquartets did not show the expected
advantage over competingmethods for very short alignments
(Chou et al. 2015).

The Case of Three Species

In the case of three species (A, B, and C) and three sequences
per locus (a, b, and c) the mismatch probability of Equation
5 can be used to estimate the species tree and the parameters
using a collection of rooted gene trees. Let (x1, x2, x3) be the
numbers of gene trees having topologiesG1,G2, andG3. Their

probabilities given the species tree are (p1, p2, p3) = (1 – PSG,
1
2 PSG;

1
2 PSG}, with p1 . p2 = p3, and with G1 to be the gene

tree that matches the species tree. The likelihood is then the
trinomial probability px11 px22 p

x3
3 : Maximizing this likelihood

simply gives the most common gene tree as the estimate of
the species tree, with the internal branch length (in coales-
cent units) given by Equation 5. While the MSC model in-
volves at least four parameters (tAB, tABC, uAB, uABC) (Figure
3), use of the gene tree topologies identifies only one. With
the gene tree topologies given as data, this appears to be the
only sensible solution, and it is the solution by the rooted
triples method of Ewing et al. (2008) and the MP-EST method
of Liu et al. (2010a) in this case.

When the gene trees are unknown and reconstructed using
phylogenetic methods, two issues arise. First, if two or more
gene trees are equally best at a locus, that locus is discarded.
Second, phylogenetic errors of gene tree reconstruction in-
flate the mismatch probability, so that the probability that
the species tree differs from the estimated gene tree ðĜÞ is
PSĜ . PSG (Yang 2002). For example, for the human-chim-
panzee-gorilla trio, PSĜ � 0.4 for loci of 500 bp, while PSG �
0.3 (Burgess and Yang 2008; Scally et al. 2012). The inflated
species tree-gene tree mismatch erodes our chance of infer-
ring the true species tree, and furthermore, the internal
branch length in the species tree (in coalescent units) will
be inconsistently estimated. We thus have a highly unusual
estimation problem, in which the species tree is identifiable
and consistently estimated, the internal branch length is
identifiable but inconsistently estimated, while the other
three parameters of the MSC model are unidentifiable and
inestimable.

Given that the species tree (S) is consistently estimated by
the method, it is of interest to know how fast the estimation
error approaches 0 when the amount of data (the number of
loci) increases. Liu et al. (2010a) provided a proof that the
error drops to 0 at least at the rate of 1/L. This result may be
strengthened. For the case of three species, the estimated
species tree is correct if and only if x1. x2 and x1. x3, where
x1, x2, x3 are the counts of gene trees G1, G2, and G3, with G1

being the gene tree that matches the species tree. Let (p1, p2,
p3) be the probabilities for those gene trees, with p2 = p3. We
also consider x0 as the number of loci with ties and p0 the
probability of ties. From the fact that (x0, x1, x2, x3) have a
multinomial distribution, the species tree estimation error
may be approximated by

Perror ¼ 12 Prfx1 . x2; x1 . x3g

� 12F
ðp1 2 p2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 1

p1 2 p2

q
2

ffiffiffiffi
p2
p

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1 þ

�
12 1

p

�
p2

r
0
BB@

1
CCA; (8)

where F(�) is the cumulative distribution function (CDF) for
the standard normal distribution N(0, 1) (Yang 1996). The
approximation assumes L � 1/p2. For very large L, Equation
8 is approximately Fð2a

ffiffiffi
L

p Þ; which approaches 0 much
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faster than 1/L. For example, with parameters tABC = 0.06,
tAB = 0.05, uABC = uAB = 0.02 for the species tree of Figure
3A, and with n = 1000 sites per locus, we have, through
simulation, p0 = 0.0197 for the proportion of loci with ties,
p1 = 0.6915 for the matching gene tree, and p2 = p3 =
0.1444 for the mismatching gene trees. Then the error prob-
ability Perror is 0.0296, 0.0023, and 0.000034 for 10, 20, and
40 loci, respectively, according to simulation, while Equation
8 gives 0.0398, 0.0030, and 0.000020. The discrepancy ap-
pears quite large, relative to Perror itself. Better approxima-
tions will be desirable. Note also that for those parameter
values, Equation 5 gives the species tree-gene tree mismatch
probability as PSG = 2

3 e
21 = 0.24525, while with 1000 sites

per locus, the mismatch probability for the estimated gene
tree is PSĜ = 0.3010 by simulation (with ties for gene trees at
the locus broken evenly). Phylogenetic errors cause consider-
able inflation of the mismatch probability.

