
Coalescent-Based Analyses of Genomic Sequence Data Provide
a Robust Resolution of Phylogenetic Relationships among
Major Groups of Gibbons

Cheng-Min Shi1,2 and Ziheng Yang*,2,3

1CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
2Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
3Radcliffe Institute for Advanced Studies, Harvard University, Cambridge, MA 02138, USA

*Corresponding author: E-mail: z.yang@ucl.ac.uk.

Associate editor: Anne Yoder

Abstract

The phylogenetic relationships among extant gibbon species remain unresolved despite numerous efforts using morpho-
logical, behavorial, and genetic data and the sequencing of whole genomes. A major challenge in reconstructing the gibbon
phylogeny is the radiative speciation process, which resulted in extremely short internal branches in the species phylogeny
and extensive incomplete lineage sorting with extensive gene-tree heterogeneity across the genome. Here, we analyze two
genomic-scale data sets, with�10,000 putative noncoding and exonic loci, respectively, to estimate the species tree for the
major groups of gibbons. We used the Bayesian full-likelihood method BPP under the multispecies coalescent model, which
naturally accommodates incomplete lineage sorting and uncertainties in the gene trees. For comparison, we included
three heuristic coalescent-based methods (MP-EST, SVDQUARTETS, and ASTRAL) as well as concatenation. From both data sets,
we infer the phylogeny for the four extant gibbon genera to be (Hylobates, (Nomascus, (Hoolock, Symphalangus))). We
used simulation guided by the real data to evaluate the accuracy of the methods used. ASTRAL, while not as efficient as BPP,
performed well in estimation of the species tree even in presence of excessive incomplete lineage sorting. Concatenation,
MP-EST and SVDQUARTETS were unreliable when the species tree contains very short internal branches. Likelihood ratio test
of gene flow suggests a small amount of migration from Hylobates moloch to H. pileatus, while cross-genera migration is
absent or rare. Our results highlight the utility of coalescent-based methods in addressing challenging species tree
problems characterized by short internal branches and rampant gene tree-species tree discordance.
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Introduction
Gibbons (Hylobatidae), known also as lesser apes, are the
closest relatives of hominids (humans and great apes), having
diverged in the early to middle Miocene (Matsudaira and
Ishida 2010; Carbone et al. 2014). They inhabit the tropical
forests of Southeast Asia and have a number of characteristics
distinct from the great apes, in body plan (such as smaller
body sizes), morphology and anatomy (such as coat colors,
hair patterns, and limb bones; Ruff and Runestad 1992), be-
havior (e.g., social structure, monogamy, and territoriality;
Mitani 1984), communication (e.g., vocalizations; Marshall
and Marshall 1976; Geissmann 2002; Clarke et al. 2006), and
genetics (e.g., the number of chromosomes and synteny;
Muller et al. 2003; Roberto et al. 2007; Carbone et al. 2014).
There are more species of gibbons than the great apes.
Unfortunately, many species of gibbons are endangered or
critically endangered due to habitat loss and anthropogenic
disturbances (Mittermeier et al. 2013).

Extant gibbons are classified into four genera: Hylobates,
Hoolock, Nomascus, and Symphalangus, with up to 20 species
recognized (9, 3, 7, and 1 in the four genera, respectively),

