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Abstract.—We develop a maximum likelihood (ML) method for estimating migration rates between species using genomic
sequence data. A species tree is used to accommodate the phylogenetic relationships among three species, allowing for
migration between the two sister species, while the third species is used as an out-group. A Markov chain characterization of
the genealogical process of coalescence and migration is used to integrate out the migration histories at each locus analytically,
whereas Gaussian quadrature is used to integrate over the coalescent times on each genealogical tree numerically. This is an
extension of our early implementation of the symmetrical isolation-with-migration model for three species to accommodate
arbitrary loci with two or three sequences per locus and to allow asymmetrical migration rates. Our implementation can
accommodate tens of thousands of loci, making it feasible to analyze genome-scale data sets to test for gene flow. We
calculate the posterior probabilities of gene trees at individual loci to identify genomic regions that are likely to have been
transferred between species due to gene flow. We conduct a simulation study to examine the statistical properties of the
likelihood ratio test for gene flow between the two in-group species and of the ML estimates of model parameters such
as the migration rate. Inclusion of data from a third out-group species is found to increase dramatically the power of the
test and the precision of parameter estimation. We compiled and analyzed several genomic data sets from the Drosophila
fruit flies. Our analyses suggest no migration from D. melanogaster to D. simulans, and a significant amount of gene flow
from D. simulans to D. melanogaster, at the rate of ∼0.02 migrant individuals per generation. We discuss the utility of the
multispecies coalescent model for species tree estimation, accounting for incomplete lineage sorting and migration. [IM
model, maximum likelihood, multispecies coalescent, migration, speciation.]

Migration or gene flow is an important biological
process that affects our interpretation of genetic data
from both within and between species (e.g., Patterson
et al. 2006; Innan and Watanabe 2006; Yamamichi et al.
2012; Leaché et al. 2013; Mallet et al. 2016). For example,
different models of speciation make different predictions
about the presence or absence of gene flow at the
time of species formation. There is a rich body of
literature in population genetics concerning models of
population subdivision and migration, starting from
Wright (1931, 1943). For example, in the finite-island
model, any population can exchange migrants with
any other (Wright 1943), whereas in the stepping-stone
model, only neighboring populations can exchange
migrants (Kimura and Weiss 1964). The standard single-
population coalescent theory (Kingman 1982) has been
extended to deal with such models of population
structure and migration, in the so-called structured
coalescent (e.g., Li 1976; Strobeck 1987; Takahata 1988;
Notohara 1990; Nath and Griffiths 1993; Wilkinson-
Herbots 1998). Models of population structure have been
implemented in computer programs such as GENETREE
(Bahlo and Griffiths 2000) and MIGRATE (Beerli and
Felsenstein 1999, 2001; Beerli 2006), which allow joint
estimation of population sizes and migration rates from
genetic data.

However, population structure models ignore the
phylogenetic relationships among the populations and
their divergence times. The isolation-with-migration

(IM) model is attractive as it incorporates the
population/species phylogeny in a model of migration.
They allow us to estimate the migration rates and
other parameters such as the species divergence times
and population sizes under more realistic models
(Nielsen and Wakeley 2001; Hey and Nielsen 2004;
Wilkinson-Herbots 2008, 2012). Another yet unexplored
use of the IM model is species tree estimation under
the multispecies coalescent model with migration,
accounting for both incomplete lineage sorting and
introgression. Coalescent-based phylogenetic inference,
which accommodate gene tree-species tree discordance
due to incomplete lineage sorting, has been heralded as
a paradigm shift in molecular phylogenetics (Edwards
2009). Recent analyses of genomic data sets have found
widespread conflicts among nuclear gene trees and
between the mitochondrial gene tree and the nuclear
species tree, for example, in mosquitos (Fontaine et al.
2015), butterflies (Martin et al. 2013), frogs (Zhou et al.
2012), birds (Ellegren et al. 2012), hares (Melo-Ferreira
et al. 2012), bears (Liu et al. 2014; Kutschera et al. 2014),
and gibbons (Chan et al. 2013). Hybridization both
between sister species and between nonsister species
is commonly observed between modern species, so it
is natural to expect it to have occurred in ancestral
species as well, especially during adaptive radiations
(Mallet 2005; Mallet et al. 2016). Many empirical studies
have highlighted incomplete lineage sorting (or rapid
radiation) and gene flow (introgression) as the two
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major challenges to species tree estimation when the
species are closely related. Although the multispecies
coalescent model with gene flow should accommodate
both factors naturally, full likelihood methods of species
tree estimation under the model are currently lacking.

Full likelihood implementation of the IM model for the
analysis of genetic sequence data is challenging because
calculation of the likelihood function has to average
over the genealogical history at every locus, which
includes the gene tree topology, the branch lengths (the
coalescent times), and the whole migration trajectory
(the number, directions, and times of all migration
events). The IM programs (Nielsen and Wakeley 2001;
Hey and Nielsen 2004; Hey 2010), for example, are not
practical for analyzing data sets with a few hundred
loci (Hey 2010). Approximations are often necessary to
analyze genome-scale data with many loci (Gronau et al.
2011).

When there are only a few sequences at a locus, it
is possible to integrate out the migration history either
numerically or analytically (Wang and Hey 2010; Lohse
et al. 2011; Zhu and Yang 2012; Andersen et al. 2014).
It is then feasible to analyze tens of thousands of loci
even though only a few sequences are sampled at each
locus. Here loci may be defined as loosely linked short
genomic segments that are far apart from each other, so
that recombination within a locus is unlikely to affect
the gene tree distribution, while different loci are nearly
independent due to recombination events (Burgess and
Yang 2008; Lohse et al. 2011). Wang and Hey (2010) used
numerical integration and special functions to integrate
out the migration history under the IM model for two
species when the data at every locus consist of two
sequences, with one from each species. A more efficient
approach is to integrate out the migration trajectory
analytically by using the Markov chain characterization
of the coalescent process with migration developed in
the structured coalescent framework (Notohara 1990;
Nath and Griffiths 1993; Hobolth et al. 2011; Zhu and
Yang 2012; Andersen et al. 2014). For example, with
only two sequences at a locus, the probability of the
sequence data at any locus depends on the sequence
divergence time t only, and not on the number and
times of the migration events. The density for t can
be calculated analytically (Hobolth et al. 2011; see also
Nath and Griffiths 1993; Wilkinson-Herbots 2008). Lohse
et al. (2011) derived probabilistic distributions of gene
trees using generating functions and symbolic algebra
in Mathematica. The implementation allows more than
two sequences at each locus, thus increasing the power
of the analysis (Lohse et al. 2011).

Zhu and Yang (2012) implemented the IM model for
three species, assuming symmetry in the migration rates
and population sizes between species 1 and 2 (with
M12 =M21 =M, and θ1 =θ2), whereas a third species
(species 3) is used as the out-group. They constructed
a likelihood ratio test (LRT) by comparing this model,
M2 (gene flow), with a null model of no migration
with M=0 (M0: no gene flow). In their implementation,
the data at every locus are assumed to consist of three

sequences, with one sequence from each species (this
data configuration is referred to in this article as “123”).
This restriction on data leads to reduced power of
the test and to an unusual case of unidentifiability
(Zhu and Yang 2012). Recently, Andersen et al. (2014)
have considered the IM model in a general setting,
in which one ancestral species splits into an arbitrary
number of populations at a time in the past (so that the
populations are related by a star phylogeny), allowing
for migration between any two populations. The authors
developed a strategy for “lumping” states in the Markov
chain to alleviate the problem of state-space explosion.
Their implementation, for the case of two diploid
individuals from two species (four sequences per locus),
assumed free recombination between any two sites
(alignment columns). Under this assumption, the data
at different sites are independent (conditional on the
species phylogeny and parameters in the model) so that
the sequence data set can be summarized as counts of 44

possible site patterns (nucleotide combinations), and the
authors were able to integrate out the coalescent times in
the gene trees for each site analytically (Andersen et al.
2014, sections 5 and 8.4).

In this study we extend the implementation of Zhu
and Yang (2012). Like many previous studies such as
Takahata et al. (1995), Wang and Hey (2010), and Lohse
et al. (2011), we work under the assumption of complete
linkage within a locus and free recombination between
loci. We note that both free recombination and complete
linkage within a locus are extreme assumptions, and
their impact on the inference is not yet well understood
(but see Burgess and Yang 2008; Zhu and Yang 2012).
We accommodate loci of two or three sequences of
arbitrary configurations, including “11” (two sequences
from species 1), “112” (two sequences from species 1 and
one sequence from species 2), and so on. Extension to
arbitrary loci (with two or three sequences per locus)
improves the power of the likelihood ratio test of gene
flow and makes it possible to estimate the migration
rates, which are unidentifiable with “123” loci alone (Zhu
and Yang 2012). We focus on migration between species
1 and 2, and include species 3 as an out-group to improve
the power of the analysis. As nicely discussed by Lohse
et al. (2011), the out-group may be informative about
the gene tree topology as well as the branch lengths
and about the ancestral nucleotide states in the common
ancestor of species 1 and 2. Inclusion of the out-group
may also make the inference more robust to mutation
rate variation among loci (Yang 2002). We remove the
symmetry assumption of the model, so that the inference
can be conducted under a more realistic model. We
develop an empirical Bayes (EB) approach to calculating
the posterior probabilities of gene tree topologies at
individual loci, which may be informative about whether
the locus has been transferred between species due to
gene flow. We conduct a simulation study to examine
the false positive rate and power of the LRT of gene flow
as well as the bias and variance of maximum likelihood
(ML) estimates of model parameters. We use the genome
sequences of Drosophila melanogaster, D. simulans, and
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FIGURE 1. a) Species tree illustrating parameters in model M2 (gene flow) for three species (1, 2, and 3) and b) to g) possible gene tree shapes
for a locus with three sequences (a, b, and c). With certain initial states (data configurations at the locus), we have to keep track of the sequence
IDs (a, b, and c) as well as the population IDs, so that each gene tree shape may correspond to three distinct gene trees. For example, with the
data configuration (initial state) 1a2b3c, the tree shape G6 represents three distinct gene trees: G6c: ((a, b), c); G6a: ((b, c), a); andG6b: ((c, a), b).

D. yakuba to construct multi-locus data sets and apply
our new method to infer the pattern and rate of migration
between those fruit fly species.

THEORY AND METHODS

Model and Data
The terms species and population are used

interchangeably in this article. The species tree is
((1, 2), 3), with 4 and 5 to be the ancestral species
(Fig. 1a). The two divergence events on the species tree
define three time epochs: E1: (0, �1), E2: (τ1, τ0), and E3:
(τ0, ∞) (Fig. 1a). We consider two models. M0 (no gene
flow) assumes no gene flow and is the multispecies
coalescent model for three species (Takahata et al. 1995;
Yang 2002; Rannala and Yang 2003). Model M2 (gene
flow) allows migration between species 1 and 2 (during
time epoch E1), but not from or to species 3.

There are nine parameters in the general IM model
for three species, including two species divergence times
(τ0 and τ1), five effective population sizes (θ1, θ2, θ3, θ4,
θ5), and two migration rates (M12 and M21). Here τ0 and
τ1 are scaled by the mutation rate and are measured
by the expected number of mutations per site, and θi =
4Niμ(i=1,...,5) are the population size parameters for
the five species, with Ni being the (effective) population
size of species i and μ the mutation rate per site per
generation. The migration rate is Mij =Njmij, where mij
is the proportion of individuals in population j that are
immigrants from population i. We define parameters by
referring to the real-world process with time running
forward (rather than the coalescent view with time
running backward) so that Mij is the expected number
of migrant individuals from populations i to j per
generation. The parameters under M2 (gene flow) are
�2 ={τ0, τ1, θ1, θ2, θ3, θ4,θ5, M12, M21} Model 0 (no gene
flow) is a special case of M2. With M12 =M21 =0, with
parameters �={τ0, τ1, θ1,θ2,θ3, θ4,θ5}. Note that the
symmetrical versions of M0 and M2 assume θ1 =θ2 and
M12 =M21 (Zhu and Yang 2012).

