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Introduction

Bayesian statistics has the unique feature that uncertainties in
all unknowns (such as the unknown parameters in a model or
the competing hypotheses for explaining the same data) are
described using statistical distributions. In classical statistics
(such as the maximum likelihood method), parameters and
hypotheses cannot be assigned distributions. Suppose one
wants to analyze the data (x) to estimate the unknown para-
meter θ under a model. In a Bayesian analysis, one assigns a
distribution on θ before the analysis of the data. This is called
the ‘prior distribution’ and reflects one’s knowledge or belief
about the possible values of θ. The Bayesian analysis of the
data then produces the distribution of θ given the data, f(θ|x),
called the ‘posterior distribution.’ The two are related through
the Bayes theorem

f ðθjxÞ ¼ f ðθÞf ðxjθÞ
f ðxÞ pf ðθÞf ðx θÞj ½1�

Here the probability of the data given the parameter θ, f(x|θ), is
the likelihood, and represents the information about the
parameter θ in the data x. The marginal probability of the data,
f ðxÞ ¼ R

f ðθÞf ðxjθÞdθ, is a normalizing constant, and its role is
to ensure that f(θ|x) is a proper statistical distribution and
integrates to 1. Equation [1] thus says that the posterior is
proportional to the prior times the likelihood, or equivalently,
the posterior combines information in the prior and in the
data sample.

Note that the likelihood function is the basis for classical
statistical methods, especially the maximum likelihood
method. Thus all models developed for the maximum like-
lihoodmethod can be implemented in the Bayesian framework.
In analysis of large datasets, the two methods often produce
numerically very similar results even though the interpretations
differ. However, different results may be obtained by the two
methodologies if the data are not informative, and in particular,
if the focus of the analysis is on model selection.

In molecular phylogenetics, the data x is an alignment (or
alignments) of sequences of nucleotides, codons, or amino
acids from several species. Here, we assume that the sequences
are already aligned and we ignore alignment errors. Our focus
is the phylogenetic tree, which consists of the tree topology (τ)
and the lengths of branches (denoted collectively as b). The
branch length is measured by the expected number of sub-
stitutions per site, and quantifies the amount of evolution
along the branch. Given the tree, the sequence data at the tips
of the tree (for extant species) are the product of the process of
sequence evolution along the branches. This process is typi-
cally described by a continuous time Markov chain (Felsen-
stein, 1981). The model of substitution may include
additional parameters, denoted ϕ, such as the relative sub-
stitution rates between nucleotides and the equilibrium fre-
quencies of the nucleotides. More complex models may
include parameters to describe the rate variation across sites in
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the sequence or the nonsynonymous/synonymous substitu-
tion rate ratio in comparisons of protein-coding gene
sequences (Yang, 1993; Goldman and Yang, 1994). For more
details on various models used in molecular phylogenetics.

The posterior distribution of the tree topology, branch
lengths, and substitution parameters is then given by eqn [1]
with parameter θ replaced by τ, b, and ϕ:

f ðτ,b,ϕjxÞpf ðϕÞf ðτ,bÞf ðxjτ,b,ϕÞ ½2�

Here f(ϕ) is the prior distribution on substitution parameters,
f(τ, b) is the prior on tree topology and branch lengths, while
f(x|τ, b, ϕ) is the likelihood or probability of the sequence
data given the tree topology and branch lengths, given by the
model of sequence evolution (Felsenstein, 1981).

The Bayesian approach to molecular phylogenetics was
introduced by Rannala and Yang (1996), Yang and Rannala
(1997), Mau and Newton (1997), and Li et al. (2000). The
early studies used simple models of sequence evolution and
assumed a constant rate of evolution (the molecular clock).
Nowadays, we have several Bayesian phylogenetic programs
that implement a wide range of complex models that account
for various aspects of the sequence data. General Bayesian
programs for phylogeny reconstruction include MrBayes
(Ronquist et al., 2012), BEAST (Drummond and Rambaut,
2007), and PhyloBayes (Lartillot et al., 2009). A number of
Bayesian programs are also available for estimating species
divergence times incorporating information in both fossils and
molecules, such as MCMCTREE (Yang, 2007) and DPPDIV (Heath
et al., 2012).

For an extensive discussion of Markov chain Monte Carlo
(MCMC) algorithms used in Bayesian phylogenetics, see
Chapters 7 and 8 of Yang (2014). The edited book by Chen
et al. (2014) summarizes recent developments, especially
concerning model selection in Bayesian phylogenetics.
Priors

The prior distribution is supposed to summarize one’s objec-
tive information (according to ‘Objective Bayesian’) or perso-
nal beliefs (according to ‘Subjective Bayesian’) about the likely
values of the model parameters. In Bayesian phylogenetics, the
tree topologies (τ) represent discrete statistical models, the
branch lengths (b) are continuous parameters that are defined
only on specific trees, while the substitution parameters (ϕ)
are often defined for all possible trees. The parameter space of
the inference problem is high-dimensional and also complex.
Specification of the prior is thus a nontrivial task. Indeed, a few
cases have been identified in which innocent-looking priors
adopted in common Bayesian programs lead to unreasonable
extreme results.