including the newly described skywalker hoolock gibbon (Fan
et al. 2017; Anandam et al. 2013). Knowledge of the phyloge-
netic relationships of the gibbons is important to our under-
standing of their morphological and behavioral adaptations
and to developing good conservation practices. However, the
phylogeny of extant gibbon species, and in particular, the
relationships among the four extant genera, are unresolved,
with previous analyses providing conflicting estimates (Muller
et al. 2003; Takacs et al. 2005; Chatterjee et al. 2009; Wall et al.
2013). For example, morphological and anatomical data sug-
gested that Hylobates and Hoolock were closely related, vocal
data grouped Hylobates and Nomascus (Geissmann 2002),
whereas chromosome rearrangement data grouped
Nomascus and Symphalangus (Muller et al. 2003). Different
autosomal regions, mitochondrial genomes, Y chromosomal
DNA and Alu elements also suggested conflicting phylogenies
(Matsudaira and Ishida 2010; Chan et al. 2012; Meyer et al.
2012). Some of those differences may be due to estimation
artefacts such as homoplasy in morphological characters or
systematic errors in phylogenetic reconstruction. However, a
major factor is the quick succession of the speciation events
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(Thinh et al. 2010; Wall et al. 2013). The radiative divergences
combined with relatively large population sizes of the ances-
tral species mean that the stochastic nature of the coalescent
process in the ancestral species will cause different regions of
the genomes to have different genealogical histories, which
may conflict with the species phylogeny.

To study the phylogenetic relationships of the gibbon gen-
era, Carbone et al. (2014) applied the UPGMA method to
100-kb nonoverlapping sliding windows along the genome.
This phylogenetic analysis did not account for the coalescent
process, and produced a “forest” of phylogenetic trees. All 15
possible rooted trees for the four genera were found in sub-
stantial proportions of the sliding windows (Carbone et al.
2014, fig. 5), with frequency 15.4% for the most common tree
1 to 2.8% for the least common tree 15 (table 1). Tree 1, with
the topology (Hylobates, (Nomascus, (Hoolock,
Symphalangus))), was also the Neighbor-Joining tree in the
analysis of a coding data set of �11,000 exonic regions and
another nongenic data set of �12,000 noncoding regions,
although the support was weak (Carbone et al. 2014). The
same coding and noncoding data were analyzed by Veeramah
et al. (2015) using a coalescent-based ABC (for Approximate
Bayesian Computation) approach. This effort similarly failed
to produce a species tree with any confidence. However, as
the authors discussed, the ABC approach is based on sum-
mary statistics and may lack power.

In the past few years, the multispecies coalescent (MSC)
model (Rannala and Yang 2003) has emerged as a powerful
framework for inferring species trees while accounting for
incomplete lineage sorting due to ancestral polymorphism
(e.g., Edwards et al. 2007, 2016; Xu and Yang 2016). The
MSC accounts for the coalescent process in both modern
and ancestral species and the resulting gene tree-species
tree discordance, avoiding the assumption that the same
tree underlies all gene loci as in traditional phylogenetic anal-
ysis. The method averages over all possible gene trees at each
locus, and accommodates the uncertainties in the gene tree
at the locus due to limited amount of sequence data through
calculation of the sequence likelihood (the probability of the
sequence alignment given the gene tree and branch lengths).
By combining information at many loci, reliable estimation of
the species tree is possible even if every locus has only weak
phylogenetic information (Xu and Yang 2016). However, full-
likelihood implementations of the MSC (Liu 2008; Heled and
Drummond 2010; Yang and Rannala 2014) involve intensive
computation and have been impractical for large data sets
with a few hundred loci. Recent developments of smart
Markov chain Monte Carlo (MCMC) proposals based on
the subtree pruning and regrafting (SPR) and node-slider
algorithms, which make coordinated changes to both the
species tree and the gene trees in the same MCMC move,
have improved the mixing efficiency of the algorithm and
pushed the limit of Bayesian species tree estimation under
the MSC to thousands of loci (Rannala and Yang 2017).