The Anomaly Zone

Degnan and Salter (2005) and Degnan and Rosenberg
(2006) derived the probabilities for gene tree topologies
under the MSC model, and highlighted the fact that the
most probable rooted gene tree topology may not match
the species tree when the species tree has short internal
branches and large ancestral populations. Thus the simple
majority-vote method of using the most commonly observed
gene tree as the estimate of the species tree will be statisti-
cally inconsistent and will converge in probability to a
wrong species tree when the number of loci increases. The
species tree and parameters that lead to such anomalous
gene trees are said to be in the anomaly zone (Degnan and
Rosenberg 2006). In other words, the anomaly zone is the
inconsistency zone for the majority-vote method. Computer
simulation (Kubatko and Degnan 2007) and mathematical
analysis (Roch and Steel 2015) suggest that concatenation
may similarly be inconsistent in certain regions of the pa-
rameter space; concatenation has its own anomaly or incon-
sistency zone.

The case of four species is simple and illuminating (Figure
1). Given the asymmetrical species tree S1 = (((AB)C)D), the
probabilities of the gene treesG1 = (((ab)c)d) andG2 = ((ab)
(cd)) for four sequences (a, b, c, d) under the MSC model are

PðG1Þ ¼ 12
2
3
e2x 2

2
3
e2y þ 1

3
e2ðxþyÞ þ 1

18
e2ð3xþyÞ;

PðG2Þ ¼ 1
3
e2x 2

1
6
e2ðxþyÞ 2

1
18

e2ð3xþyÞ;
(9)

where x = 2ðtABCD 2 tABCÞ=uABC and y = 2ðtABC 2 tABÞ=uAB
are the lengths of the deeper and shallower internal branches
(in coalescent units) in the species tree (Rosenberg 2002;
Degnan and Rosenberg 2006). Now if x / 0 and y / 0,
we have P(G1) / 1/18 and P(G2) / 2/18. When the in-
ternal branches on the species tree disappear and the species
tree becomes a star tree, all three coalescent events for the
four sequences will occur in the ancestral species ABCD, and

the process is simply the single-population coalescent (Figure
2). As the asymmetrical gene tree G1 is compatible with only
one labeled history while the symmetrical gene tree G2 is
compatible with two labeled histories (G2a and G2b), we have
P(G1) = 1/18 and P(G2) = 2/18. Now if x and y are nonzero
but very small, P(G1), P(G2) may still hold even if P(G1). P
(G2)/2. Degnan and Salter (2005) and Degnan and Rosen-
berg (2006) designed algorithms for determining such
boundaries in the parameter space (values of x and y). When
P(G1), P(G2), the majority-vote estimate of the species tree
will be inconsistent and will converge to the mismatching
topology of G2.

Thus the coalescent process favors symmetrical trees, and
the effect is greater for larger trees. The number of compatible
labeled histories is 1 for a completely asymmetrical rooted
tree. For any other rooted tree, this number is given as the
product of ðxþy

     x Þ over the internal nodes on the rooted tree,
where x and y are the numbers of descendent internal nodes
on the left and right part of the internal node, respectively
(Yang and Rannala 2014). For example, for the rooted tree
G2 of Figure 1, x = y = 1 for the root node and x = y = 0 for
the two other internal nodes, so that the number of compat-
ible labeled histories is ð1þ1

     1 Þ = 2, with the convention
ðk0Þ ¼ ð00Þ = 1. An alternative method to calculate this num-
ber, suggested by one of the referees, is to divide (n21)! by
the product of n(k)21 over all the interior nodes k of the tree,
where n is the number of tips on the tree and n(k) is the
number of tips below node k. If there are eight species (and
sequences) and if the true species tree is completely asym-
metrical with the six internal branch lengths nearly 0, the
completely asymmetrical matching gene tree has only about
1/80 the probability of the completely symmetrical mis-
matching gene tree (Table 1). It may thus be easier to find
anomaly with larger species trees, or, as Rosenberg and Tao
(2008) put it, the anomaly zone seems to expand when the
number of species increases. There is no anomaly zone for the
case of three species. For four species, the anomaly zone
exists for the asymmetrical species tree only. For five or more
species, it exists for any species tree (Degnan and Rosenberg
2006).

