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Abstract

DNA barcoding methods use a single locus (usually the mitochondrial COI gene) to

assign unidentified specimens to known species in a library based on a genetic dis-

tance threshold that distinguishes between-species divergence from within-species

diversity. Recently developed species delimitation methods based on the multispecies

coalescent (MSC) model offer an alternative approach to individual assignment using

either single-locus or multiloci sequence data. Here, we use simulations to demonstrate

three features of an MSC method implemented in the program BPP. First, we show that

with one locus, MSC can accurately assign individuals to species without the need for

arbitrarily determined distance thresholds (as required for barcoding methods). We

provide an example in which no single threshold or barcoding gap exists that can be

used to assign all specimens without incurring high error rates. Second, we show that

BPP can identify cryptic species that may be misidentified as a single species within the

library, potentially improving the accuracy of barcoding libraries. Third, we show that

taxon rarity does not present any particular problems for species assignments using BPP

and that accurate assignments can be achieved even when only one or a few loci are

available. Thus, concerns that have been raised that MSC methods may have problems

analysing rare taxa (singletons) are unfounded. Currently, barcoding methods enjoy a

huge computational advantage over MSC methods and may be the only approach fea-

sible for massively large data sets, but MSC methods may offer a more stringent test

for species that are tentatively assigned by barcoding.
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Introduction

DNA barcoding has been proposed as a fast and

inexpensive approach to species identification. A refer-

ence library of sequences for a ‘universal locus’ is

constructed using species that are identified a priori,

and unidentified specimens are then identified by calcu-

lating the genetic distance between their query

sequence and the sequences in the library (Hebert et al.

2003). The universal locus is usually mitochondrial

cytochrome oxidase 1 (CO1) or cytochrome b (cytb)

because mtDNA is easier to type than nuclear DNA

from highly processed and degraded tissues. One par-

ticularly successful application of DNA barcoding is in

forensics, where DNA evidence is used to track illegal

trade of wildlife (Alacs et al. 2010) or confirm the iden-

tity of fish products (Smith et al. 2008).

DNA barcoding has also been used for species dis-

covery or species delimitation (e.g. Rossini et al. 2016).

This typically relies on determining a genetic distance

threshold or ‘barcoding gap’. The query specimen is

identified and assigned to an existing species in the

library if the shortest pairwise sequence distance from
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the query to the sequence library is smaller than the

prespecified threshold. If the smallest distance exceeds

the threshold, there will be a nonidentification, which

indicates that the specimen may be a new species not

yet represented in the library. The choice of the thresh-

old is a thorny issue and is somewhat arbitrary. For

example, the ‘109 rule’ (Hebert et al. 2004) specifies the

interspecific divergence to be at least 10 times as large

as the intraspecific diversity. Dowton et al. (2014) used

4% of CO1 divergence, while Rossini et al. (2016) used a

Kimura 2-parameter distance of 2%. Other methods use

the 95% confidence interval of conspecific distances to

determine the threshold, leading to higher thresholds

when there is more intraspecific variation (Meier et al.

2006). More sophisticated methods generate the distance

threshold by taking a database with a known taxonomy

and minimizing the false-positive errors (incorrectly

identifying a specimen as a new species) and false-

negative errors (incorrectly lumping a specimen into

another species) (Meyer & Paulay 2005). Similar

approaches have been used to ‘optimize’ the distance

threshold in empirical databases, using programs such

as SPIDER (Brown et al. 2012) and ABGD (Automatic Bar-

code Gap Discovery, Puillandre et al. 2012). Note that

all barcoding methods require a distance threshold,

regardless of the method used to determine it.

However, different species have different population

sizes and divergence times. As a result, one may expect

considerable overlap between intraspecific variation

and interspecific divergence among closely related spe-

cies (Meyer & Paulay 2005), so that there may not be a

‘one-size-fits-all’ threshold. In a case study examining

DNA barcoding performance in a diverse group of mar-

ine gastropods, Meyer and Paulay (2005) found that use

of one threshold to delineate all species was particularly

problematic for closely related species in taxonomically

understudied groups.