Here we describe a few commonly used prior distributions
in Bayesian phylogenetics. First we consider the prior on
the tree topology. Most phylogenetic analyses are conducted
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without assuming the molecular clock and use unrooted trees.
The total number of unrooted trees Tn for n species is

Tn ¼ ð2n–5Þð2n–7Þ⋯1 ½3�
It is common to assign a uniform prior on all possible trees,
with each assigned the probability 1/Tn.

If the species are closely related, the evolutionary rate may
be roughly constant among species. One can then use the
molecular clock to infer rooted trees. Rooted trees are also
used to infer species divergence times in the so-called mole-
cular clock or relaxed-clock dating analysis. A prior distribu-
tion over the rooted trees and node ages (branching times) can
be generated using a model of cladogenesis. For example, a
birth–death process conditioned on the number of observed
or sampled species can be used to describe the biological
process of speciation and extinction, and to generate a prior on
the rooted tree topologies and node ages. The birth–death
process includes the Yule pure-birth process as a special case.
Parameters for the birth–death model include the birth rate,
the death rate, and the sampling fraction (the proportion of
extant species that are actually included in the data). Those
parameters in the prior can be changed to assess the impact of
the prior on the posterior inference, or they may be estimated
from the data by assigned prior distributions on them (called
‘hyper-priors’).

For DNA sequences sampled from the same species, King-
man’s (1982) coalescent process provides a prior distribution
for the gene genealogies. However, this is not a suitable prior
model for inferring species phylogenies.

Next, we consider the prior for branch lengths. A binary
unrooted tree for n species has 2n� 3 branches. Given each
unrooted tree topology, the 2n� 3 branch lengths can be
assigned independent and identical distributions (i.i.d.) such
as the uniform or exponential. In the case of the uniform, an
upper bound (such as 100) is specified by the user. However,
those i.i.d. priors on branch lengths have been found to be
problematic, as they may be very informative and unreason-
able about the tree length (sum of branch lengths) (Rannala
et al., 2012). For example, a tree of 100 species has 197 branch
lengths. If each is assigned the uniform prior U(0, 100), the
tree length will have the prior mean 9850 and the 99% prior
interval (8806, 10 894), with B10 000 substitutions at an
average site. When the data are not very informative (as is the
case when the sequences are highly similar), this unreasonable
prior can overwhelm the Bayesian analysis and leads to
unreasonably long trees with large tree lengths (Brown et al.,
2010). An alternative has been suggested to fix this problem
(Rannala et al., 2012; Zhang et al., 2012), in which a gamma
prior is assigned to the tree length and then the sum is
partitioned into branch lengths according to a uniform
Dirichlet distribution (a multivariate extension of the uniform
distribution).
Markov Chain Monte Carlo

Note that the normalizing constant f(x) in eqn [1] involves
an integral. When there are many parameters in the model,
this integral will be multidimensional and may be very hard
to compute. Modern Bayesian inference is often achieved
through a computational algorithm called MCMC. This is an
iterative simulation algorithm that generates a sample from
the posterior distribution f(θ|x).

Here we illustrate the main features of the MCMC algo-
rithm by applying it to the simple phylogenetic problem of
estimating the distance θ between two sequences under the
JC69 model (Jukes and Cantor, 1969). The data consist of the
human and orangutan mitochondrial 12S rRNA genes, with
x¼90 differences at n¼948 sites. The parameter θ is the
expected number of nucleotide substitutions per site between
the two sequences. Given θ, the likelihood or the probability
of observing the data is given by the binomial probability

f ðxjθÞ ¼ pxð1� pÞn�x ¼ 3
4 � 3

4e
�4θ=3

� �x
1
4 þ 3

4e
�4θ=3

� �n�x
, ½4�

where p¼ 3
4 � 3

4e
�4θ=3 is the probability that a site is occupied

by two different nucleotides in the two sequences separated by
a distance θ. We assign a uniform prior on θ in the range (0, 1)
so that f(θ)¼1 for 0oθo1. The posterior is then given by
eqn [1] as

f ðθjxÞ ¼ 1
f ðxÞ f ðθÞf ðxjθÞ ¼

1
f ðxÞ

3
4
� 3
4
e�4θ=3

� �x 1
4
þ 3
4
e�4θ=3

� �n�x

½5�
The following algorithm generates a sample from this

posterior distribution.