Here, we apply the new algorithms implemented in BPP

(Rannala and Yang 2017) to the two genome-scale data
sets of Carbone et al. (2014), each consisting of over 10,000
loci. The monophyly of each of the four extant gibbon genera

is well supported (Ross 2016), and our objective in this study
is to resolve the relationships among the genera rather than
among different species of each genus. We include three heu-
ristic coalescent-based methods: MP-EST (Liu et al. 2010),
SVDQUARTETS (Chifman and Kubatko 2014), and ASTRAL

(Mirarab and Warnow 2015), as well as the simple and com-
monly used method of concatenation (Springer and Gatesy
2016; Edwards et al. 2016). To evaluate the reliability of the
methods, we simulated data sets based on parameter esti-
mates obtained from the real data. We also use a recently
developed likelihood method (Zhu and Yang 2012; Dalquen
et al. 2017) to test for potential gene flow between the gibbon
species and assess its impact on estimation of the gibbon
phylogeny. Our analyses led to a confident resolution of the
phylogenetic relationships among the four extant genera of
gibbons, and highlight important differences in statistical per-
formance among competing methods of species tree
estimation.

Results

Bayesian BPP Analyses of Real and Simulated Data Sets
Estimation of the Species Tree Topology Using the Two Full

Gibbon Data Sets
We used the Bayesian MCMC program BPP to analyze two
genome-scale data sets generated by Carbone et al. (2014)
and Veeramah et al. (2015) for five gibbon species: Hylobates
moloch (Hm), Hylobates pileatus (Hp), Nomascus leucogenys
(N), Hoolock leuconedys (B), and Symphalangus syndactylus
(S). The first data set (Noncoding) includes 12,413 loci, each of
1,000 bp in length. The second data set (Coding) consists of
11,323 coding loci, each of 200 bp. The MSC model (Rannala
and Yang 2003) implemented in the BPP program assumes free
recombination among loci and no recombination within
each locus. The ideal loci should thus be loosely linked short
genomic segments that are far apart from each other
(Takahata 1986; Burgess and Yang 2008; Lohse et al. 2011).

Table 1. Species Tree Numbering According to the Frequency of
UPGMA Trees for 100 kb Nonoverlapping Sliding Windows of
Carbone et al. (2014), supplementary table ST 8.4, Supplementary
Material online).

No. Topology Frequency

1 (((S, B), N), H) 0.154
2 (((S, B), H), N) 0.132
3 (((N, B), S), H) 0.109
4 (((N, S), B), H) 0.079
5 (((N, B), H), S) 0.072
6 (((H, B), S), N) 0.067
7 ((H, N), (S, B)) 0.056
8 (((H, B), N), S) 0.052
9 (((H, S), B), N) 0.051
10 (((N, S), H), B) 0.047
11 (((H, N), B), S) 0.041
12 (((H, S), N), B) 0.038
13 (((H, N), S), B) 0.037
14 ((H, S), (N, B)) 0.035
15 ((H, B), (N, S)) 0.028

NOTE.—Eight sliding windows produced unique trees that fail to recover the H
clade (Hm, Hp); these are not listed here.
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The two gibbon data sets largely fit this description (Carbone
et al. 2014, SI text S8.3; Veeramah et al. 2015). Each of the two
data sets was analyzed first in full and then as divided subsets.

In the analysis of the full data sets, we conducted ten
independent runs, using the top ten trees of table 1 as starting
species trees. All 10 runs converged to either trees 1 or 2
(fig. 1), irrespective of the starting tree. Throughout this paper,
we label species tree topologies according to the frequencies
of UPGMA trees in the sliding-window analysis of Carbone
et al. (2014, supplementary table ST 8.4, Supplementary
Material online): for example, trees 1 and 2 are the two
most frequent UPGMA gene trees, found in 15.4% and
13.2% of the sliding windows, respectively (table 1). We found
that in both data sets, BPP converged to tree 1 in seven runs
but to tree 2 in the other three. Additional runs using random
starting trees also converged to either trees 1 or 2. However,
the Markov chain failed to move between species trees 1 and
2. Note that those two species trees differ by a simple Nearest
Neighbor Interchange (NNI) move. The SPR and NodeSlider
moves implemented by Rannala and Yang (2017) appear to
be effective in moving the chain out of poor species trees in
the early stage of the MCMC, but not effective in moving
between good species trees after the gene trees at the mul-
tiple loci are nearly optimized (see Discussion).