Figure 7 shows the behavior of species tree estimation in
the anomaly zone for the case of four species. Gene trees and
sequence alignments at multiple loci are simulated using
MCCOAL, which is part of the BPP package (Yang 2015), using
the species tree, (((A, B), C), D), with tAB = 0.01, tABC =
0.011, and tABCD = 0.012, and with u = 0.05 for all species.
Those parameter values give P(G1) = 0.0740 and P(G2) =
0.1191 (Equation 9), so the species tree is in the anomaly
zone. The JC model (Jukes and Cantor 1969) is used for both
simulation and analysis. Each replicate dataset consists of L
loci, of n = 1000 sites, and the number of replicates is R =
100. We consider three methods: the majority vote, concat-
enation, and BI (BPP) (Yang and Rannala 2014). With the
majority vote, BASEML (which is part of the PAML package,
Yang 2007) is used to construct the rooted gene tree at each
locus under the molecular clock, and the most common gene
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tree is taken as the estimate of the species tree. Loci with ties
(that is, with two or more binary rooted trees to be equally
best) are discarded. With concatenation, the concatenated
sequences are analyzed as one supergene using BASEML

under the clock and the resulting rooted gene tree is taken
as the estimate. Both majority-vote and concatenation are
inconsistent so that when the number of loci (L) increases,
the probability of recovering the true species tree approaches
0 (Figure 7). Both methods converge to the incorrect sym-
metrical species tree, ((A, B), (C, D)).

In the BPP analysis (Analysis A01 in Yang 2015), the uni-
form prior is assigned on the rooted trees (Prior 1 in Yang and
Rannala 2014), while gamma priors with shape parameter
2 andwith themeans to be the true values are assigned to the
parameters: tABCD�G(2, 2/0.012) for the age of the root and
u � G(2, 40). The shape parameter of 2 means the gamma
priors are fairly diffuse. As the Bayesian method of model
selection is consistent, the probability of recovering the true
species tree approaches 1 when the number of loci increases.

The issue of anomalous gene trees has been discussed
extensively. Degnan and Rosenberg (2006) wrote that “the
use of multiple genomic regions for species tree inference is
subject to a surprising new difficulty, the problem of “anom-
alous gene trees.”” We emphasize that the anomaly zone is
not an intrinsic difficulty of the estimation problem. It exists
because of the heuristic nature of the majority-vote method,
and vanishes if the data are analyzed using full likelihood
methods. If the data consist of a collection of gene tree topol-
ogies, the likelihood function is given in Equation 6. As dis-
cussed earlier, this ML method is consistent. Intuitively if
the true species tree is asymmetrical and if the two internal
branches are very short, one expects the symmetrical mis-
matching gene tree G2 to be nearly twice as frequent as the
asymmetrical matching gene tree G1 (Figure 1). Thus the
slightly higher proportion of G2 than G1 may be seen to be
compatible with an asymmetrical species tree (with short in-
ternal branch lengths) and may not be evidence against it.

The analysis of Degnan and Salter (2005); Degnan and
Rosenberg (2006) assumes that the gene trees are known
without error. In real data analysis, gene trees reconstructed
using phylogenetic methods may involve substantial errors
and uncertainties. Huang and Knowles (2009) evaluated the

impact of phylogenetic reconstruction errors on the anomaly
zone and observed an expansion of the anomaly zone due to
phylogenetic errors: there is a larger space of species tree
parameters within which anomalous gene trees are observed
when the gene trees are estimated than when they are given.
Nevertheless, Huang and Knowles (2009) suggest that in the
anomaly zone, phylogenetic analysis of typical datasets tends
to return unresolved gene trees rather than resolved incor-
rect trees, so that the difficulty posed by anomalous gene
trees to practical phylogenetic analysis may be limited. At
any rate, ML and BI methods for analyzing real datasets are
based on the sequence likelihood (Equations 2 and 3), so that
reliable inference of the species tree is possible even if the
estimated gene tree at every locus is unreliable and involves
substantial uncertainties.

Can More Data Make Things Worse?