Another method for species discovery/delimitation is

the generalized mixed Yule coalescent (GMYC) method

(Pons et al. 2006; Fujisawa & Barraclough 2013). This

uses the reconstructed gene tree for a single locus and

fits a mixed model to the estimated divergence times,

with the Yule branching process describing species

divergences and the coalescent process describing the

within-species process of lineage joining. The method is

heuristic as it is not based on a fully specified popula-

tion genetic model and does not accommodate ancestral

polymorphism correctly. It also assumes that the gene

tree with node ages is known without error and thus

does not accommodate phylogenetic errors of gene tree

reconstruction.

Species identification and delimitation using genetic

sequence data should best be viewed as a statistical

inference problem, given the stochastic nature of the

coalescent and the process of sequence evolution. The

natural framework that describes the process of species

divergence and isolation, and ancestral polymorphism

and incomplete lineage sorting is the multispecies coa-

lescent (MSC) model, which is a straightforward exten-

sion of the standard single-species coalescent (Kingman

1982; Hudson 1983; Tajima 1983) to the case of multiple

species (Takahata et al. 1995; Yang 2002; Rannala &

Yang 2003). The gene genealogies or gene trees have

probability distributions specified by parameters in the

model, including the species divergence times and the

population sizes for both the ancestral and extant spe-

cies. In theory, the MSC framework should allow spe-

cies delimitation even in extreme cases where the

within-species diversity for some species is higher than

the between-species divergence between some other

species. Furthermore, a full likelihood implementation

of the MSC model should be statistically more efficient

than heuristic methods for the same inference (Xu &

Yang 2016). Here, we demonstrate that this theoretical

advantage is realized by the BPP program, which is a

Bayesian MCMC implementation of the MSC model

and which allows both species delimitation and species

tree inference (Rannala & Yang 2003; Yang & Rannala

2010, 2014; Yang 2015).

Another potential benefit of applying the MSC-based

approach is its ability to delimit cryptic species (speci-

mens in the database that are distinct species but incor-

rectly recognized as one species). Although the

potential clearly exists, the performance of BPP to delimit

cryptic species in practical data analysis has not been

carefully examined. Indeed, Collins and Cruickshank

(2014) suggested that ‘it is questionable whether such

statistics would be reliable due to the sampling and

parameter estimation problems associated with taxon

rarity in species delimitation methods’. We demonstrate

in simulations that BPP can delimit cryptic species with

high accuracy even if the species are undersampled.

The impact of species undersampling, or the rarity of

species, on species delimitation has been extensively

discussed (Lim et al. 2012; Collins & Cruickshank 2014).

Rarity indeed appears to be very common. For example,

48.5% of species in the African beetles library examined

by Ahrens et al. (2016) were singletons. Many authors

have considered species rarity to be a major challenge

for species delimitation. For example, Lim et al. (2012)

claim that many newly developed methods either

implicitly or explicitly require that all species are well

sampled, and argue that delimitation techniques should

be modified to accommodate the commonness of rarity.

Their conclusions are based on the intuition that species

delimitation requires information about the within-

species diversity relative to the between-species diver-

gence, and such information will be hard to obtain if
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some species are undersampled or are singletons. Fur-

thermore, heuristic methods of species delimitation

have indeed been found to suffer from poor species

sampling. For example, in a case study of southern

African beetles using CO1 sequences from >500 speci-

mens and ~100 species, Ahrens et al. (2016) demon-

strated that undersampling could compromise species

delimitation by GMYC, and the difficulty appeared to

lie more with the high sensitivity of GMYC to variable

population sizes than with high proportions of single-

tons per se; GMYC appears to have difficulty generat-

ing reliable estimates of intra- vs. interspecies

evolutionary parameters when some species are under-

sampled. Fujisawa and Barraclough (2013) also found

that the most important factor affecting the accuracy of

species delimitation by GMYC is the mean population

size relative to divergence times between speciation

events. In this study, we focus on the differences

between DNA barcoding and a full likelihood imple-

mentation of the MSC model (BPP) and do not include

GMYC in our evaluation.

We note that species rarity is naturally accommo-

dated by the MSC model that underlies the BPP pro-

gram. It is simply a matter of information content and

power, and BPP can make reliable inferences using mul-

tiloci data even if a species is represented by a single

specimen (singleton). New species have often been

described based on rare specimens using morphology

and it therefore appears self-evident that genetic

sequences should contain enough information to infer

the species status of a rare specimen.