The data consist of multiple neutral loci. At each locus,
two or three sequences are sampled, each from any

of the three species. We focus mainly on the case of
three sequences at a locus. The case of two sequences
is much simpler and will be described briefly. Let the
three sequences at a locus be a, b, and c. Each sequence
will also be labeled by the population it is sampled
from. For example, the initial state for a locus with data
configuration “123” (with one sequence from each of the
three species) is recorded as 1a2b3c. The Markov chain
runs backwards in time, describing the change of states
due to coalescent and migration. For example, a locus
with initial state 1a2b3c may enter the state 2ab3c, which
means that sequences a and b have coalesced so that only
two sequences remain in the sample and the ancestor of
sequences a and b is in population 2, whereas sequence c
is in population 3. There are six gene tree shapes for three
sequences: G1–G6 (Fig. 1b–g), depending on the time
epochs during which the two coalescent events occur.
When we keep track of both the sequence IDs (a, b, c)
and the population IDs (1, 2, 3), each gene tree shape
may correspond to three distinct gene trees (Fig. 2). For
example, tree shape G6 corresponds to three gene trees:
G6c: ((a, b), c); G6a: ((b, c), a); and G6b: ((c, a),b), where
the subscript is the more distantly related sequence in
the gene tree. However, depending on the initial data
configuration, some of the gene trees may not be possible
(e.g., for a “123” locus, only gene trees G3c, G5c, G6c, G6a,
G6b are possible under M2), and furthermore some of the
gene trees have the same probability distribution under
the model (such as G6c, G6a, and G6b). To avoid excessive
notation, we make a distinction between gene tree shapes
and gene trees only if there is a risk of confusion.

Likelihood Function for Three Sequences at a Locus
We assume that the sequences at each locus are already

aligned, with alignment gaps and ambiguity nucleotides
removed. We use the JC69 mutation model (Jukes
and Cantor 1969) to correct for multiple substitutions.
The different loci are assumed to have the same
mutation rate, although relative rates for the loci can be
incorporated in the likelihood calculation (if available,
e.g., through comparison with an out-group species,
Yang 2002). The sequence alignment at any locus i with
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FIGURE 2. The three gene trees with branch lengths for three
sequences a, b, and c. Branch lengths b0 and b1 are simple linear
functions of coalescent times t0 and t1 in the gene trees of Figure 1.
For example, for the tree G1 of Figure 1, b0 = t0 and b1 = t1, whereas for
G2, b0 = t0 +τ1 – t1 and b1 = t1.

three sequences can be summarized as the counts, Di= (n0, n1, n2, n3, n4), of sites with five different site
patterns: xxx, xxy, yxx, xyx, and xyz, where x, y, and z
are any distinct nucleotides. The probability of the data
given the gene tree topology (G) and branch lengths
(b0, b1) (Fig. 2), P(Di|G, b0, b1), is thus given by the
multinomial distribution, with the probabilities of the
five site patterns calculated efficiently under the JC69
model (Saitou 1988; Yang 1994). Conveniently, P(Di|G,
b0, b1) depends on the gene tree topology and branch
lengths, but not on which time epoch each coalescent
event occurs in (Yang 2002, 2010).

The probability of data at locus i is an average over the
gene tree topologies and coalescent times

f (Di|�)=
∑

k

∫ u0

l0

∫ u1

l1
P(Di|Gk,b0,b1)f (Gk,t0,t1|�)dt1dt0,

(1)
where the sum is over all possible gene trees for the locus,
whereas the integrals are over the coalescent times t0
and t1, with the integral limits t0 ∈ (l0, u0) and t1 ∈ (l1, u1)
given below. Note that the branch lengths b0 and b1 in the
gene tree are simple linear functions of t0 and t1 (Figs. 1
and 2 and Table 1). The probability of the genealogy,
f (Gk , t0, t1|�), depends on the model (M0 or M2) and will
be described in the next section. For data configurations
with three sequences, there are up to 6 ×3=18 gene trees
to average over.

Finally, the log likelihood of the data at all L loci, D=
{Di}, is a sum over the L loci

�(�;D)=
L∑

i=1

logf (Di|�). (2)

Note that our model assumes that the n sites in the
sequence at the locus share the same genealogical tree
(topology and coalescent times). This contrasts with the
implementation of Andersen et al. (2014), which assumes
that the different sites have independent histories.

Implementation of Model M0 (No Gene Flow)
We first discuss our ML implementation of model

M0, which assumes no migration between any two
populations. The implementation of Yang (2002)
considered “123” loci only so that the model involves
only four parameters: �={τ0, τ1, θ4,θ5} Here we allow

arbitrary loci of two or three sequences, with up to seven
parameters in the model: �={τ0, τ1, θ1, θ2, θ3, θ4, θ5} Note
that the population size parameter for a modern species
(θ1, θ2, or θ3) exists in the model only if two or more
sequences are sampled from that species at least at one
locus.

Consider a locus with three sequences. In general, the
probability density of the gene tree has the form

f (Gk,t0,t1)=rates×e−T = 2
θi

2
θj

e−T, (3)

where parameters θi and θj are for the populations
in which the two coalescent events occur and the
exponential term e−T is the probability that no coalescent
event occurs in the rest of the gene tree, with T being
the total per-lineage-pair coalescent waiting time of Yang
2014, p. 336). Note that the coalescent rate for a pair
of sequences in a population with population size
parameter θ is 2/θ: for very small �t, the probability that
the pair will coalesce during the time interval (t, t+�t)
is 2

θ
�t.

Take, for example, configuration “111,” with the initial
state 1a1b1c. The probability of data for the locus
(Equation (1)) is an average over 6×3 gene trees. For
example, in the case of gene tree G1c: ((a, b), c), the
probability density of the gene tree (with coalescent
times) is

f (G1c,t0,t1) = 2
θ1

2
θ1

e−T = 2
θ1

2
θ1

e
− 6

θ1
t1− 2

θ1
t0

,

t0 >0,t1 >0,t0 +t1 <τ1, (4)

where 2
θ1

and 2
θ1

are the rates for the two coalescent
events, both occurring in species 1. Because of the
symmetry of the “111” locus, the density is the same
for the three gene trees: G1c, G1a, and G1b. The densities
and rates for all data configurations and gene trees
are summarized in Supplementary Table S1 (available
at Dryad at http://dx.doi.org/10.5061/dryad.h0h4s in
Supplementary Material). Note that some gene trees are
not possible for certain configurations of loci (e.g., gene
trees G1c, G1a, and G1b for “112” loci).

To compute the integrals of Equation (1) numerically,
we apply a linear transform. Let x0 = 2

θi
t0 and x1 = 2

θj
t1

be the coalescent times measured in generations, where
θs are for the populations in which the coalescent events
occur. Each integral in Equation (1) then becomes

∫ u0

l0

∫ u1

l1
P(Di|Gk,b0,b1)f (Gk,t0,t1)dt1dt0 =

∫ u
′
0

l′0

∫ u
′
1

l′1
P(Di|Gk,b0,b1)f (Gk,x0,x1)

∣∣∣ ∂(t0,t1)
∂(x0,x1)

∣∣∣dx1dx0.

(5)

In several cases (gene tree shapes G1 and G4 for initial
state “111”; G4 for “112”; and G1, G2, and G4 for “333”),
the integration region is a triangle (for instance, the

http://dx.doi.org/10.5061/dryad.h0h4s
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TABLE 1. Summary of the density for coalescent time for two sequences under M0 (no gene flow)

State f (t) before transform t limits f (x) after transform x limits b

11
2
θ1

e
−

2
θ1

t
(0,τ1) e−x (0,

2
θ1

τ1)
θ1

2
x

e
−

2
θ1

τ1 2
θ5

e
−

2
θ5

(t−τ1)
(τ1,τ0) e

−
2
θ1

τ1
e−x (0,

2
θ5

(τ0 −τ1)) τ1 + θ5

2
x

e
−

2
θ1

τ1
e
−

2
θ5

(τ0 −τ1) 2
θ4

e
−

2
θ4

(t−τ0)
(τ0, ∞) e

−
2
θ1

τ1
e
−

2
θ5

(τ0 −τ1)
e−x (0, ∞) τ0 + θ4

2
x

22 As for 11 above, with θ1 replaced by θ2

12
2
θ5

e
−

2
θ5

(t−τ1)
(τ1,τ0) e−x (0,

2
θ5

(τ0 −τ1)) τ1 + θ5

2
x

e
−

2
θ5

(τ0 −τ1) 2
θ4

e
−

2
θ4

(t−τ0)
(τ0, ∞) e

−
2
θ5

(τ0 −τ1)
e−x (0, ∞) τ0 + θ4

2
x

13/23
2
θ4

e
−

2
θ4

(t−τ0)
(τ0, ∞) e−x (0, ∞) τ0 + θ4

2
x

33
2
θ3

e
−

2
θ3

t
(0,τ0) e−x (0,

2
θ3

τ0)
θ3

2
x

2
θ4

e
−

2
θ3

τ0
e
−

2
θ4

(t−τ0)
(τ0, ∞) e−xe

−
2
θ3

τ0
(0, ∞) τ0 + θ4

2
x

region for G1 is given by t0 >0,t1 >0,t0 +t1 < τ1; see
Fig. 1). As we calculate the 2-D integral of Equation (5) by
calculating two 1-D integrals using Gaussian quadrature
(the so-called product rule), the integral region has to be
a rectangle. We thus apply a transform to achieve this.
For example, in the case of G1 for the initial state “111,”
we use x0 = 2

θ1
(t0 +t1), x1 = t1

t0+t1
, so that t0 = θ1

2 x0(1−x1),

t1 = θ1
2 x0x1. The new limits are 0<x0 < 2

θ1
τ1,0<x1 <1,

and the Jacobi of the transform is
∣∣∣ ∂(t0,t1)
∂(x0,x1)

∣∣∣= θ1
2

θ1
2 x0. Then

∫ τ1

0

∫ τ1−t0

0
P(Di|G1k,b0,b1)× 2

θ1

2
θ1

e
− 6

θ1
t1− 2

θ1
t0dt1dt0 =

∫ 2
θ1

τ1

0

∫ 1

0
P(Di|G1k,b0,b1)×x0e−2x0x1−x0 dx1dx0,

(6)

where b0 = t0 and b1 = t1 in the integral on the left-hand
side, and b0 = θ1

2 x0(1−x1) and b1 = θ1
2 x0x1 in the integral

on the right-hand side.
The transforms from (t0, t1) to (x0, x1) are summarized

in Supplementary Table S2 in Supplementary Material.
We use Gaussian quadrature to calculate the 2-D
integrals of Equations (5) or (6). Except where stated
otherwise, we used K =16 points in the quadrature. See
Yang (2010) for details. It is necessary to apply scaling
to avoid underflows as the probabilities of Equation (1)
may be too small to represent in the computer.

The case of two sequences.—In the case of two sequences
at a locus, the possible initial states are 11, 12, 22, 13,
23, and 33, depending on which populations the two
sequences are sampled from. The simple gene tree has
two branches, which have the same length t, with density
f (t|�) (Table 1). For instance, with the initial state 11
(two sequences from species 1), f (t|�) is a piecewise
continuous function because the population size and
thus the coalescent rate may differ in the three time
epochs. The sequence data at the locus are summarized
as di differences out of ni sites. Then the probability of
observing di differences at ni sites given that the two
sequences separated time t ago is

f (di|t)=
(

3
4 − 3

4 e−8t/3
)di

(
1
4 + 3

4 e−8t/3
)ni−di

. (7)

The (unconditional) probability of observing the data at
the locus is an average over the coalescent time

f (di|�)=
∫ ∞

0
f (t|�)f (di|t)dt. (8)

Gaussian quadrature is used to calculate the 1-D
integral, with the transform x= 2

θj
t (Table 1).