Liu et al. (2015, Figure 4) reported a simulation study show-
ing that adding “weak” genes (short genes with few sites) to a
set of “strong” genes (long genes with many sites) might
cause MP-EST to perform worse. Here we confirm this counter-
intuitive behavior by conducting two simulation experiments,
using species trees of five and three species, respectively. We
find that the effect is subtle. We then discuss two analogous
simple examples to explain the result, offering an argument
that it does not occur with full likelihood methods.

Our first simulation largely follows Liu et al. (2015). The
species tree is ((((A: 0.002, B: 0.002): 0.002, (C: 0.002, D:
0.002): 0.002): 0.002, E: 0.006): 0.01, F: 0.016), with u =
0.008 for all populations (Figure 8A). Species F is used as the
outgroup. There are two kinds of loci: strong genes with
1000 bp and weak genes with 100 bp. Gene trees and se-
quence alignments were generated using MCCOAL (Yang
2015). The mutation model used in data generation and
analysis is JC (Jukes and Cantor 1969). For the MP-EST anal-
ysis, PHYML (Guindon and Gascuel 2003) was used to infer
the unrooted ML tree for each locus, with the sequence from
species F used to root the tree. The rooted gene trees for the
five ingroup species are then processed using MP-EST (Liu et al.
2010a) to infer the species tree. We consider the use of strong
genes only, weak genes only, and amixture of 20 strong genes

Table 1 The number of labeled histories for the most balanced rooted tree for a given number of taxa

Number of
species (s)

Total number of
rooted trees (T)

Total number of labeled
histories (H)

Number of labeled histories for the most
balanced rooted tree (L)

3 1 1 1
4 15 18 2
5 105 180 3
6 945 2,700 6
7 10,395 56,700 20
8 135,135 1,587,600 80
9 2,027,025 57,153,600 210
10 34,459,425 2,571,912,000 630

In the single-population coalescent, the labeled histories have uniform probabilities, so that the asymmetrical gene tree has probability 1/H, while
any other gene tree has the probability L/H, where L is the number of compatible labeled histories for the rooted tree.
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followed by addition of weak genes (Figure 8). MP-EST per-
formed much worse in the simulation of Liu et al. (2015,
Figure 4) than here, as those authors used bootstrap gene
trees while we used ML gene trees (L. Liu, personal commu-
nication). At any rate, Figure 8 shows a similar pattern to that
in Liu et al. (2015, Figure 4): adding weak genes to the data-
set of 20 strong genes led to deteriorated performance by
MP-EST. The effect, however, is much weaker than in Liu
et al. (2015). As the method is consistent even with weak
genes only, the probability of correct species tree will even-
tually approach 1 when the number of loci L / N.

We also included BPP for comparison. As BPP assumes the
clock and works with rooted trees, we removed the sequence
from species F at every locus. We assigned a uniform prior on
rooted trees (Yang and Rannala 2014), and gamma priors on
parameters in the MSC: tABCDE � G(2, 2/0.006) with mean
0.006 for the root age, and u�G(2, 250)withmean 0.008 for
u. BPP performed much better than MP-EST, with large differ-
ences when the data include only weak genes or only a few
strong genes. BPP did not show a deterioration of performance
upon adding weak genes, but this is hard to discern as the
probability of recovering the true species tree is already 98%
with 20 strong genes alone.

Our second simulation uses the species tree ((AB)C) for
three species (Figure 3). Note that for three species, many
summary methods such as MP-EST (Liu et al. 2010a), MDC

(Maddison 1997), and STAR (Liu et al. 2009) are equivalent,
so that our results for MP-EST apply to the other equivalent
methods as well. We used tAB = 0.05, tABC = 0.06, and uAB =
uABC = 0.02. We again simulated strong genes (1000 sites)
and weak genes (50 sites). Gene tree reconstruction under
the clock and the JC model for three sequences is tractable
analytically (Yang 2000), so that we can analyze a huge
number of replicates for the MP-EST method without the need
to use the MP-EST program. Each alignment of three sequences
(a, b, c) can be summarized as counts (n0, n1, n2, n3, n4) of
five site patterns: xxx, xxy, yxx, xyx, and xyz, where x, y, and z