In this study, we use simulations and analyses with

the species delimitation program BPP to demonstrate that

(i) MSC methods can accurately assign individuals to

species without the need for arbitrarily determined dis-

tance thresholds (as are required for barcoding meth-

ods). We provide an example where no single barcoding

gap (threshold) exists that can be used to assign all the

species in a group without incurring high error rates, yet

BPP can accurately assign individuals. (ii) BPP can identify

cryptic species that are misidentified as a single species

within a species library that is being used for assign-

ments, potentially improving the accuracy of barcoding

libraries. (iii) Taxon rarity does not present problems for

species assignments using BPP, and accurate assignments

can often be made even with only one or a few loci.

One barcode gap for identifying all species may
not exist

We simulate sequence data using the species tree of

Fig. 1a, with 1 + 10 sequences from A, 10 Bs, 1 + 10 Cs,

10 Ds, 10 Es and 1 F. The 10 sequences each from species

A–E (50 sequences in total) are used as the ‘library’, while

the 1 A, 1 C and 1 F are used as three ‘query’ sequences

(denoted A1, C1 and F). We generate one locus, of

1000 bp, by simulating the gene trees under the MSC

(Rannala & Yang 2003) and evolving sequences along the

gene tree. The program MCCOAL, which is part of the BPP

package (Yang 2015), was used for the simulation. The

species divergence times (ss) and population size param-

eters (hs) used are shown in Fig. 1. Here, both ss and hs
are measured by the mutational distance, so that h = 0.01

means that two sequences from the population have on

average one difference per 100 sites, while s = 0.01 means

that the ancestral node in the species tree and the present

time are separated by a genetic distance of 1%. Gene tree

topologies and branch lengths (coalescent times) are gen-

erated from the MSC density (Rannala & Yang 2003), and

are then used to ‘evolve’ sequences along the gene tree to

generate the sequence alignment for the tips of the gene

tree. The JC model (Jukes & Cantor 1969) was used both

to simulate and to analyse the data. Each simulated data

set, which consists of 53 sequences for one single locus,

was analysed using either DNA barcoding or the pro-

gram BPP, with sequences A1, C1 and F treated as the

query, against the sequence library made up of the

remaining 50 sequences. The number of replicate simu-

lated data sets was 100.

Barcoding analysis

Rather than using a specific DNA barcoding program

to choose a threshold, we consider all possible sequence

distance thresholds. Let d(A1, A) = min{d(A1, Ai), i = 2,
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Fig. 1 Species trees used in simulating sequence alignment

under the MSC, with branches drawn using the species diver-

gence times (ss). In (a), the species divergence-time parameters

are shown in bold next to the internal nodes: sAB = sEF = 0.0025,

sCD = 0.01, sABCD = 0.02 and sABCDEF = 0.03, while the popula-

tion size parameters are shown along the branches:

hA = hB = hAB = hE = hF = hEF = 0.005, hC = hD = hCD = 0.02, and

hABCD = hABCDEF = 0.01. In (b), the parameters are sAB = 0.01,

sABC = 0.02 and h = 0.01 for all populations. Both ss and hs are

measured by the expected number of mutations per site. [Colour

figure can be viewed at wileyonlinelibrary.com]
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. . ., 10} be the smallest distance from the query A1 to

species A, and define d(C1, C) and d(F, E) accordingly.

A1 is correctly assigned to species A if d(A1, A) is smal-

ler than the distance threshold, while F is correctly

assigned to be a species distinct from E if d(F, E) is lar-

ger than the distance threshold. Thus, to assign A1 and

C1 correctly to species A and C, respectively, one would

prefer a large distance threshold, and to assign F cor-

rectly into a distinct species from species E, one would

like a small distance threshold. It will be impossible to

assign all three queries correctly if d(F, E) ≤ d(A1, A) or

if d(F, E) ≤ d(C1, C). This happened in 28 of the 100

replicate data sets. For example in one data set, d(A1,

A) = d(A1, A2) = 0.001, d(C1, C) = d(C1, C5) = 0.004 and

d(F, E) = d(F, E2) = 0.003. With the within-species dis-

tance (0.004 for C) being greater than the between-spe-

cies distance (0.003 between F and E), it is impossible to

use one distance threshold to make correct assignments,

or to avoid both the false-positive error of claiming A1

or C1 as a new species (a nonidentification) and the

false-negative error of lumping F into species E. In the

other 72 data sets, it is theoretically possible to choose a

threshold that will allow correct assignment of all three

queries, but misassignments may still occur if an imper-

fect threshold is chosen.