Implementation of Model M2 (Gene Flow)
Under model M2 (gene flow), the likelihood is given

by Equation (1) as before, and the probability of the
data at each locus P(Di|Gk , b0, b1) remains the same.
However, the probability density for the gene trees, f (Gk ,
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TABLE 2. Markov chains and their states for characterizing the
genealogical process of epoch E1 in model M2 (gene flow)

Case Initial states States in chain Calculation of P(t)

Loci with 3 sequences
I {111, 222} {111, 112, 122, 222, 11, 12,

22, 1|2} 8 states
Numerical

II {112, 122} {111, 112, 121, 122, 211,
212, 221, 222, 1bc1a,
1ca1b, 1ab1c, 1bc2a, 1ca2b,
1ab2c, 1a2bc, 1b2ca, 1c2ab,
2bc2a, 2ca2b, 2ab2c, 1|2}
21 states

Numerical

III {113, 123, 223} {113, 123, 223, 13|23} Numerical
IV {133, 233, 333} {133, 233, 13, 23, 33, 3} Analytical
Loci with 2 sequences
V {11, 12, 22} {11, 12, 22, 1|2} Numerical
VI {13, 23, 33} {13, 23, 33, 3} Analytical

Note: In case II (with initial states 112 or 122), it is necessary to keep
track of both the population ID (1, 2, 3) and the sequence ID (a, b, c),
so that state 1ab2c means two lineages in the sample, with the common
ancestor of a and b in population 1, and sequence c in population 2.

t0, t1), depends on the migration rates and differs from
that under model M0. Our aim in this section is thus to
describe the gene-tree density. We use a Markov chain
to characterize the process of coalescent and migration
when we trace the gene genealogy backwards in time.
In the general case, the states of the Markov chain
will include both the population IDs and sequence IDs.
Because of our assumption of no migration involving
species 3, the coalescent process during time epochs E2
and E3 are essentially the standard single-population
coalescent. Thus, we focus on epoch E1. Although it is
possible to use one Markov chain for all initial states,
we use different Markov chains depending on the initial
states to increase computational efficiency (Table 2). The
Markov chain characterization allows one to calculate
the probability density for the gene tree topology and
coalescent times, f (Gk , t0, t1), with the migration history
integrated out analytically (Hobolth et al. 2011; Zhu and
Yang 2012; Andersen et al. 2014). We do not use the
idea of Andersen et al. (2014) for lumping states in the
Markov chain because it would add much complexity to
the algorithm with no or little gain for the cases of two
or three sequences per locus. For the general migration
case with three species, lumping actually increases the
number of states from 12 to 15 for two sequences, and
from 57 to 70 for three sequences (Andersen et al.
2014, Table 2). We note that for four or more sequences
per locus, Andersen et al.’s algorithm may lead to
considerable reduction of the state space.

We illustrate the theory using gene tree G1c: ((a, b),
c) and initial state s= “111.” We take advantage of the
symmetry of the initial state and consider a reduced
Markov chain with eight states, dropping the sequence
IDs: {111, 112, 122, 222, 11, 12, 22, 1|2} (Table 2). Here
the state “1|2” means one sequence in either population
1 or 2. When both coalescent events have occurred and
there is only one sequence in the sample, there will be
no need to keep track of the population ID, so that states

1 and 2 can be lumped into one artificial absorbing state
(Andersen et al. 2014). The rate matrix is given in Table 3.
For gene tree shape G1, we have f (G1c, t0, t1)= f (G1a, t0,
t1)= f (G1b, t0, t1)= 1

3 f (G1, t0, t1), with

f (G1,t0,t1) = 3 2
θ1

Ps,111(t1)
(

2
θ1

P11,11(t0)+ 2
θ2

P11,22(t0)
)

+ 2
θ1

Ps,112(t1)
(

2
θ1

P12,11(t0)+ 2
θ2

P12,22(t0)
)

+ 2
θ2

Ps,122(t1)
(

2
θ1

P12,11(t0)+ 2
θ2

P12,22(t0)
)

+3 2
θ2

Ps,222(t1)
(

2
θ1

P22,11(t0)+ 2
θ2

P22,22(t0)
)
.

(9)

Note that the probability density function here has
the interpretation that f (G1, t0, t1) �t0�t1, for very
small �t0 and �t1, is the probability that the gene
tree topology is G1 (that is, t0 +t1 <τ1), that the first
coalescent occurs during the time interval (t1, t1 +�t1),
and that the second coalescent occurs during the time
interval (t1 +t0, t1 +t0 +�t0) (Fig. 1). Equation (9) gives
this probability as the sum of four terms. The first term is
for the case where the Markov chain is in state 111 right
before t1, with probability Ps,111(t1); the first coalescent
occurs in species 1 during (t1, t1 +�t1), with probability
3× 2

θ1
�t1, the factor 3 due to there being 3 possible pairs

for coalescent with the state 111; and then the second
coalescent occurs during (t1 +t0, t1 +t0 +�t0) either in

population 1, with probability P11,11(t0)×
(

2
θ1

�t0

)
, or in

population 2, with probability P11,22(t0)×
(

2
θ2

�t0

)
. Note

that in this scenario, the first coalescence changes the
state of the chain from 111 to 11. Similarly the 2nd, 3rd,
and 4th terms in Equation (9) are for the cases where
the state right before the first coalescent at time t1 is 112,
122, and 222, respectively, with the second coalescent
occurring either in population 1 or in population 2.

The densities for the other gene trees and for the
other initial states are presented in Appendix A and
summarized in Supplementary Tables S3 and S4 in
Supplementary Material.

This Markov chain characterization of the genealogical
process of coalescent and migration also allows easy
calculation of the probabilities of gene tree topologies,
integrating over the coalescent times. For example
with the initial state “123,” the transition probability
P123, 13|23(τ1) calculated from the Markov chain of
Table 2 (case III) is the probability that sequences 1
and 2 have coalesced by time τ1. This then gives the
probabilities for the five gene trees for the initial state
“123” as P(G3c)=P123, 13|23(τ1), P(G6c)=P(G6a)=
P(G6b)= 1

3
(
1−P123,13|23(τ1)

)×e−2/θ5(τ0−τ1), and
P(G5c)= 1 – P(G3c) – 3P(G6c) (Fig. 1). Here e−2/θ5(τ0−τ1)

is the probability that sequences 1 and 2 do not coalesce
in epoch E2.

In the case of two sequences at a locus, the likelihood
calculation given the branch length t is given by
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TABLE 3. Rate matrix Q for the Markov chain for initial states 111 and 222 under model M2

111 112 122 222 11 12 22 1|2

111 . 3 × 4M21/θ1 3 × 2/θ1
112 4M12/θ2 . 2 × 4M21/θ1 2/θ1

122 2 × 4M12/θ2 . 4M21/θ1 2/θ2

222 3 × 4M12/θ2 . 3 × 2/θ2

11 . 2 × 4M21/θ1 2/θ1

12 4M12/θ2 . 4M21/θ1

22 2 × 4M12/θ2 . 2/θ2

1|2 .

Note: We define parameters using the real-world process (with time running forward), so that the migration rate Mij =Njmij is the
expected number of migrant individuals from populations i to j per generation (in the real world) and mij is the proportion of individuals
in population j that are immigrants from population i. The Markov chain is then used to describe the process of coalescent with migration,
with time running backwards. For example, Q111,112 is the rate for the transition from state 111 to state 112, which in the real world
means one of the three sequences in population 1 is an immigrant from population 2, which has the rate 3m21 per generation. Because
time is measured by the mutational distance and one time unit is the expected time to accumulate one mutation per site (i.e., one time
unit is 1/μ generations), the rate per time unit is Q111,112 =3m21 ×1/μ=3×4N1m21/(4N1μ)=3×4M21/θ1, as in the table. Given the
rate matrix Q= {Qij}, the transition probability matrix over time t is given as P(t)= {Pij(t)}= eQt. This is the same calculation as in the
Markov chain models for nucleotide substitution such as Jukes and Cantor (1969).

Equations (7) and (8). The probability density of the
genealogy f (t) under M2 (gene flow) is the same as under
M0 for the initial states 13, 23, or 33 (Table 1). For initial
states s= 11, 12, or 22, the two sequences can coalesce in
any of the three time intervals: (0, τ1), (τ1,τ0), and (τ0,
∞), so that the density is given as

f (t)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2
θ1

Ps,11(t)+ 2
θ2

Ps,22(t), t<τ1,

∑
j∈B2

Ps,j(τ1)× 2
θ5

e
− 2

θ5
(t−τ1)

, τ1 < t<τ0,

∑
j∈B2

Ps,j(τ1)e
− 2

θ5
(τ0−τ1)× 2

θ4
e
− 2

θ4
(t−τ0)

, t>τ0.

(10)
where B2 ={11,12,22} is the set of states with two
sequences. The transition probability Ps,j(t) is calculated
using a Markov chain with four states 11, 12, 22, and 1|2.
See Hobolth et al. (2011).

Likelihood Ratio Test Comparing Models M0 (No Gene
Flow) and M2 (Gene Flow)

As M0 is a special case of M2, we use an LRT to
compare them. However, we note that the large-sample
�2 approximation is not valid and the null distribution
(i.e., the distribution of the test statistic 2��=2[�2 −�0]
when the null hypothesis M0 is true) depends on the
data configurations at the loci.

As discussed by Zhu and Yang (2012), if the data
consist of loci of configuration 123 only, the symmetric
version of model M2 has two more parameters than
M0: θ1 (=θ2) and M. However, for two reasons, the
large-sample �2

2 approximation to the test statistic is
not valid. First, the null hypothesis M0 corresponds
to the alternative hypothesis M2 with M= 0, but this
parameter value is at the boundary of the parameter
space. Second, when M= 0, parameter θ1 (=θ2) in model

M2 becomes unidentifiable. As a result of the violations
of the regularity conditions for the �2 approximation, the
true null distribution is unknown. Furthermore, analysis
of data of configuration “123” under M2 leads to an
unusual unidentifiability problem: two sets of θ1 (=θ2)
and M values always give the same log likelihood value.

It is easy to see that this unidentifiability problem
exists for the symmetric model if the data consist of
a mixture of loci with configurations 12 and 123, or if
the 12 and 123 loci are supplemented with an arbitrary
mixture of loci of configurations 33, 13, 23, 333, 133,
and 233, without any loci of configurations 11, 22, 112,
122, 111, 222, 113, and 223. All such data sets will
show the unidentifiability problem under M2 and the
two violations of the regularity conditions for the �2

2
asymptotics. In this study, we follow Zhu and Yang (2012)
and use �2

2 as the null distribution to conduct the test and
consider the test to be significant if 2��>5.99. For data
of a mixture of loci with configurations 11, 22, and 12,
or of a mixture of 113, 223, and 123, parameter θ1 (=θ2)
is identifiable in both models M0 and M2. Although we
still have the problem with the parameter value M=0
at the boundary, the problem is an instance of case 5 in
Self and Liang (1987). As a result, the null distribution is
known to be the 50:50 mixture of 0 and �2

1, with the 5%
critical value to be 2.71. The critical values for different
mixtures of two initial states under the symmetric model
are given in Supplementary Table S5 in Supplementary
Material.

A similar unidentifiability problem exists under the
asymmetrical model for certain combinations of loci. Let
U1 = {11, 111, 112, 113} and U2 ={22,122,222,223}. If a data
set consists of at least one of the states in U1 and one of the
states in U2, then M2 is identifiable In this case, M2 has
two more free parameters (M12 and M21) than M0 and a
50:50 mixture of 0 and �2

2 is the null distribution, with
the significance value 2��= 4.61. If a data set consists
of at least one state in U1 but none in U2 or at least one
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state in U2 but none in U1, the model is unidentifiable. In
this case the null distribution is unknown and we use �2

3
to conduct the test, with critical value 7.82. If a data set
contains none of the states in either U1 or U2, we use �2

4
to conduct the test, with the critical value 9.49 because
M0 and M2 differ by four parameters. The critical values
for the likelihood ratio test under the asymmetric model
for different mixtures of loci are given in Supplementary
Table S6 in Supplementary Material.