are any distinct nucleotides. We take the ML tree as ((ab)c) if
and only if n1.max(n2, n3). If two trees are equally best, we
discard the locus. The most common gene tree topology is
then the estimated species tree. Ties for species trees are
broken evenly: if two species trees have the same maximum
number of matching gene trees, each is given 50%, and if all
three species trees are equally good, each is given 1/3. The
performance deterioration with MP-EST upon addition of weak
genes is real but the effect is so small that a huge number of
replicates are necessary to demonstrate its presence. With
five strong genes, the probability of recovering the correct
species tree by MP-EST is 0.8883, and this probability drops
to 0.8867–0.8875 when 1–3 weak genes are added to the
dataset, and rises back to 0.8883 when four weak genes are
included.With 10 strong genes, the probability is 0.9705, and
it drops to 0.9690–0.9699when 1–7weak genes are added to
the dataset. The effect exists but is too small to have any
biological significance.

For comparison, we included ML (3S) (Yang 2002) and BI
(BPP). Note that 3S optimizes the parameters (Q) while BPP

averages over them, so that the two methods are not equiv-
alent even for this simple case of three species. For BPP, we
used the uniform prior on the three species trees, and gamma
priors on parameters: t0 = G(2, 2/0.06) for the root age, and
u = G(2, 100) for us. The two methods had very similar
performance (Figure 9). As expected neither 3S nor BPP shows
the counterintuitive behavior. When only weak genes or a
few strong genes are analyzed, 3S and BPP recovered the true
species tree with higher probabilities than MP-EST.

We note that the performance differences between the
summarymethod (MP-EST) and the full-likelihoodmethods (3S
and BPP) are smaller for the three-species case (Figure 9) than
for the five-species case (Figure 8). This may be expected
from the simplicity of the three-species case. Indeed as far
as the point estimate of the species tree is concerned, MP-EST,ML
(3S) and BI (BPP) are expected to be equivalent if the data
consist of only one locus. Let p0 be the probability that a locus
shows a tie (with two ormore gene trees being equally best), p1
be the probability of the matching gene tree, and p2 and p3 be
the probabilities of the two mismatching gene trees (Figure 3).
For the case of Figure 9A, these are p0 = 0.1989, p1 = 0.4013,
p2 = p3 = 0.2000 for the weak genes (50 bp) and p0 = 0.0197,
p1=0.6915, p2= p3=0.01444 for the stronggenes (1000 bp).
The probability of recovering the correct species tree for one
locus is p1 + p0/3. The three methods are not the same when
two or more loci are analyzed. For MP-EST, the probability of
recovering the species tree with two loci can be calculated, by
considering the different outcomes of gene tree reconstruction
at the two loci, as p21 + 2p0p1 + 2p1ðp2 þ p3Þ=2 + p20=3 =
p1ð1þ p0Þ þ p20=3: If the outcome is 11 (both loci producing
thematching gene treeG1), or 01 or 10, the correct species tree
is recovered. If the outcome is 12, 21, 13, or 31, the species tree
is half correct, and so on. If p0 � 0 (as in the case of strong
genes), MP-EST recovers the correct species tree with nearly the
same probability (� p1) for one locus and two loci (Figure 9A).
This is not the case for 3S and BPP.

Figure 7 Species tree inference in the anomaly zone. The probability of
inferring the correct species tree by majority-vote, concatenation, and BI
(BPP), plotted against the number of loci (L).
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To gain insights into the counterintuitive behavior of MP-EST

in the cases of three species (Figure 9A), we study two small
analogous problems. The first is a binomial example of coin
toss in which a coin is tossed n = 100 times to estimate the
probability of heads, p. If the observation is x heads, the esti-
mate p̂ ¼ x=n has variance pð12 pÞ=n: Now we add a second
experiment, with x9 heads out of n9 = 10 tosses. The second
experiment alone would give us the estimate p̂9¼ x9=n9; with
variance pð12 pÞ=n9: A simple method of combining the two
experiments is to take the average p̂dumb ¼ 1

2

	
x
n þ x9

n9



;which has

the variance 1
4 pð12 pÞ	1n þ 1

n9



and effective sample size

4=
	
1
n þ 1

n9



= 36.4, which is even smaller than n = 100. Thus

adding data (from the second experiment)made thingsworse,
because we ignore the fact that the two experiments have very
different precisions. A better method is to use the likelihood
function to combine the two experiments:

LðpÞ ¼ � pxð12pÞn2x�3 hpx9ð12pÞn92x9
i

¼ pxþx9ð12pÞðnþn9Þ2ðxþx9Þ: (10)

The MLE is then p̂smart ¼ ðx þ x9Þ=ðnþ n9Þ; with an effective
sample size of n + n9, as expected. The MLE is a weighted
average of p̂ and p̂9; with the precision (the reciprocal of the
variance) used as weights.