Figure 2 shows the proportion (among 100 replicate

data sets) of correct species assignments when each

data set is analysed using a fixed distance threshold.

For example, at the distance threshold of 0.003 (three

differences per kb), A1 is correctly assigned to species A

in 96% of data sets, C1 is correctly assigned to species C

in 70% of data sets, and F is correctly assigned to a spe-

cies distinct from species E in only 39% of data sets.

BPP analysis

The same single-locus data sets were analysed using BPP

(Yang & Rannala 2014; Yang 2015). The BPP program

uses reversible-jump Markov chain Monte Carlo

(rjMCMC) (Yang & Rannala 2010) to move between dif-

ferent delimitation models, which correspond to differ-

ent groupings of populations into the same species, and

MCMC to move between different species phylogenies

given the same species delimitation (Yang & Rannala

2014; Rannala & Yang 2017). The program achieves

Bayesian model comparison through MCMC, visiting

the competing models with frequencies corresponding

to their posterior probabilities. The BPP analysis assumes

that individual specimens are assigned to populations.

Multiple populations may be merged into one species

by the rjMCMC algorithm while one population is

never split into two species. Our analysis assumed eight

populations: A, B, C, D and E, and the three query

sequences. Each of the three query sequences (A1, C1

and F) is assigned to its own population so that it can

either be merged into one of the existing species in the

library (A, B, C, D, and E) or designated a new species.

We use PRIOR 3 for the species tree models, which

assigns uniform probability (1/8 each) for 1, 2, . . . and

8 species (Yang 2015). Gamma priors are assigned on

parameters: h ~ G(2, 200), with the mean to be a/b = 2/

200 = 0.01 (one mutation per 100 bp) for the mutation-

scaled population size parameters for both modern and

ancestral populations, and sABC ~ G(3, 100), with mean

0.03, for the root of the species tree. The values 2 and 3

for the gamma shape parameter (a) are relatively small,

indicating that the priors are fairly diffuse. The prior

means are set to be equal to the true values.

The posterior probabilities for different models calcu-

lated using BPP are summarized in Fig. 3. Here, P(A1A) is

the posterior probability that populations A1 and A are

(correctly) grouped into one species, to the exclusion of

all other populations. The average posterior probability

was 0.81 for correctly assigning A1 to species A, and was

0.17 for recognizing it as a new species (oversplitting).

The average posterior probability was 0.71 for correctly

assigning C1 to species C, with the false-positive rate of

oversplitting to be 0.29. The average posterior probability

for correctly identifying F as a new species was 0.68, with

the false-negative rate of incorrectly lumping it with spe-

cies E to be 0.31. High posterior probabilities (>0.9) for an
incorrect assignment are very rare (<1% on average).

Although the information is weak with a single locus, BPP

is outperforming the threshold method on average across

species: even if an optimal threshold of about 0.0023 was

used, the average proportion of correct assignment for

the threshold method is approximately 0.69, compared

with 0.73 for BPP.

Fig. 2 The proportion of correct species assignments when the

distance threshold is fixed at different values, averages over

100 replicate data sets, simulated using the species tree of

Fig. 1a. [Colour figure can be viewed at wileyonlinelibrary.com]
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Increasing the number of loci from 1 to 10 led to

increased posterior probabilities for correct assignments

and to reduced error rates. The posterior probabilities

for correctly assigning A1 to species A, C1 to species C,

and F to a distinct species from E are shifted towards 1

(Fig. 4a–c), while the posterior probabilities for incor-

rectly assigning A1 or C1 to distinct species are shifted

towards 0 (Fig. 4d–f). Query F is identified as a distinct

species with posterior probability 1.0, and the error rate

for lumping E and F is 0 in every data set.

Identifying cryptic species

To examine the performance of BPP in identifying cryp-

tic species, we simulated sequence data using the

species tree for three species of Fig. 1b, with four
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(a) (b) (c) Fig. 3 The histograms of posterior proba-

bilities for correctly assigning A1A, C1C

and F into one species (a–c), and for

incorrectly assigning A1, C1, EF into one

species (d–f) by BPP in data sets of one

single locus, simulated using the species

tree of Fig. 1a. The same data were anal-

ysed using barcoding in Fig. 2.
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Fig. 4 The histograms of posterior proba-

bilities for species identification and

delimitation by BPP in data sets of 10 loci,

simulated using the species tree of

Fig. 1a. See legend for Fig. 3. P(F) = 1

and P(EF) = 0 in every data set so that

the plots for the query F are not shown.
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sequences (two diploid individuals) from each species.