Posterior Probabilities of Gene Tree Topologies
When there is gene flow, it may be of interest

to know which loci are most likely to have been
transferred between species, and to further examine
whether the transferred genes share a particular function
or are located in the same chromosomal region. Our
formulation of the IM model does not allow us to address
this question in a straightforward manner. However,
we can use an EB approach to calculate the posterior
probabilities of the 18 gene tree topologies for each locus,
which may be informative about whether the locus is
involved in cross-species gene flow. For example, for a
“123” locus, the possible gene trees are G3c, G5c, G6c,
G6a, and G6b, with G3c being possible only if the locus is
transferred between species 1 and 2 (Fig. 1). Similarly for
a “112” locus, gene tree shape G1 is possible only with
gene flow. We note that loci of certain configurations,
such as “113” or “223,” may not provide such information
about gene flow.

The probability of data at a locus, f (Di|�), is a sum
over the 18 gene trees (Equation (1)). The posterior
probabilities of the gene trees can be calculated by
rescaling those 18 terms so that they sum to 1.

f (Gk|Di,�)= f (Gk|�)f (Di|Gk,�)
f (Di|�)

=

∫ u0

l0

∫ u1

l1
P(Di|Gk,b0,b1)f (Gk,t0,t1|�)dt1dt0

∑
k

∫ u0

l0

∫ u1

l1
P(Di|Gk,b0,b1)f (Gk,t0,t1|�)dt1dt0

(11)

We replace the parameters (�) by their MLEs (�̂), and
the method is known as empirical Bayes (EB). The EB
procedure does not account for sampling errors in the
MLEs, which may be a concern if the data set is small
and the MLEs involve considerable sampling errors. This
is the same EB procedure as used in reconstructing
ancestral sequences in molecular phylogenetics (Yang
et al. 1995) and in detecting positively selected sites in
a protein-coding gene (Nielsen and Yang 1998).

We conducted a small simulation to examine the
reliability of the calculation using Equation (11). We
simulated data sets using the parameter values: τ0 =
0.0243, τ1 =0.0136, θ4 =0.0400, θ5 =0.0106, θ1 =0.0052,
θ2 =0.0127, M12 = 0 and M21 =0.0183, which are the
MLEs under M2 from the Drosophila data set D1 (auto),
to be described and analyzed later (Tables 4 and 9).

TABLE 4. Five Drosophila data sets analyzed in this article

Data No. of No. of No. of
set MMY loci MSY loci SSY loci Total

D1 auto 378 19,224 9,425 29,027
D2 noncoding 378 14,498 7,211 22,087
D3 chrX 0 4,381 2,105 6,486
D4 exons complete 378 27,200 13,500 41,078
D5 exons split 378 10,979 5,342 16,699

We simulated two replicate data sets, each of the same
size and configurations as the real data. The results
are very similar between the two data sets so we
discuss only those for the first data set. The MLEs from
the simulated data set are τ̂0 =0.0242, τ̂1 =0.0137, θ̂4 =
0.0402, θ̂5 =0.0104, θ̂1 =0.0058, θ̂2 =0.0126, M̂12 =0.0018,
and M̂21 =0.0196, very close to the true values. The
calculated posterior probabilities for gene tree topologies
for the “123” loci (Fig. 3a) are accurate in the sense
that a posterior probability of 90% is for a correct gene
tree about 90% of the time (Fig. 3b). However, the
power may not be very high. Although the posterior
for gene trees G6a and G6b may reach high values, that
for G6c is seldom very high (Fig. 3c). It may be hard to
distinguish among gene trees G3c, G5c, andG6c. Finally,
approximately equal proportions of loci are inferred to
have gene trees G6c, G6a, and G6b(Fig. 3a), and they are
also close to the expected proportions. Overall the results
indicate a well-behaved method.

Program Implementation, Validation, and Availability
Although the general theory of the gene-tree

distribution under the Markov chain characterization
of the genealogical process under the IM model is
straightforward (Zhu and Yang 2012; Andersen et al.
2014), development of a computer program that can
analyze tens of thousands of loci with an arbitrary
mixture of loci of different configurations is challenging.
Note that under both models M0 (no gene flow) and
M2 (gene flow), the number of possible gene trees, the
probability density of each gene tree and its coalescent
times, and the integration limits for the integrals over the
coalescent times all depend on the data configuration
at the locus. This dependence makes the programming
effort rather tedious and error-prone. Thus we decided
to tabulate the necessary results, in Supplementary
Tables S1 and S2 in Supplementary Material for M0
and similarly in Supplementary Tables S3 and S4 in
Supplementary Material for M2.

We conducted extensive tests to validate our
implementation. The MCCOAL program, which is part
of the BPP package (Yang and Rannala 2010; Zhang
et al. 2011), was used to simulate sequence data under
models M0 and M2 for different data configurations
and parameter values. We ensured consistency of the
MLEs: when the same model is used to generate the
data and to analyze them, the MLEs should converge
to the true parameter values when the size of the data
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FIGURE 3. Posterior probabilities of the six possible gene trees (G3c, G5c, G6c, G6a, and G6b) for the “123” loci in a data set simulated using the
MLEs of parameters for the Drosophila data set D1 (auto).

set (the number of loci) increases. We also confirmed
that the likelihood stabilizes when the number of points
in the Gaussian quadrature is increased. We simulated
106 (true) gene trees under M2 to confirm that the
observed frequencies of gene tree topologies match
their probabilities calculated from the Markov chain
characterization.

Both models M0 and M2 are implemented in the
program 3S. We identified two bottlenecks in calculating
the likelihood and improved performance in both areas.
First, for most initial states, the transition probability
matrix P(t) needs to be calculated numerically, involving
an expensive matrix exponential. We use the GNU
Scientific Library (GSL) (Galassi et al. 2013) to
optimize this step. Second, the likelihood calculation
is proportional to the number of loci in the data, as
it is dominated by the computation of the probability
of data at each locus, f (Di|�). We take advantage
of the independence among loci and use OpenMP
to parallelize the computation (Dagum and Menon
1998). Although both optimizations are optional, they
offer significant speed-ups on genome-scale data sets
(Supplementary Fig. S1 in Supplementary Material). The
program, with instructions on how to compile and run
it with and without GSL and OpenMP, is available at
http://abacus.gene.ucl.ac.uk/software/3s.html.

Drosophila Genomic Data sets
We compiled multi-locus data sets for three Drosophila

species, D. melanogaster (M), D. simulans (S), and

D. yakuba (Y). We used Flybase FB2016_01 (Attrill
et al. 2016) genome releases of D. melanogaster (r6.09,
January 2016), D. simulans (r2.01, Hu et al. 2013), and
D. yakuba (r1.05, January 2016), as well as the assembly of
D. simulans strain M252 (Palmieri et al. 2014). We treated
the two D. simulans genomes (r2.01 from North American
and M252 from Madagascar) as two random samples
from the same species. Five data sets of MSSY loci were
constructed (Table 4): D1 (auto) for autosomes 2 and 3,
D2 (noncoding) for intergenic regions and introns from
chromosomes 2 and 3, D3 (chrX) for the X chromosome,
D4 (exons complete) and D5 (exons split). D4 (exons
complete) was compiled using nonoverlapping complete
exons on chromosomes 2 and 3. When exons were
overlapping, only the longest was kept. For all data
sets except D4 (exons complete), sequences were split
into chunks between 100 bp and 500 bp that were
separated by at least 2 kb. These criteria were from
Wang and Hey (2010), based on previous estimates of
recombination rates for Drosophila (Hey and Nielsen
2004). To construct each of data sets D1–D4, we extracted
the loci from the D. melanogaster genome as a starting
point and then ran NCBI BLAST (Camacho et al. 2009)
with default settings to find matching sequences in the
other genomes. We discarded short matches (<40% of
the query sequence), and removed loci where the two
longest matches differed in length by less than 10% to
avoid paralogs. The remaining loci were aligned using
MAFFT, using default settings (Katoh and Standley
2013). We reduced each of the MSSY loci to either MSY
or SSY by randomly removing either the D. melanogaster

http://abacus.gene.ucl.ac.uk/software/3s.html
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TABLE 5. False positive rate, percentage of zeros, and 95% quantile of the null distribution of the LRT statistic (2��) comparing the
symmetrical versions of models M0 (no gene flow) and M2 (gene flow)

Data L= 10 100 1000 15,000

Set 1 (hominoid): θ4 =θ5 =θ12 = 0.005, τ0 = 0.006, τ1 = 0.004
(a) 123 0.000 0.829 0.034 0.001 0.641 2.217 0.005 0.528 2.708 0.004 0.506 2.443
(b) 11&12 0.003 0.851 0.578 0.019 0.680 1.528 0.045 0.504 2.542 0.084 0.479 3.492
(c) 113&123 0.002 0.848 0.307 0.027 0.674 2.073 0.037 0.576 2.161 0.035 0.507 2.329

Set 2 (mangroves): θ4 =θ5 =θ12 = 0.01, τ0 = 0.02, τ1 = 0.01
(a) 123 0.001 0.883 0.616 0.006 0.798 1.33 0.009 0.709 2.06 0.004 0.345 1.772
(b) 11&12 0.009 0.881 0.454 0.020 0.741 1.542 0.100 0.439 3.872 0.078 0.570 3.481
(c) 113&123 0.010 0.906 0.418 0.035 0.791 1.983 0.031 0.712 2.013 0.039 0.722 2.136

Set 3: θ4 =θ12 = 0.02, θ5 = 0.03, τ0 = 0.06, τ1 = 0.04
(a) 123 0.000 0.957 0.00 0.002 0.904 0.501 0.001 0.896 0.424 0.006 0.884 0.975
(b) 11&12 0.007 0.864 0.796 0.032 0.727 1.979 0.035 0.713 1.814 0.009 0.839 0.422
(c) 113&123 0.003 0.945 0.017 0.008 0.902 0.535 0.007 0.895 0.589 0.008 0.910 0.198

Set 4: θ4 =θ12 = 0.02, θ5 = 0.01, τ0 = 0.02, τ1 = 0.01
(a) 123 0.000 0.854 1.137 0.003 0.782 1.469 0.001 0.717 0.841 0.002 0.685 2.003
(b) 11&12 0.008 0.823 0.479 0.032 0.757 1.707 0.047 0.625 2.470 0.049 0.656 2.687
(c) 113&123 0.013 0.823 1.056 0.040 0.775 2.069 0.034 0.719 1.782 0.030 0.666 2.136

Note: In each cell, the three numbers are the false positive rate, the proportion of replicates in which the test statistic is 2��= 0, and the estimated
95% critical value. The critical value used for the test is �2

2,5% = 5.99 for (a) configuration 123, and is 2.71 for (b) 11&12 and (c) 113&123.

or one of the D. simulans sequences. Data set D5 (exons
split) was constructed by splitting the alignments of D4
(exons complete) into loci of between 100 bp and 500
bp and removing chunks that did not fulfill the 2kb-
separation criterion. Thus all loci in D5 are also in D4,
but the alignments of the same loci in D5 may be shorter.
Some loci in D4 (374 of them) were longer than 2600 bp,
and were split into more than one locus in D5. Finally,
we added the 378 MMY loci from Hutter et al. (2007)
to all data sets except D2 (chrX) after updating their
coordinates to the current D. melanogaster release and
confirming that they do not overlap with the MSSY loci
we compiled.

Note that D2 (noncoding) includes both intergenic
regions and introns: these were found to produce very
similar estimates in a preliminary analysis and were
thus merged into one data set. D1 (auto) and D3 (chrX)
include both noncoding regions and exons. The loci in D2
(noncoding), D4 (exons complete), and D5 (exons split)
may not be included in D1 (auto).