The second analogous example is similar to the MP-EST

estimation of the species tree, but with two instead of three
possible trees to consider. The gene tree that matches the
species tree will be called a “good” gene tree, while the mis-
matching gene tree a “bad” one. Suppose a strong gene and a
weak gene produce a good gene tree with probability p and
p9, respectively, with p. p9 . 1

2:With n strong genes only, the
number of good gene trees x � Bin(n, p), so that the correct
species tree is recovered with probability

PðnÞ ¼ Pr x.
n
2

� F

 
np2 n

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð12 pÞp

!
;

)(
(11)

if n is large. Now consider adding n9 weak genes, which will
produce x9 good gene trees, with x9 � Bin(n9, p9). A simple
method for combining the data recovers the correct species
tree if and only if more than half of the gene trees are good.
This occurs with probability

Pdumb

�
n; n9

�
¼ Pr x þ x9.

nþ n9
2

� �

� F

 
npþ n9p92 nþn9

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð12 pÞ þ n9p9ð12 p9Þ

p
!
; (12)

if both n and n9 are large. Note that x and x9 are independent
binomial variables, so that x + x9 has mean np + n9p9 and
variance np(12np) + n9p9 (12p9).

Is it possible for Pdumb(n, n9) , P(n) for certain values of
n and n9? The answer is Yes. Consider for example p = 0.6 for
strong genes and p9 = 0.525 for weak genes. Thus P(50) =
0.9255 with n = 50 strong genes only, and Pdumb(n, n9) , P
(n) if 1 # n9 , 432 (Figure 10). Adding weak genes made
things worse, and performance did not recover to the level of
n = 50 strong genes until 432 weak genes were added. The
simple method (Equation 12) does not account for the fact that
the gene trees from the weak genes involve larger sampling
errors than those from the strong genes.

Liu et al. (2015) suggest that “adding weak genes may
actually reduce the performance of species tree estimation
methods, negating the old adage that “more data is always
better.”” The authors further suggest that “[a]n important
rule of thumb that has emerged from both simulation and
empirical studies is that species trees are only as good as the
gene trees on which they are built. This maxim applies both
to two-step species tree methods, in which gene trees are
used as input data, and to single-step approaches, such as
Bayesian methods, in which gene and species trees are esti-
mated simultaneously.” Those statements need to be quali-
fied. Our analysis above suggests that the counterintuitive
result of performance deterioration upon addition of weak
genes may be more easily explained by the inefficient use
of information in the data by the summary methods. For full
likelihood methods, the likelihood calculation on the se-
quence alignment should automatically accommodate the
fact that a strong gene with more sites is more informative
about the gene tree than a weak gene with fewer sites. The
counterintuitive behavior will then not occur. We expect similar
patterns if the different loci have different mutation rates and
different information contents, if the rate variation among loci
is accommodated appropriately in the likelihood model. Thus
species trees can be good even if all gene trees are bad. In the

Figure 8 More data for worse performance for five
species? The probability of inferring (A) the correct
species tree for five species by (B) MP-EST and (C) BPP

using weak genes only, strong genes only, and a mix-
ture of 20 strong genes plus a number of weak genes.
The divergence times on the species tree are tAB = tCD
= 0.002, tABCD = 0.004, tABCDE = 0.006, and tABCDEF =
0.016, with u = 0.008 for all populations. The number
of replicates is 1000 for MP-EST and 100 for BPP.
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extreme, adding weak genes which have only two sequences
(and thus no phylogenetic information) should also help, by
providing information on parameters in the model.

The performance deterioration for MP-EST upon adding
the weak genes is so small that the effect does not have any
biological impact. Thus the conclusions to be drawn from
this analysis are largely conceptual, in that one should not
be surprised at counterintuitive behaviors when heuris-
tic methods are used. Note that large performance dif-
ferences are possible between likelihood methods and
summary methods when the data are not very informative
(Figure 8).