The parameter values were h = 0.01 for all populations,

sAB = 0.01 and sABC = 0.02. A and B represent distinct

cryptic species, misidentified as one species in the

library. Each locus was 1000 bp. The number of loci

was either 2 or 10, with 12 sequences per locus. The

number of replicate simulations was 100. The BPP analy-

sis assumed five populations (A1, A2, B1, B2, C), with

each individual from A and B treated as a separate pop-

ulation. We assign PRIOR 3 for the species tree models,

which assigns uniform probabilities (1/5 each) for 1, 2,

. . ., 5 species (Yang 2015). The priors on parameters are

h ~ G(1, 100) and sABC ~ G(4, 200). These are diffuse

priors with the means equal to the true values.

The true model in this case has three species, with

the phylogeny ((A, B), C), and with A1 and A2 grouped

into one species (A), and B1 and B2 into another (B).

With 2 loci, 82% of the simulated data sets produced a

maximum a posteriori (MAP) model with three species

that matched the true model. The histogram for the

posterior probability for the correct model (which sepa-

rates A and B into distinct species and also infers the

correct species phylogeny) is shown in Fig. 5a. While

this probability is >70% in most data sets, it is low in

many other data sets, reflecting the low information

content in data of one single locus. With 10 loci, 97% of

the simulated data sets produced a MAP model with

three species that matched the true model. The his-

togram for the posterior probability for the correct

model is shown in Fig. 5b. The shift towards 1 relative

to that of Fig. 5a reflects the dramatic increase in the

information content in data of 10 loci.

If a posterior probability of 0.90 is used as a cut-off to

choose a model, the error rate is 1% for 2 loci and 0%

for 10 loci. With a 0.90 posterior probability cut-off, the

power to identify the true model is 17% with 2 loci and

69% with 10 loci. The average posterior probability Pr

(A1A2) for grouping A1 and A2 into one species was

0.83 with 2 loci and 0.94 with 10 loci, and the average

posterior probability Pr(B1B2) for grouping B1 and B2

into one species was 0.85 with 2 loci and 0.94 with 10

loci. The distributions of posterior probabilities of the

A1A2 and B1B2 groupings with either two or 10 loci are

shown in Fig. 6. Additional loci may be needed to infer

the true model with almost complete certainty.

Identifying rare species

To examine the performance of BPP in identifying rare

species, we simulated data on the species tree of

Fig. 1b, with 1 A, 10 Bs and 10 Cs. The one A sequence

represents one specimen (a singleton) from a haploid

species. We are interested in whether BPP can correctly

infer A to be a distinct species when sequence data

2 loci
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Fig. 5 The histograms of posterior proba-

bilities for correctly inferring the cryptic

species status as well as the species phy-

logeny by BPP using data sets of 2 and 10

loci, simulated using the species tree of

Fig. 1b. There are three species in the

data set, with A and B representing two

cryptic species.
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from multiple loci are available. Note that having two

A sequences (as would be available if the species is

diploid) will make the task easier. The parameter values

are h = 0.01 for all populations, sAB = 0.01 and

sABC = 0.02. Each locus was 1000 bp. The number of

loci was either 2 or 10. The number of replicates was

100. The BPP analysis assumes three populations (A, B,

C). We assign PRIOR 3 for the species tree models, which

assigns uniform probability (1/3) for 1, 2 and 3 species

(Yang 2015). The priors on parameters are h ~ G(1, 100)

and sABC ~ G(4, 200).

The true model in this case is three species, with the

species tree ((A, B), C). The MAP model was the true

model for all simulated data sets with either 2 loci or 10

loci. In all data sets, three species were delimited with

posterior probability >0.95, whether two or 10 loci are

analysed. The average posterior probability of three

species was 0.998 with 2 loci and 1.000 with 10 loci. The

power of inference is very high in this case compared

with the simulation of cryptic species, because multiple

individuals (10 sequences) are available from species B.

Discussion

Species assignment by BPP under the MSC efficiently

uses information available in the sequence data about

between-species divergence versus within-species poly-

morphism. However, BPP also uses the combined infor-

mation available from multiloci gene trees and branch

lengths, even though the gene trees at each individual

locus may involve considerable uncertainties and sam-

pling errors. The method accommodates the fact that

some species have large population sizes (showing

greater within-species diversity), and some species

diverged recently (so that between-species divergence

may not necessarily exceed within-species diversity).