The five data sets were analyzed using the program 3s
under models M0 and M2 to estimate parameters and to
test for gene flow. Fitting the two models to each data set
took about 20 minutes on a single core and ∼1 minute
using 32 cores on a Sun Fire X4600M2 server (with 32
Opteron AMD cores at 2.7 GHz). We also calculated the
posterior probabilities of gene tree topologies under M2
to identify the gene loci that are most likely to have been
transferred across species barriers during introgression
(Equation (11)).

RESULTS

Computer Simulation to Examine the Statistical Properties of
the New Model

We conducted computer simulations to examine the
false positive rate and the power of the LRT comparing

models M0 (no gene flow) and M2 (gene flow) to test for
migration between species 1 and 2. We also examined
the biases and variances of MLEs of parameters under
M2. Our simulation design largely follows that of Zhu
and Yang (2012).

To examine the false positive rate of the test, we
simulated replicate data sets under the symmetrical
version of M0 and analyzed them under both M0 and
M2, assuming symmetry (Table 5). We used four sets
of parameter values (Zhu and Yang 2012, Table 1). The
first two sets are based roughly on parameter estimates
from the hominoids (Burgess and Yang 2008) and the
mangroves (Zhou et al. 2007). Sets 3 and 4 have larger
parameter values and also different values for the three
θs. The number of loci was fixed at L=10, 100, 1000,
and 15,000, with each locus having 500 sites. Gene trees
with branch lengths (coalescent times) were generated
from the multispecies coalescent model (Rannala and
Yang 2003) using the program MCCOAL, which is part
of the BPP package (Rannala and Yang 2003; Yang and
Rannala 2010). Given the gene tree, the sequences were
allowed to evolve along the branches of the tree, under
the JC69 mutation model (Jukes and Cantor 1969). The
resulting sequences at the tips of the tree constituted
the data. Each replicate data set thus consisted of
L sequence alignments, with 500 base pairs at each
locus. We considered three kinds of data: (i) all loci of
configuration 123, (ii) a mixture of loci of configurations
11 and 12 in equal proportions, and (iii) a mixture of loci
of configurations 113 and 123 in equal proportions. The
number of replicates was 1000.

Overall, the use of the �2
2 distribution for data of

configuration (i) 123 made the test conservative, as the
false positive rate was always <1%, whereas an error
rate of 5% was allowed (Table 5). For the “pairs” data
(configuration b, 11&12), we observed false positive rates
of up to 10% for parameter sets 2 and 3. The analysis
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TABLE 6. Power of the LRT comparing the symmetrical versions
of models M0 (no gene flow) and M2 (gene flow)

Data L= 10 100 1000 15,000

Set 1 (hominoid): θ4 =θ5 =θ12 = 0.005, τ0 = 0.006, τ1 = 0.004, M=1
(a) 123 0.6% 5.3% 81.6% 100%
(b) 11&12 4.6% 7.0% 16.1% 65.7%
(c) 113&123 3.3 % 17.9% 88.3% 100%

Set 2 (mangroves): θ4 =θ5 =θ12 = 0.01, τ0 = 0.02, τ1 = 0.01, M=1
(a) 123 3.0% 52.1% 100% 100%
(b) 11&12 8.0% 27.3% 32.0% 89.3%
(c) 113&123 13.8% 69.3% 100% 100%

Note: The critical value used is 5.99 for (a) 123, and is 2.71 for (b) 11&12
and (c) 113&123.

seemed to suffer from a lack of information when only
two sequences were available at each locus. In theory,
the false positive rate should converge to 5% when the
number of loci increases, so it appears that more loci are
needed for the asymptotics to be reliable for the “pairs”
data than for the “triplet” data (c: 113&123). Adding an
out-group sequence increased the information content
in the data, reducing the false positive rate to below
5%.

We examined the power of the test by simulating
sequence alignments under the symmetrical version of
M2 (gene flow). We used parameter values of Set 1
(hominoid) and Set 2 (mangroves), with M12 =M21 =1
(Table 6). The test has virtually no power with L=10
loci. With L=100 or 1000, there are large performance
differences between the two sets of parameter values.
This is because the sequences are far more divergent and
thus more informative for the mangroves set than for the
hominoid set. Power is quite high with 1000 loci, when
three sequences are used at each locus. Power is similar
for the “123” data and for the “113&123” data. There is
dramatic difference in power between the “pairs” data
(b, 11&12) and the “triplet” data (c, 113&123). The use
of the out-group species improves the power of the test
dramatically. This is consistent with Lohse et al. (2011),
who suggested that triplet samples provide qualitatively
new information about historical parameters in the joint
distribution of topologies and branch lengths.

Table 7 lists the means and standard deviations of the
MLEs of parameters under model M2 for the same data
analyzed in Table 6. Data sets with “123” loci only suffer
from the problem of unidentifiability and do not allow
the estimation of the migration rate. Inclusion of the
“113” loci allows the model to estimate θ1 (=θ2) and M
and the unidentifiability problem disappears, leading to
better parameter estimation. Furthermore, the “triplet”
data provided much better parameter estimates than the
“pair” data.

We also simulated data under the general
(asymmetrical) model M2 (gene flow) to examine
the estimation of migration rates. Given that the
estimation was poor for the “pair” data even under the
symmetrical model (Table 7) and that the asymmetrical
model involves even more parameters, we focus on

the “triplet” data only, with three sequences per locus.
We used the mangrove set of parameters, with the
migration rates set at M12 = 0.1 and M21 = 1 migrant
individuals per generation. We explored two different
data configurations, with each data set consisting of (a)
“223” and “123” loci in equal proportions, and (b) “113,”
“223,” and “123” loci in equal proportions (Table 8).
The results suggest that 100 loci may be too few to
obtain reliable parameter estimates. In particular, the
lack of polymorphism data for species 1 in the 223&123
configuration led to large fluctuations in the estimates
of θ5, θ1, and M21. Even with 1000 loci, we encountered
several data sets in which the MLEs of parameters hit
the boundary set in the program (with M12 =M21 = 0),
or the MLEs imply a star tree (with τ0 ≈ τ1 and θ5 ≈ 0 or
∞). With 15,000 loci, the estimates are close to the true
values. Estimates of migration rates are seen to involve
a positive bias, but the bias is small with 15,000 loci. To
fit the asymmetrical IM model, it appears important to
include thousands of loci, and to include population
data for both species 1 and 2 (such as “113” and “223”
loci), as well as the “123” loci.

Analysis of Drosophila Genomic Data sets
For each of the five data sets (Table 4), we performed

three runs of 3S and used the results from the run with
the highest log likelihood. Integration over coalescent
times in the gene trees used Gaussian quadrature
with K =16 points. We used both the symmetrical and
asymmetrical versions of models M0 and M2, but here
we focus on the asymmetrical models as they fit the
data much better (Table 9). We describe some general
features of the results before discussing results specific
to individual data sets. In every data set, the LRT
comparing M0 and M2 is significant. Furthermore, the
parameter estimates under M2 suggest no migration
from D. melanogaster to D. simulans, and about 0.016 to
0.044 immigrants per generation from D. simulans to
D. melanogaster. The consistency among the data sets
suggests that this pattern of unidirectional migration
may be real. Estimates of τ and θ parameters have very
small standard errors because of the large size of the data
sets. Parameter estimates are nearly identical between
data sets D1 (auto) and D2 (noncoding), and between
D4 (exons complete) and D5 (exons split), suggesting
that with such large genomic data sets, how extensively
the genomes were sampled to compile the data sets did
not matter much. Note that the autosomal data set D1
(auto) is dominated by noncoding DNA, even though
different noncoding loci may be included in D1 and D2,
and that loci in D5 (exons split) are a subset of those in
D4 (exons complete). Although model M0 did not fit the
data as well as M2, it produced stable and reasonable
estimates of θ and τ parameters, which were also similar
to estimates from M2. (The exon data sets D4 and D5
are exceptions to this pattern, to be discussed later.) For
example, in data sets D1 (auto) and D2 (noncoding), both
M0 and M2 estimates suggest that θS (≈0.013) is more
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TABLE 7. Means and SDs of MLEs from data sets simulated under the symmetrical model M2 (gene flow)

(a) 11&12 (b) 113&123

Data θ4 θ5 τ0 τ1 θ12 M θ4 θ5 τ0 τ1 θ12 M

Set 1 (hominoid): θ4 =θ5 =θ12 = 0.005, τ0 = 0.006, τ1 = 0.004, M= 1
Truth 5 5 6 4 5 1 5 5 6 4 5 1
L= 100 6.7 ± 4.1 33.7 ± 191.0 6.7 ± 3.0 3.4 ± 2.3 9.3 ± 64.0 1.4 ± 1.7 4.9 ± 1.0 10.8 ± 90.2 6.0 ± 0.4 3.6 ± 1.9 6.6 ± 8.1 1.3 ± 1.4
L=1000 5.5 ± 2.5 20.0 ± 152.5 7.4 ± 3.6 3.4 ± 1.9 6.9 ± 56.9 1.1 ± 0.7 5.0 ± 0.3 4.7 ± 2.0 6.0 ± 0.1 4.0 ± 1.2 5.1 ± 0.6 1.1 ± 0.6
L=15000 5.1 ± 1.0 14.1 ± 98.3 7.4 ± 4.1 3.5 ± 1.3 5.0 ± 0.4 0.9 ± 0.2 5.0 ± 0.1 5.0 ± 0.6 6.0 ± 0.0 4.0 ± 0.3 5.0 ± 0.1 1.0 ± 0.1

Set 2 (mangroves): θ4 =θ5 =θ12 = 0.01, τ0 = 0.02, τ1 = 0.01, M= 1
Truth 10 10 20 10 10 1 10 10 20 10 10 1
L= 100 13.1 ± 7.5 17.8 ± 87.2 18.6 ± 7.5 8.8 ± 5.0 10.9 ± 7.3 1.5 ± 1.7 9.9 ± 1.9 9.6 ± 3.9 20.1 ± 0.9 9.9 ± 4.2 14.0 ± 70.0 1.4 ± 1.4
L=1000 10.9 ± 4.3 13.4 ± 64.5 18.6 ± 7.7 8.6 ± 4.0 10.0 ± 1.7 1.1 ± 0.5 10.0 ± 0.6 9.9 ± 1.2 20.0 ± 0.3 10.0 ± 0.2 10.1 ± 0.6 1.1 ± 0.4
L=15000 10.1 ± 2.2 16.9 ± 103.4 20.8 ± 7.8 9.5 ± 2.0 10.0 ± 0.2 1.0 ± 0.2 10.0 ± 0.2 10.0 ± 0.3 20.0 ± 0.1 10.0 ± 0.3 10.0 ± 0.1 1.0 ± 0.1

Note: Estimates of θs and τs are multiplied by 1000. For L= 100 or 1000, some estimates are very large (∞) in certain data sets, causing the mean
and SD to be very large. See Table 5 for the power of the LRT from the same data.

TABLE 8. Means and SDs of MLEs from data sets simulated under the asymmetrical IM model M2 (gene flow)

Parameters (true values in parentheses)

Data θ4 (10) θ5 (10) τ0 (20) τ1 (10) θ1 (5) θ2 (10) M12 (0.1) M21 (1)

(a) 223&123
L= 100 9.9 ± 2.0 16.8 ± 63.1 20.1 ± 0.9 10.4 ± 5.0 9.7 ± 19.3 9.4 ± 5.9 0.2 ± 0.5 1.2 ± 0.8
L=1000 10.0 ± 0.6 12.6 ± 38.9 20.0 ± 0.3 10.0 ± 4.9 9.5 ± 22.0 9.6 ± 1.6 0.2 ± 0.2 1.6 ± 2.6
L=15000 10.0 ± 0.2 9.7 ± 1.2 20.0 ± 0.1 10.3 ± 2.9 5.4 ± 3.5 10.0 ± 0.4 0.1 ± 0.0 1.1 ± 0.7
(b) 113&223&123
L= 99 9.8 ± 2.0 10.9 ± 26.9 20.1 ± 1.0 10.2 ± 5.0 7.5 ± 5.8 9.3 ± 6.1 0.4 ± 1.0 1.4 ± 1.5
L=999 10.0 ± 0.6 11.8 ± 37.6 20.0 ± 0.3 10.1 ± 4.7 5.4 ± 1.3 9.5 ± 2.1 0.2 ± 0.2 1.0 ± 0.3
L=15000 10.0 ± 0.1 9.7 ± 1.3 20.0 ± 0.1 10.1 ± 2.8 5.0 ± 0.3 9.9 ± 0.5 0.1 ± 0.1 1.0 ± 0.1

Note: Estimates of θs and τs are multiplied by 1000. For L � 1000, several data sets produced large estimates of θ5 at the upper bound set by the
program. The means and SDs were calculated by excluding those estimates.