Singularity on the Likelihood Surface

As discussed earlier, given that the data are a collection of
rooted gene trees with node ages (branch lengths on ultra-
metric gene trees), the ML estimate of the species tree under
the assumption of equal population size for all species is given
by the maximum tree algorithm (Liu et al. 2010b; see also
Mossel and Roch 2010). For the more general problem with
different species having independent population size param-
eters (us), however, Liu et al. (2010a) pointed out that the
likelihood may become infinite for certain species tree and
parameter values. The likelihood function in this case is the
MSC density of gene trees and coalescent times given the
species tree, or f(Gi, ti | S, Q) in Equation 2 (Rannala and
Yang 2003). The observation motivated the development of
the summary method MP-EST, which ignores branch lengths
and uses gene tree topologies only. Here we illustrate how
such singularity can occur, and point out that it is not a prob-
lem if the sequence data (rather than the estimated gene
trees) are analyzed using full likelihood methods. We also
discuss ways of avoiding the singularity in the summary
methods (Yang 2014, p.338–9).

Suppose that the data consist of one “observed” gene tree,
which is G1a of Figure 3, with branch lengths (node ages) t0
and t1, and consider the calculation of the likelihood for the
species tree S of Figure 3a, with parameters Q = {uAB, uABC,
tAB, tABC}. The likelihood is given as the product of the two
exponential densities for the two coalescent events (Rannala
and Yang 2003):

fðG1a; t0; t1jS;QÞ ¼ 2
uAB

e2
2

uAB
ðt12tABÞ3

2
uABC

e2
2

uABC
ðt02tABCÞ;

with  tAB, t1 , tABC , t0: ð13Þ

Note that this is a function of uAB, uABC, tAB, and tABC, with t0
and t1 fixed. Now let tAB/ t1, tABC/ t1, and let uAB= c (t1 –
tAB) / 0, with c . 0 to be a constant. Then the first term
2
uAB

e2
2

uAB
ðt12tABÞ= 2

uAB
e22=c/ N, and the likelihood function

becomes infinite. In other words, whenwe shrink the internal
branch length (tABC – tAB) in the species tree to zero, collapse
the two internal nodes onto the coalescent event, and in-
crease the coalescent rate (2/uAB) to infinity, the likelihood
becomes infinite, with the parameter estimates t̂AB ¼ t̂ABC =
t1 and ûAB = 0 (with ûABC indefinite). There are thus rays of
singularity on the likelihood surface. In this case, there is no
singularity if both coalescent events are assumed to occur in the
common ancestor ABC. In other words, the species tree com-
patiblewith the given gene tree has infinite likelihoodwhile the
mismatching species trees have finite likelihood. In the general
case ofmore than three species and sequences, multiple species
trees can have infinite likelihood (Liu et al. 2010a). Singularity
can occur for an arbitrary species tree and multiple gene trees
as long as one can collapse an internal branch on the species
tree onto a coalescent event on a gene tree.

Here we point out that such singularity does not occur
when full likelihood methods (ML or BI) are applied to se-
quence data, with the likelihood calculated using the sequence
alignments (Equations 2 and 3). Approaches using sequences
also have the advantage of accommodating uncertainties in
the gene trees andbranch lengths. If thegene treeswithbranch
lengths are treated as observed data, singularity disappears
if one uses the Bayesian method, as the prior shrinks the
parameters away from extreme values (such as uAB = 0, and
tAB= tABC), and if one uses theMLmethod under the assump-
tion that all populations have the same size (same u) (Liu et al.
2010a), as in the maximum tree method or the STEM program
(Kubatko et al. 2009).

Perspectives and Practical Data Analysis

We have discussed a suite of counterintuitive behaviors
of summary methods for species tree estimation, such as

Figure 9 More data for worse perfor-
mance for three species? The probability
of inferring the correct species tree for
three species by MP-EST, ML (3S), and BI
(BPP) using weak genes only, strong genes
only, and a mixture of 5 or 10 strong
genes plus a number of weak genes.
The true species tree is the one in Figure
3A, with tABC = 0.06 and tAB = 0.05, and
with u = 0.02 for all populations. The
number of replicates is 1000 for 3S and
BPP, and ranges from 105 to 107 for MP-EST.
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unidentifiability, inconsistency (anomalyzone), singularityon
the likelihood surface, and deteriorated performance upon
inclusion of more data. Those behaviors are due to the in-
formation loss when the summary methods use estimated
gene tree topologies only, ignoring information in the branch
lengths, and due to their failure to account for the uncer-
tainties in the estimated gene trees. They do not occur when
the sequence data are analyzed using full likelihoodmethods.
Our analyses demonstrate that large performance differences
may exist between full likelihood methods and summary
methods even if both are based on the MSC.