Using a formal modelling framework and incorporating

information about contemporary and ancestral popula-

tion sizes available from multiloci sequence data, one

avoids the need to specify subjective distance thresh-

olds (as in DNA barcoding). Another advantage of sta-

tistical modelling methods such as BPP over heuristic

methods (such as DNA barcoding) is that they provide

measures of uncertainties in the form of posterior prob-

abilities. By contrast, single-locus high-throughput

approaches to discovering species will not work well

when population sizes for some species are large and/

or divergence events are recent. Our results are consis-

tent with the previous simulation study of Hickerson

et al. (2006), who showed that single-gene thresholds

for species discovery such as the 109 rule can result in

substantial error with recent species divergence times.

Lim et al. (2012; see also Collins & Cruickshank 2014)

speculate that ‘in studies using coalescence much of the

evidence for species limits comes from coalescence

points, which are by definition lacking for rare

species. . .’. This intuition is faulty, as can be seen from

our simulation results showing that BPP identified the
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Fig. 6 The histograms of posterior proba-

bilities for correctly identifying cryptic

species by BPP using data sets of 2 and 10

loci. See legend to Fig. 5.
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singleton species with higher power, even though the

single sequence from the singleton species cannot pro-

vide any coalescent points within that species. Indeed,

the simulation of Zhang et al. (2011; Fig. 3) showed that

BPP can assign species correctly with 10 or 50 loci (de-

pending on the mutation rate or sequence divergence

level) even if a single sequence is sampled from every

population at every locus so that estimation of intraspe-

cies diversity is not possible for any species. Lim et al.

(2012) went on to recommend several approaches for

identifying statistical ‘outliers’ for use in species recog-

nition. Those suggestions are not valid or relevant.

Dowton et al. (2014) suggested that coalescent-based

species delimitation methods can be used to make more

accurate specimen identifications than single-locus DNA

barcoding. Our simulation results support this sugges-

tion. Collins and Cruickshank (2014) suggest that ‘to

benchmark the efficiency and accuracy of species delimi-

tation methodologies, it should now be a priority to high-

light exemplar data sets—empirical and/or simulated—

for which MSC methods clearly outperform simpler

mtDNA analyses’. In this study, we have generated sev-

eral such exemplar cases by simulation and show that a

simple distance threshold does not work well.

Bayesian MCMC methods such as BPP involve far more

intensive computation than heuristic methods such as

DNA barcoding and the computational requirement

increases quickly with an increase in the amount of data

(e.g. the number of species/populations, loci, sequences

per locus and sites per sequence—in order of decreasing

importance). The current version of the BPP program has

been used to analyse data of a few thousand loci, with

~20 sequences per locus and about 10 species/popula-

tions. With very few loci, the program can deal with

100–200 sequences per locus. While algorithmic improve-

ments are being made (Rannala & Yang 2017), the pro-

gram is not up to the task for very large data sets. We

note that BPP recovered the true model (species delimita-

tion and species phylogeny) with near certainty with a

moderate number of loci (e.g. 10 or 20). Thus, it is not

always necessary to use the whole genome to infer spe-

cies status. Similarly, there may not be a need to analyse

500 species, say, in one combined analysis, to delimit spe-

cies. Reliable results may be obtainable if divergent

groups of species are analysed as separate data sets, fur-

ther reducing the computational burden.

At the same time, simple heuristic methods such as

DNA barcoding can be expected to work well if the

populations are small and species divergences are

ancient so that incomplete lineage sorting is rare. For

challenging problems involving large population sizes

and recent species divergences, DNA barcoding may be

misleading. It is then prudent to try both types of

analyses whenever possible.

Meta-genomics is one area in which DNA barcod-

ing is currently the only practical approach. In a

meta-genomics analysis, large quantities of sequence

data (e.g. >100 000 sequences) are generated for many

loci from an environmental sample (e.g. the gut, the

permafrost, the ocean). The sample is usually a com-

plex mixture of DNA from hundreds or thousands of

individuals and species and it is impossible to assign

sequences at different loci to individuals. The compu-

tational complexity in the analysis of such data is a

serious concern, and single-locus methods that are

reasonably accurate and computationally efficient are

direly needed.
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