TABLE 9. MLEs and standard errors from the five Drosophila data sets of Table 4

Data and model τMSY τMS θMSY θMS θM θS MMS MSM � 2��

D1 auto
M0 24.6 ± 0.1 11.3 ± 0.1 39.4 ± 0.3 13.3 ± 0.2 6.0 ± 0.4 12.8 ± 0.2 −4,763,806.0
M2 24.3 ± 0.1 13.6 ± 0.2 40.0 ± 0.3 10.6 ± 0.3 5.2 ± 0.6 12.7 ± 0.2 0.0 18.3 ± 3.1 −4,763,452.5 707.0

D2 noncoding
M0 24.5 ± 0.1 10.8 ± 0.1 41.6 ± 0.4 13.9 ± 0.2 6.0 ± 0.4 13.1 ± 0.2 −3,326,330.8
M2 24.3 ± 0.1 12.6 ± 0.2 42.1 ± 0.4 12.0 ± 0.2 5.3 ± 0.4 13.0 ± 0.2 0.0 16.2 ± 2.5 −3,326,145.1 371.2

D3 chrX
M0 28.0 ± 0.2 12.3 ± 0.2 41.1 ± 0.6 15.3 ± 0.4 NA 8.2 ± 0.2 −1,027,233.4
M2 27.8 ± 0.2 14.2 ± 0.3 41.6 ± 0.6 13.0 ± 0.5 20.9 ± 9.4 8.3 ± 0.2 0.0 40.2 ± 16.9 −1,027,161.6 143.5
M2 (θM =θS/2) 27.8 ± 0.2 14.2 ± 0.3 41.6 ± 0.6 13.0 ± 0.5 4.1 ± NA 8.3 ± 0.2 0.0 8.0 ± 1.1 −1,027,161.7 143.5
M2 (θM =θS) 27.8 ± 0.2 14.2 ± 0.3 41.6 ± 0.6 13.0 ± 0.5 8.3 ± 0.2 0.0 15.9 ± NA −1,027,161.7 143.5

D4 exons complete
M0 20.2 ± 0.1 10.9 ± 0.1 33.7 ± 0.2 9.9 ± 0.1 5.9 ± 0.4 10.7 ± 0.1 −7,853,901.6
M2 18.3 ± 0.1 18.3 ± 0.1 38.2 ± 0.2 0.0 ± 0.0 4.5 ± 0.5 10.7 ± 0.1 0.0 43.6 ± 4.0 −7,853,313.7 1175.8
M2 (τMSY = 0.020, τMS = 0.013) 20 13 34.3 ± 0.2 7.4 ± 0.0 5.1 ± NA 10.6 ± 0.1 0.0 20.7 ± NA −7,853,425.1 952.9

D5 exons split (subset of D4)
M0 19.6 ± 0.1 10.9 ± 0.1 38.9 ± 0.3 9.4 ± 0.2 5.9 ± 0.4 10.2 ± 0.2 −2,139,639.5
M2 18.0 ± 0.1 18.0 ± 0.1 42.6 ± 0.4 0.0 ± 0.0 4.2 ± 0.3 10.2 ± 0.2 0.0 37.8 ± 2.9 −2,139,182.0 915.1
M2 (τMSY = 0.020, τMS = 0.013) 20 13 38.5 ± 0.3 7.4 ± 0.4 4.7 ± 0.4 10.1 ± 0.2 0.0 20.4 ± 3.3 −2,139,414.4 450.2

Note: Estimates of τ, θ, and M are multiplied by 1000. See Table 4 for information about the data sets.

than twice as large as θM (≈0.005–0.006), consistent with
previous studies which suggest that D. simulans has
a larger effective population size than D. melanogaster
(e.g., Langley et al. 2012; Wang and Hey (2010)).

Also from data sets D1 (auto) and D2 (noncoding)
we obtained τ̂MS =0.011 and θ̂MS =0.013−0.014
under M0, and τ̂MS = 0.012–0.014 and θ̂MS =0.011−0.012
under M2 (Table 9). The slightly smaller estimates of
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τMS and larger estimates of θM under M0 than under
M2 may be expected because a more recent divergence
between D. melanogaster and D. simulans and a larger
population size for D. melanogaster may help M0 (which
does not allow gene flow) to explain the genetic variation
introduced by immigrants from D. simulans.

Data set D3 (chrX) for the X chromosome showed
very different patterns from the autosomal data sets D1
(auto) and D2 (noncoding), with a smaller estimate of θS,
and slightly larger estimates of the other θ parameters.
The estimated migration rate MSM was much higher for
the X than for the autosomes. By the simple model of
random mating and neutral evolution, and assuming
the same mutation rate for the X and the autosomes,
one would expect the effective population size for the
X chromosome to be ¾ that for the autosome, so that
θs for X should be ¾ times as large as θs for the
autosomes, whereas the τs and Ms should be identical.
The parameter estimates suggested that this simplistic
model may not fit the data well. However, the estimates
of θM and MSM from D3 (chrX) were associated with
large sampling errors. Indeed D3 (chrX) does not include
any MMY loci, so that the data contain only very weak
information concerning θM even though the model is
identifiable. The correlation between estimates of θM and
MSM means that estimation of MSM may be affected
as well. We thus reran M2 under the constraint that
θM = ½θS or θM =θS, obtaining estimates of MSM to be
0.016 and 0.008 (Table 9). Thus there was no evidence
for a large MSM for the X than for the autosomes.
The large changes to θM and MSM caused virtually no
change to the log likelihood or to estimates of other
parameters, suggesting that the data are uninformative
about θM and MSM while the other parameters were
well estimated. We leave it to future investigations,
perhaps by including some MMY or MMM loci with
polymorphism for D. melanogaster, to generate more
reliable parameter estimates for the X and to understand
possible differences in the evolutionary process between
the X chromosome and the autosomes.

The two exon data sets, D4 (exons complete) and D5
(exons split), are exceptional to the general pattern of
high similarity of parameter estimates between M0 and
M2. For those two data sets, estimates of τMS under M2
are much larger than those under M0. However those
M2 estimates are unreliable, because ML optimization
under M2 converged to a star tree with τMSY ≈τMS
and θMS ≈ 0 (Table 9). We were unable to determine
the reasons for this behavior. We note that the same
behavior was encountered in a few simulated data sets,
as mentioned earlier, and that the problem did not occur
for data set D1 (auto), which includes both coding and
noncoding loci. The estimates of θM and θS from D4
(exons complete) and D5 (exons split) were smaller than
those from D1 (auto) or D2 (noncoding), which can be
explained by the reduced neutral mutation rate in the
exons due to selective constraint on nonsynonymous
mutations. Again, the estimates suggest no migration
from D. melanogaster to D. simulans, but the migration
rate from D. simulans to D. melanogaster is much higher

than for the autosome (D1 and D2). We note that
estimates of τ and θ parameters under M0 from those
exon data sets were similar to the M0 estimates from
D1 (auto) and D2 (noncoding), and that the estimates
of τMSY were very similar between M0 and M2 for
the same data set. Thus we reran the M2 analysis of
the two exon data sets, with τMSY = 0.020 and τMS =
0.013 fixed, to estimate the other parameters. The results
appear much more reasonable (Table 9). Both data sets
D4 and D5 suggested no migration from D. melanogaster
to D. simulans, but the estimates of MSM, at ∼0.02
immigrants from D. simulans to D. melanogaster per
generation, were very similar to those from D1 (auto)
and D2 (noncoding).

To examine the robustness of our estimates of
migration rates and to explore the impact of the
correlation between population sizes and migration
rates, we reanalyzed the data sets under M2 (gene
flow) assuming asymmetrical migration rates (with
MMS �=MSM) but symmetrical population sizes (θM =θS)
(Supplementary Table S7 in Supplementary Material).
Again the LRT is significant in every data set, and
parameter estimates suggested unidirectional migration,
with M̂MS = 0 in every data set. However, estimates
of MSM were much larger than those of Table 9 in
every data set except for D3 (chrX), which has been
discussed above. For example, M̂SM =0.036−0.041 from
D1 (auto) and D2 (noncoding) under the constraint θM =
θS (Supplementary Table S7 in Supplementary Material),
in comparison with 0.016–0.018 without the constraint
(Table 9). We note that, except for θM and MSM, the
parameter estimates were virtually identical with and
without the constraint θM =θS (compare Supplementary
Tables S7 and S9 in Supplementary Material). There are
far more SSY than MMY loci in those data sets (Table 4),
so that the estimates of θM =θS, at 0.012 (Supplementary
Table S7 in Supplementary Material Table S7), were
dominated by the D. simulans polymorphism data, and
were too large for D. melanogaster. This has led to
overestimates of MSM, apparently because a large MSM
is more compatible with the (unrealistically assumed)
large θM. Thus the assumption θM =θS has caused
serious biases in the estimation of migration rates,
highlighting the importance of the asymmetrical model.
Note that the data contain strong evidence against
the assumption θM =θS; for example, relaxing the
assumption improves the log likelihood by 66–82 units
in data sets D1 (auto) and D2 (noncoding). D3 (chrX)
does not include any MMY loci. As a result, θM is
unidentifiable under M0 (so that the log likelihood is the
same with and without the constraint θM =θS), whereas
under M2, θM is identifiable but very poorly estimated
(so that the log likelihoods are distinct but extremely
similar with and without the constraint) (Supplementary
Tables S9 and S7 in Supplementary Material).

We used Equation (11) to calculate the posterior
probabilities for gene trees for the MSY loci in the
five data sets (Table 4). Here we discuss the results
for D5 (exons split) (Fig. 4), and those for D1 (auto)
and D3 (chrX) are presented in Supplementary Figures
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FIGURE 4. Posterior probabilities of gene trees for the MSY loci for data set D5 (exons split). Loci with high posterior probability for gene tree
G3c are likely to have been transferred across species (see Supplementary Table S8 in Supplementary Material).

TABLE 10. MLEs and log likelihood values under M2 assuming different species trees for data set D1 (auto) of Table 4

Species tree τMSY τ1 θMSY θ5 θM θS θY M12 M21 �

((MS)Y) 24.3 ± 0.1 13.6 ± 0.2 (τMS) 40.0 ± 0.3 10.6 ± 0.3 (θMS) 5.2 ± 0.6 12.7 ± 0.2 NA 0.0 (MMS) 18.3 ± 3.1 (MSM) −4,763,452.5
((MY)S) 10.7 ± 0.1 10.7 ± 1.0 (τMY) 53.5 ± 0.3 ∞ (θMY) 5.7 ± 0.4 ∞ 8.2 ± 0.1 0.0 (MMY) 0.0 (MYM) −4,780,884.0
((SY)M) 11.4 ± 0.1 11.4 ± 0.1 (τSY) 52.8 ± 0.3 ∞ (θSY) 11.3 ± 0.1 ∞ 4.2 ± 0.3 0.0 (MSY) 0.0 (MYS) −4,783,156.2

Note: Estimates of τ, θ, and M are multiplied by 1000. Estimates of θ5 and θS hit the upper bound set in the program for trees ((MY)S) and ((SY)M).