While other factors may also cause gene tree-species tree
conflicts (Maddison 1997; Nichols 2001; Szollosi et al. 2014),
we have taken an idealized viewpoint assuming that the MSC
is the true data-generating model. A number of challenges
exist with current implementations of the Bayesian inference
methods. A major problem is the intensive computation in-
volved and the inefficient mixing of the transmodel MCMC
algorithms used by Bayesian programs, although improve-
ments are being made (e.g., Rannala and Yang 2016).

We suggest that the utility of summary vs. full-likelihood
methods will depend on the nature of the species tree esti-
mation problem. For easy problemswith long internal branches
in the species tree and little incomplete lineage sorting,
different methods are likely to produce the same results,
and simple methods such as concatenation may have even
higher statistical efficiency than coalescent-based full like-
lihood methods. For shallow species phylogenies, charac-
terized by recent divergences and short internal branches
(as occurs in radiative speciation), full likelihood methods
may have a big advantage over summary methods or sim-
ple methods such as concatenation. Genomic datasets are
being generated from a variety of species, such as mosqui-
tos (Fontaine et al. 2015), butterflies (Martin et al. 2013),
hares (Melo-Ferreira et al. 2012), bears (Liu et al. 2014),
and gibbons (Carbone et al. 2014). As the species are
closely related, the molecular clock holds approximately
and can be used to root the tree and to provide information

about the node ages (coalescent times). The high sequence
similarity and low phylogenetic information content at
each locus may be problematic to summary methods that
are sensitive to phylogenetic reconstruction errors but
should be ideal for full-likelihood methods (Ogilvie et al.
2016; Rannala and Yang 2016).

Deep species phylogenies characterized by ancient rapid
divergences pose the greatest challenge. Two strategies are
possible to account for the violation of the molecular clock in
deep phylogenies: (i) the use of relaxed-clock models in
Bayesian analysis to root the tree and to extract information
about coalescent times in gene-tree branch lengths, and (ii)
the use of outgroups to root the tree, ignoring information in
branch lengths (or coalescent times) in gene trees, as in ASTRAL

(Mirarab et al. 2014; Mirarab and Warnow 2015) and NJst
(Liu and Yu 2011). In theory relaxed-clock models allow the
inference of the root and the node ages in both the species
tree and the gene trees. However, several difficulties may
arise. First, current relaxed-clock models of rate drift, espe-
cially when applied to data of multiple genetic loci, may be
highly unrealistic (dos Reis et al. 2016). Relaxed-clock mod-
els developed for dating species divergences (Thorne et al.
1998; Drummond et al. 2006; Rannala and Yang 2007) allow
the substitution rate to drift over time or among branches, but
they do not appear appropriate for analysis under the MSC. A
simple modification may be to assign rates at a locus to
branches of the species tree (rather than to branches of the
gene tree), so that gene-tree branches residing in the same
species share the same rate. A gene tree branch may be
broken into several segments with different rates, and the
branch length or the total amount of evolution along the
branch is calculated by summing over the segments. More
worrying are the impacts of among-loci heterogeneity in
the substitution rate and in the process of substitution rate
drift among branches (Zhu et al. 2015). Current models as-
sume that rates drift over time independently among loci.
This assumption is unrealistic but allows rates at different
loci to be treated as independent realizations of the same
process and be teased apart from the species divergence
times. Allowing for rate correlation among loci or lineage
effects may render the model unidentifiable, since both the
lineage rates and the species divergence times have genome-
wide effects and are thus seriously confounded. Relaxed-clock
rooting appears to be less reliable than outgroup rootingwhen
the clock is seriously violated. It is an open question how
Bayesian relaxed-clock models compare with summary meth-
ods that use unrooted gene trees with outgroup rooting in
inferring deep phylogenies.
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