1. Initialize: n¼948, x¼90, w¼0.25. Set initial state:
θ¼0.1, say.

2. Loop

a. (Propose a new value θ�.) Generate uBU(0, 1) and set

θ� ¼ θ þ wð12 � uÞ. Note that θ� is a uniform random
variable over the interval Uðθ � w

2 , θ þ w
2Þ. If θ�o0, set

θ� ¼ � θ�.
b. (Accept or reject the proposed value.) Compute the

posterior density ratio α¼ f ðθ�jxÞ
f ðθjxÞ ¼ f ðθ�Þf ðxjθ�Þ

f ðθÞf ðxjθÞ . If α41,
accept θ�. Otherwise accept θ� with probability α. This
can be achieved by drawing another random number
vBU(0, 1), and accepting θ� if and only if voα. If θ� is
accepted set θ¼ θ�. Otherwise set θ¼θ.

c. Print out θ.
It is easy to see that the algorithm simulates a Markov
chain; the next θ value the algorithm will visit depends on the
current θ only, but not the θ values visited in the past. Second,
the algorithm tends to visit θ values with high posterior more
often than θ values with low posterior. Indeed, the probability
that the visited θ value is in the interval (θ, θþDθ) is f(x|θ)Dθ.
In other words, the θ values generated by the algorithm con-
stitute a sample from the posterior distribution f(x|θ). Lastly,
there is no need to compute the normalizing constant f(x) of
eqn [5] since it cancels in the calculation of the posterior ratio
α in Step 2b. This is the feature that allows us to avoid the
calculation of the high-dimensional integrals, making it pos-
sible to implement sophisticated parameter-rich models that
may not be feasible for maximum likelihood implementation.

Figure 1(a) shows the paths of two Markov chains from
two runs of the algorithm, using different starting positions.
Figure 1(b) shows the histogram and smoothed density
estimate of posterior using a large sample from a long chain.
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Figure 1 Markov chain Monte Carlo algorithm to sample from the posterior for the JC69 distance θ between two sequences. (a) Trace plot of
two chains which started from different positions (0.1 and 0.2), each run over 200 iterations. (b) Histogram (shaded area) and smoothed density
(solid curve) of the posterior sample obtained by running the algorithm over 106 iterations. The prior (dashed line) is shown as well for
comparison.
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The posterior mean is 0.1027, standard deviation is 0.0110,
and the central 95% posterior credibility interval is (0.0824,
0.1253). In comparison, the famous JC69 distance formula
gives the maximum likelihood estimate to be θ̂¼ 0:1015.

In phylogenetic reconstruction, the parameter space con-
sists of several components: the tree topology τ, the branch
lengths b, and the substitution parameters ϕ. In each iteration,
the different components may be updated in turn. For exam-
ple, variants of tree search algorithms such as nearest neighbor
interchange (NNI) and subtree pruning and regrafting (SPR)
can be used to update the tree topology. The branch lengths
and substitution parameters can be updated using sliding
windows, as in the simple MCMC algorithm above. See
Chapter 8 of Yang (2014) for a detailed discussion of MCMC
proposal algorithms in phylogenetics. The phylogenetic
MCMC algorithm generates a sample from the joint posterior
distribution of the tree topologies (τ), the branch lengths (b),
and the substitution parameters (ϕ).
Output Analysis from Simulation

The MCMC sample from the posterior distribution can be
summarized in different ways.

For scalar parameters such as branch lengths (b) and sub-
stitution parameters (ϕ), the posterior means or medians are
often used, together with the 95% posterior credibility inter-
vals (CIs). Two types of intervals are commonly used. The 95%
central (equal-tail) CI lies between the 2.5% and 97.5%
quantiles of the posterior sample. The highest posterior den-
sity (HPD) CI includes values that make up 95% of the pos-
terior probability and that have the highest posterior density.
When the data are informative so that the posterior of the
parameter is nearly symmetrical, the two intervals will be
nearly identical. Otherwise they can be very different. The HPD
interval is generally preferred over the equal-tail interval since
it has the shortest length and includes only the most likely
parameter values.

For the tree topology, a simple summary is the ‘maximum a
posteriori’ (MAP) tree, which is the tree topology with the
highest posterior probability (that is, the tree topology that is
most visited during the MCMC algorithm). This gives a point
estimate of the true tree. However, when the data are not very
informative, the MAP tree may have a very low posterior
probability, and is a poor summary. We also have an analogue
of interval estimates for trees. The 95% credible set of trees
contains those trees that have the highest posterior prob-
abilities such that the total probability of the entire set is
at least 95%. However, if this set contains a large number of
trees, it will not be very useful.

The most commonly used summary is the so-called
majority-rule consensus tree. Note that each internal branch
defines a split (a bipartition) of the species. The majority-rule
consensus tree includes splits that appear in at least half of
the trees sampled, with the posterior probability of each split
indicated on the internal branch of the tree. For more details
on constructing consensus trees.
See also: Consensus Methods, Phylogenetic. Directed Evolution,
History of. Maximum Likelihood Phylogenetic Inference. Molecular
Evolution, Models of. Phylogenetic Invariants. Searching Tree
Space, Methods for
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