S2 and S3 in Supplementary Material. At the MLEs
under M2 (Table 9, with τMSY =0.020 and τMS =0.013
fixed), the expected gene tree probabilities for any MSY
locus are P(G3c)=0.1324, P(G5c)=0.7368, and P(G6c)=
P(G6a)=P(G6b)=0.0436, with the gene tree-species tree
mismatch probability P(G6a)+P(G6b)= 0.0872. Most loci
have gene tree G5c (Fig. 4), because the migration rate
is low, so that G3c is uncommon and because the out-
group species is quite distant so that there is not much
gene tree-species tree discordance. A small proportion
of loci very likely have the gene tree G3c, and are
likely to have been transferred across species (from
D. simulans to D. melanogaster since MMS ≈ 0). The top
41 loci, with P(G3c) >95%, are listed in Supplementary
Table S8 in Supplementary Material. More than half
of those loci were also inferred to have P(G3c)>
95% in the analysis of data set D4 (exons complete)
(Supplementary Table S8 in Supplementary Material),
suggesting that this inference was not very sensitive to
the different filtering procedures applied to compile the
data sets.

An intriguing feature in Fig. 4 (and also in
Supplementary Figs. S2 and S3 in Supplementary
Material for data sets D1 and D3) is that many more
loci seem to support gene tree G6c than G6a or G6b,
whereas the model predicts equal proportions for those
three gene trees. This is in contrast to the simulated data
set, in which the three gene trees are inferred to occur
with similar proportions, as expected under the model
(Fig. 3A). The reasons for this pattern are unknown, but
are likely to be some kind of model violation.

To explore the potential of the IM model for species
tree estimation under the multispecies coalescent with
migration, we applied model M2 to data set D1 (auto),
assuming alternative species trees for M, S, and Y. The
MLEs and log likelihood values are shown in Table 10.
The ((MS)Y) tree has a much greater log likelihood value
than the two alternative trees (by about 20,000 units).
Indeed, both alternative trees converge to the star tree
with τ0 =τ1. Migration is detected only in the direction
of S →M when the assumed tree is ((MS)Y). Note that
our model assumes migration between the two in-group
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species only. In theory, a stratified bootstrap resampling
procedure can be used to assess the significance of the
ML species tree, sampling loci and then sampling sites
for each sampled locus. This is not pursued here because
there does not seem to be any uncertainty about the
species phylogeny in this case (Russo et al. 1995; Obbard
et al. 2012).

DISCUSSION

Utilities and Limitations of Our Implementation
In this article, we have extended our previous

implementation of the IM model (Zhu and Yang 2012)
in several important ways. First, we have relaxed the
symmetry assumption, so that the test of gene flow
and estimation of migration rates and population size
parameters can be conducted under more realistic
models. For the Drosophila data sets, our analyses
suggest that gene flow is indeed asymmetrical, the
population sizes of D. melanogaster and D. simulans are
very different, and accounting for such asymmetries
in the model is important to accurate estimation of
the migration rates. Second, we have extended the
implementation so that a locus can have 2 or 3
sequences of arbitrary configurations. This removes the
unidentifiability problem that we encountered when
“123” loci alone were used, making it possible to estimate
the migration rates. It also improves the power of
the LRT of gene flow because the null distribution
becomes known. The extension to arbitrary loci also
paves the way for implementing more complex models
of migration.

We envisage that a major future use of the
IM model is to infer species phylogenies under
the multispecies coalescent model with migration,
accommodating two major factors that thwart species
tree estimation, especially for species formed during
radiative speciations: incomplete lineage sorting (ILS)
and gene flow (Mallet et al. 2016). Heuristic methods
based on the model that treat estimated gene tree
topologies as observed data are being developed (Wen
et al. 2016), but full likelihood methods have the
advantage of accommodating the different sources of
uncertainties appropriately. However the functionality
of 3s in this regard is limited. The assumption of gene
flow between sister species only may be too restrictive
and gene flow between nonsister species needs to be
allowed as well (Mallet et al. 2016). Furthermore, our
implementation is restricted to three species, with two
or three sequences per locus. This limitation is mainly
due to our use of numerical integration (Gaussian
quadrature) to integrate over the coalescent times, with
the dimension of the integrals to be one less than
the number of sequences at the locus. With four or
more sequences per locus, this calculation may not
be feasible. Furthermore, the number of states in the
Markov chain used to characterize the genealogical
process also increases explosively with the increase of
the number of sequences per locus (Andersen et al.

2014). We suggest that to analyze genomic data sets
involving more than three species and more than three
sequences per locus, a subsampling procedure may be
useful, similarly to our analysis of the Drosophila data
sets (see also Wang and Hey 2010). Suppose there are s>3
species. We specify a “master” species tree including all
s species and use it to define the parameters: the (s – 1)
species divergence times (τs) and up to (2s – 1) population
size parameters (θs). At every locus, we sample three
sequences, which may be from different species, so that
the data configurations may be 123, 114, 255, etc. The
species tree for the sequences of any particular locus can
be constructed from the master species tree by pruning
off branches for species not sampled in the data at the
locus. The theory developed in Zhu and Yang (2012)
and in this article will then be applicable with the only
complication that the coalescent rate (the population
size) and the migration rate may change along the same
branch on the species subtree at the speciation events in
the master species tree. Such rate changes are relatively
straightforward to accommodate. This strategy involves
filtering of data but the information loss may not be very
serious for such large genomic data sets. Note that given
the data, this strategy calculates the likelihood correctly.

In the future, we also hope to implement models
of nonhomogeneous migration rates over time. Gene
flow may be common at the early stage of species
formation and decrease until the two populations
achieve complete isolation. A simple model may assume
a constant migration rate M since species divergence
until a time point T (0<T <τ1) when gene flow ceases.
In this model of isolation with initial migration, both the
migration rate M and the time point T will be parameters
to be estimated from the sequence data (Wilkinson-
Herbots 2012). The same Markov chain characterization
as used here can be used to derive the density of
gene trees by breaking the time epoch E1 into two
segments: E1a: 0< t<T and E1b: T < t<τ1. Alternatively,
one may use a deterministic mathematical function
such as an exponential decay to describe the changing
migration rate over time. The initial migration rate
and the exponential decay rate will be parameters
to be estimated. If reproductive isolation builds up
gradually after species split, such nonhomogeneous
migration models may be more realistic than the usual
IM model with a constant migration rate after species
divergence.

Similarly, introgression or hybridization may be
modeled in the same framework (Twyford and Ennos
2011). Recent introgression or contamination may be
modeled by assuming that a proportion of individuals
sampled from species 1 are in fact from species 2.
Introgression can then be tested using a likelihood ratio
test. As the model naturally accommodates ancestral
polymorphism and incomplete lineage sorting (ILS),
the test will distinguish introgression from ILS. Note
that introgression affects all loci of the introgressed
individual, whereas with ILS, caused by the coalescent
process, the different genomic loci have independent
histories.
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Asymmetrical Migration in Drosophila Fruit Flies
Wang and Hey (2010: Table 7) compiled and analyzed

a Drosophila data set similar to our data set D1 (auto),
consisting of 30,323 autosomal loci but including only
two sequences for each locus, of configurations SS,
MS, and MM. Under the asymmetrical model, their
estimates of population size parameters are θM =0.0055
and θS =0.01352, which are close to our estimates from
D1 (auto). The ancestral population size θMS estimated
by Wang and Hey ranges from 0.007 to 0.010, whereas our
estimates are larger, at θMS =0.011 and θMSY =0.040. The
M-S divergence time parameter is τMS =0.017 by Wang
and Hey and 0.0136 in our analysis. A strong negative
correlation between τMS and θMS is expected in such
analyses (Yang 2002). Wang and Hey (2010) estimated the
migration rate (in our notation) to be MMS =NSmMS =0
from D. melanogaster to D. simulans and MSM =NMmSM =
4.846×0.00552/4=0.0067 from simulans to melanogaster.
Our estimates under M2 are MMS =0 as well and MSM =
0.0183, which is much larger.

The data of Wang and Hey (2010) were also analyzed
by Lohse et al. (2011, Table 1), who compared parameter
estimates from two data sets which have either two or
three sequences per locus for the same set of loci. The
authors found that the estimate of the migration rate
from the “triplet” data was nearly twice as large as that
for the “pair” data. This is consistent with our finding.

We note that our data sets are based on updated
genome sequences, relative to the data analyzed by
Wang and Hey (2010) and Lohse et al. (2011). Also
different filters were applied and different loci were
included in those data sets. Furthermore, Wang and
Hey (2010) removed loci at which the pairwise sequence
distances indicated gene tree-species tree conflict. We
did not apply this filtering because such loci are
informative about the gene tree distribution and about
the parameters in our analysis of loci of three sequences.
Lohse et al. (2011) removed highly variable loci and
highly variable sites so that the data could be analyzed
under the infinite-sites model. Given the multiple
differences among the data sets, we conclude that
the estimates obtained from those studies are largely
consistent.

Different from Wang and Hey (2010), we also compiled
and analyzed a data set for the X chromosome (D3
chrX) as well as two exon data sets: D4 (exons complete)
and D5 (exons split). The use of multiple data sets,
even though some of them are overlapping, allows us
to confirm the robustness of our analyses, as processes
such as migration are expected to have genome-wide
effects, and to discover similarities and differences in
the evolutionary process among different parts of the
genome. Indeed all five data sets we analyzed support
a model of unidirectional gene flow, from D. simulans to
D. melanogaster, at the rate of ∼0.02 migrant individuals
per generation. We included the two exon data sets
even though we do not expect exons to be evolving
neutrally. Note that the multispecies coalescent model
implemented in 3s assumes neutral evolution of the

gene sequences, such that mutations in the sequences
do not affect the genealogical process or the gene
tree distribution. Nevertheless, most proteins appear
to perform the same conserved function in closely
related species and their coding genes are under similar
purifying selection in the different species. The main
effect of the selective constraint may then be a reduction
of the neutral mutation rate. Species-specific natural
selection such as positive selection would be more
problematic but loci undergoing positive selection or
responsible for between-species incompatibilities are
expected to be rare. Similar points have been made by
Ebersberger et al. (2007; see also Yang 2015) in their
analysis of hominoid genomic sequence data.
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APPENDIX A

DISTRIBUTION OF GENE TREES FOR THREE SEQUENCES UNDER

M2 (GENE FLOW)

Case I: Initial States 111 and 222
With the initial state s=111 or 222, all three sequences

at the locus are from the same species (1 or 2). Due to
the symmetry, the densities of the three gene trees of
the same shape (such as G1c, G1a, and G1b) are identical.
There is thus no need to keep track of the sequence IDs,
even though the likelihood averages over all 18 gene trees
(Supplementary Table S1 in Supplementary Material).
Thus we consider a Markov chain with 8 states: 111, 112,
122, 222, 11, 12, 22, 1|2, with “1|2” to be an artificial state
formed by merging states 1 and 2. The rate matrix is

http://dx.doi.org/10.5061/dryad.h0h4s
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given in Table 3. The density for gene tree shape G1 is
given in Equation (9). By a similar argument we obtain
the densities for tree shapes G2–G6, as follows.

f (G2,t0,t1)= 2
θ5

e
− 2

θ5
t0

×
∑
j∈S2

[
3 2
θ1

Ps,111(t1)P11,j(τ1 −t1)+ 2
θ1

Ps,112(t1)P12,j(τ1 −t1)

+ 2
θ2

Ps,221(t1)P12,j(τ1 −t1)+3 2
θ2

Ps,222(t1)P22,j(τ1 −t1)
]
,

f (G3,t0,t1)= 2
θ4

e
− 2

θ5
(τ0−τ1)

e
− 2

θ4
t0

×
∑
j∈S2

[
3 2
θ1

Ps,111(t1)P11,j(τ1 −t1)+ 2
θ1

Ps,112(t1)P12,j(τ1 −t1)

+ 2
θ2

Ps,122(t1)P12,j(τ1 −t1)+3 2
θ2

Ps,222(t1)P22,j(τ1 −t1)
]
,

f (G4,t0,t1)= 6
θ5

e
− 6

θ5
t1 2

θ5
e
− 2

θ5
t0

×
∑
j∈S3

Ps,j(τ1),0< t1 +t0 <τ0 −τ1,

f (G5,t0,t1)= 6
θ5

e
− 6

θ5
t1e

− 2
θ5

(τ0−τ1−t1) 2
θ4

e
− 2

θ4
t0

×
∑
j∈S3

Ps,j(τ1),0< t1 <τ0 −τ1, 0< t0 <∞,

f (G6,t0,t1)=e
− 6

θ5
(τ0−τ1) 6

θ4
e
− 6

θ4
t1 2

θ4
e
− 2

θ4
t0

×
∑
j∈S3

Ps,j(τ1),0< t0,t1 <∞, (A.1)

where S2 and S3 are the sets of states with two and three
sequences, respectively, that can be reached by the initial
state (Table 2). Again each density for a tree shape should
be divided by 3 to give the density for the gene tree: e.g.,
f (G2a, t0, t1)= f (G2, t0, t1)/3.

Case II: Initial States 112 and 122
For initial state s= 112 or 122, the likelihood

calculation at each locus averages over all 18 gene trees
(Supplementary Table S1 in Supplementary Material).
This is the only case in this study where it is necessary to
keep track of both the sequence IDs and the population
IDs in our Markov chain characterization of the process
of coalescent with migration. The initial states are thus
1a1b2c or 1a2b2c. However, for states of three sequences,
we always arrange the sequence IDs in the order a, b,
and c to simplify the notation and thus the subscripts
are dropped. Thus 1a1b1c, 1a1b2c, and 1a2b2c are written
as 111, 112, and 122, respectively. There are 21 states in
the chain: 111, 112, 121, 122, 211, 212, 221, 222, 1bc1a, 1ca1b,
1ab1c, 1bc2a, 1ca2b, 1ab2c, 1a2bc, 1b2ca, 1c2ab, 2bc2a, 2ca2b,
2ab2c, and 1|2. The states of two sequences have the

subscripts to indicate the sequence IDs. For example,
1bc2a means that sequences b and c have coalesced and
their ancestor is in population 1, whereas sequence a is
in population 2.

For gene tree G1c, with 0< t0 +t1 >τ1, we have

f (G1c,t0,t1)

= 2
θ1

Ps,111(t1)
(

2
θ1

P1ab1c,1ab1c (t0)+ 2
θ2

P1ab1c,2ab2c (t0)
)

+ 2
θ1

Ps,112(t1)
(

2
θ1

P1ab2c,1ab1c (t0)+ 2
θ2

P1ab2c,2ab2c (t0)
)

+ 2
θ2

Ps,221(t1)
(

2
θ1

P1c2ab,1ab1c (t0)+ 2
θ2

P1c2ab,2ab2c (t0)
)

+ 2
θ2

Ps,222(t1)
(

2
θ1

P2ab2c,1ab1c (t0)+ 2
θ2

P2ab2c,2ab2c (t0)
)
.

(A.2)

The densities for gene trees G1b and G1a are similar.

f (G1b,t0,t1)

= 2
θ1

Ps,111(t1)
(

2
θ1

P1ca1b,1ca1b(t0)+ 2
θ2

P1ca1b,2ca2b(t0)
)

+ 2
θ2

Ps,212(t1)
(

2
θ1

P1b2ca,1ca1b(t0)+ 2
θ2

P1b2ca,2ca2b(t0)
)

+ 2
θ1

Ps,121(t1)
(

2
θ1

P1ca2b,1ca1b(t0)+ 2
θ2

P1ca2b,2ca2b(t0)
)

+ 2
θ2

Ps,222(t1)
(

2
θ1

P2ca2b,1ca1b(t0)+ 2
θ2

P2ca2b,2ca2b (t0)
)
,

f (G1a,t0,t1)

= 2
θ1

Ps,111(t1)
(

2
θ1

P1bc1a,1bc1a(t0)+ 2
θ2

P1bc1a,2bc2a(t0)
)

+ 2
θ2

Ps,122(t1)
(

2
θ1

P1a2bc,1bc1a(t0)+ 2
θ2

P1a2bc,2bc2a (t0)
)

+ 2
θ1

Ps,211(t1)
(

2
θ1

P1bc2a,1bc1a (t0)+ 2
θ2

P1bc2a,2bc2a (t0)
)

+ 2
θ2

Ps,222(t1)
(

2
θ1

P2bc2a,1bc1a (t0)+ 2
θ2

P2bc2a,2bc2a (t0)
)
.

(A.3)

For gene tree G2, we have t1 <τ1,t0 <τ0 – τ1, and

f (G2c,t0,t1)= 2
θ5

e
− 2

θ5
t0

×
∑
j∈S2

[
2
θ1

Ps,111(t1)P1ab1c,j(τ1 −t1)+ 2
θ1

Ps,112(t1)P1ab2c,j(τ1 −t1)

+ 2
θ2

Ps,221(t1)P1c2ab,j(τ1 −t1)+ 2
θ2

Ps,222(t1)P2ab2c,j(τ1 −t1)
]
,

f (G2b,t0,t1)= 2
θ5

e
− 2

θ5
t0

×
∑
j∈S2

[
2
θ1

Ps,111(t1)P1ca1b,j(τ1 −t1)+ 2
θ1

Ps,121(t1)P1ca2b,j(τ1 −t1)

+ 2
θ2

Ps,212(t1)P1b2ca,j(τ1 −t1)+ 2
θ2

Ps,222(t1)P2ca2b,j(τ1 −t1)
]
,
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f (G2a,t0,t1)= 2
θ5

e
− 2

θ5
t0

×
∑
j∈S2

[
2
θ1

Ps,111(t1)P1bc1a,j(τ1 −t1)+ 2
θ1

Ps,211(t1)P1bc2a,j(τ1 −t1)

+ 2
θ2

Ps,122(t1)P1a2bc,j(τ1 −t1)+ 2
θ2

Ps,222(t1)P2bc2a,j(τ1 −t1)
]
.

(A.4)

For gene tree G3, with t1 <τ1 <τ0 < t0, we have

f (G3c,t0,t1)=e
− 2

θ5
(τ0−τ1

) 2
θ4

e
− 2

θ4
t0 ×

∑
j∈S2

[
2
θ1

Ps,111(t1)P1ab1c,j(τ1 −t1)+ 2
θ1

Ps,112(t1)P1ab2c,j(τ1 −t1)

+ 2
θ2

Ps,221(t1)P1c2ab,j(τ1 −t1)+ 2
θ2

Ps,222(t1)P2ab2c,j(τ1 −t1)
]
,

f (G3b,t0,t1)=e
− 2

θ5
(τ0−τ1) 2

θ4
e
− 2

θ4
t0

×
∑
j∈S2

[
2
θ1

Ps,111(t1)P1ca1b,j(τ1 −t1)

+ 2
θ1

Ps,121(t1)P1ca2b,j(τ1 −t1)+ 2
θ2

Ps,212(t1)P1b2ca,j(τ1 −t1)

+ 2
θ2

Ps,222(t1)P2ca2b,j(τ1 −t1)
]

f (G3a,t0,t1)=e
− 2

θ5
(τ0−τ1) 2

θ4
e
− 2

θ4
t0

×
∑
j∈S2

[
2
θ1

Ps,111(t1)P1bc1a,j(τ1 −t1)+ 2
θ1

Ps,211(t1)P1bc2a,j(τ1 −t1)

+ 2
θ2

Ps,122(t1)P1a2bc,j(τ1 −t1)+ 2
θ2

Ps,222(t1)P2bc2a,j(τ1 −t1)
)]

.

(A.5)

For gene trees G4, G5, and G6, the probability density
does not depend on the sequence IDs.

f (G4k,t0,t1) = 2
θ5

e
− 6

θ5
t1 2

θ5
e
− 2

θ5
t0

×
∑
j∈S3

Ps,j(τ1),0< t1 +t0 <τ0 −τ1,

f (G5k,t0,t1) = 2
θ5

e
− 6

θ5
t1e

− 2
θ5

(τ0−τ1−t1) 2
θ4

e
− 2

θ4
t0

×
∑
j∈S3

Ps,j(τ1),0< t1 <τ0 −τ1,0< t0 <∞,

f (G6k,t0,t1) = e
− 6

θ5
(τ0−τ1) 2

θ4
e
− 6

θ4
t1 2

θ4
e
− 2

θ4
t0

×
∑
j∈S3

Ps,j(τ1),0< t1,t0 <∞, (A.6)

where k =c, a, and b

Case III: Initial States 113, 123, and 223
For initial state s= 113, 123, or 223, only three gene

tree shapes are possible: G3, G5, and G6 (Supplementary
Table S1 in Supplementary Material). For tree shapes G3
and G5, the only gene tree possible is G3c or G5c: ((a,b),c),
whereas for the tree shape G6, the three gene trees G6c:
((a,b),c); G6a: ((b,c),a); and G6b: ((c,a),b) have the same prior
density. Thus there is no need to trace the sequence IDs.
There are 4 states in the chain: 113, 123, 223, 13|23, with
the rate matrix given as follows.

113 123 223 13|23
113 −(2w21 +c1) 2w21 0 c1
123 w12 −(w12 +w21) w21 0
223 0 2w12 −(2w12 +c2) c2
13|23 0 0 0 0

(A.7)
For tree shapes G3 and G5, only one gene tree is possible,
so that

f (G3c,t0,t1)= 2
θ4

e
− 2

θ4
t0 ×

[
2
θ1

Ps,113(t1)+ 2
θ2

Ps,223(t1)
]
,

f (G5c,t0,t1)= 2
θ5

2
θ4

e
− 2

θ5
t1e

− 2
θ4

t0 × ∑
j∈S3

Ps,j(τ1).

(A.8)
For tree shape G6, the three gene trees have the same
density.

f (G6k,t0,t1)= 2
θ4

e
− 6

θ4
t1 2

θ4
e
− 2

θ4
t0 ×

∑
j∈S3

Ps,j(τ1)e
− 2

θ5
(�0−�1)

,

(A.9)
where k =c, a, and b.

Case IV: Initial States 133, 233, and 333
For initial state s= 133, 233, or 333, there is no need to

trace the sequence IDs. We first discuss the initial state
333. The genealogical process is the single-population
coalescent, with different population size parameters: θ3
for t<τ0 or θ4 for t>τ0. There is no need to distinguish
among G1, G2, and G4, or between G3 and G5, so we
consider only G1 and G3, but with the range of the
coalescent times modified accordingly. There are thus
three tree shapes: G1, G3, and G6. For each one, we sum
over three gene trees. Thus with initial state s=333, we
have

f (Gk,t0,t1)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
θ3

2
θ3

e
− 6

θ3
t1e

− 2
θ3

t0
,0< t1 +t0 <τ0,

for k =1c,1a,1b,

2
θ3

2
θ4

e
− 6

θ3
t1e

− 2
θ3

(τ0−t1)
e
− 2

θ4
t0

,t1 <τ0,

for k =3c,3a,3b,

2
θ4

2
θ4

e
− 6

θ3
τ0e

− 6
θ4

t1e
− 2

θ4
t0

,0< t1,t0 <∞,

for k =6c,6a,6b.
(A.10)
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Similarly, for initial state s= 133 or 233, we consider
two tree shapes G3 and G6.

f (Gk,t0,t1)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2
θ3

2
θ4

e
− 2

θ3
t1e

− 2
θ4

t0
,t1 <τ0,

for k =3,

2
θ4

2
θ4

e
− 2

θ3
τ0e

− 6
θ4

t1e
− 2

θ4
t0

,0< t1,t0 <∞,

for k =6c,6a,6b.
(A.11)
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