As it is very inefficient to combine the MCMC samples
across the multiple runs to estimate posterior probabilities
for species trees 1 and 2 (P1 and P2), we used the path
sampling or thermodynamic integration method (Lartillot
and Philippe 2006) to calculate their marginal likelihood

values (M1 and M2). The procedure is described in
Rannala and Yang (2017). The BFDRIVER program in BPP 3.3
was used to generate the control files for K¼ 16 independent
MCMC runs to sample from the different power posterior
distributions at different b values. The logarithm of the mar-
ginal likelihood was given by numerical integration as a sum
over the K quadrature points (fig. 2). We found that log M1

=M2 � 112 for Noncoding and �9 for Coding, so that
P1=P2� e112 and e9, respectively. Thus species tree 1 was
the MAP tree for both data sets, with the posterior �1.000.

Estimation of Parameters in the MSC Model from the Two

Real Data Sets
We estimated the species divergence times (ss) and popula-
tion sizes (hs) for species trees 1 and 2 for the two full data
sets (fig. 1, supplementary table S1, Supplementary Material
online). Ten independent runs generated very similar esti-
mates, and the MCMC samples were merged to produce
the posterior summary. The posterior credibility intervals
(CIs) for ss were very narrow (fig. 1A and B), due to the
huge data size. The parameter estimates on species tree 1
are largely consistent between the coding and noncoding
data sets. The posterior means of ss are nearly proportional;
fitting the regression line y¼ bx to the five points (five pairs of
s estimates) led to s(C)¼ 0.73s(NC), with r2¼ 0.985, indicating
that the mutation rate for the coding loci was �0.73 times
that for the noncoding loci. The imperfect correlation was
mainly caused by the SB node appearing too young (or sSB
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FIG. 1. Two species trees obtained in the BPP analysis of the two full real data sets: Noncoding and Coding. Branch lengths are drawn to represent the
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intervals. The posterior means of hs (�10�3) are shown in brackets next to the branches. Species tree 1 is the MAP tree in both data sets according
to the marginal likelihood calculation (fig. 2).
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too small) in the Coding tree; sSB appeared to be poorly
estimated with large sampling errors because the branch is
very short. Similarly the posterior means of hs for the extant
species are nearly proportional between the two data sets,
with the regression line (for five points for S, B, N, Hm, and
Hp) to be h(C)¼ 0.62h(NC), with r2¼ 0.986. The correlation
was much weaker (r2¼ 0.28) if all 10 estimates of hs on the
species tree were used: the estimate ĥSB¼ 0.0267 from the
coding loci was too high with a large sampling error; removing
that point gave r2¼ 0.84. There is only one sequence for the
outgroup (human) so that no h estimate was available.

According to our estimates, the population size for H.
moloch (Hm) is about twice as large as for H. pileatus (Hp),
and that for S. syndactylus (S) is 1.3 times as large as for H.
leuconedys (B) (fig. 1A and B). Population sizes for ancestral
species SB and SBN were a few times larger than those for the
extant species, although the estimates involve large sampling
errors because the branches that represent those ancestral
species are very short.

Analysis of the Data Subsets
We separated the noncoding loci into 24 smaller subsets
according to their genomic locations in N. leucogenys, with
each subset consisting of 500 loci (or 913 for the last subset).
Similarly, the coding loci were separated into 11 data subsets,
each of 1,000 loci (1,323 for the last). Those are referred to as
the Noncoding500 and Coding1000 data sets, respectively.
The subsets are small enough so that BPP does not suffer
from mixing problems but large and informative enough
for the species tree to be estimated with confidence.
Furthermore, analysis of the subsets is useful for assessing
potential heterogeneity across the genome in the evolution-
ary history among the gibbon species. The BPP runs were
successful in the analysis of all data subsets, with no obvious

signs of mixing problems encountered. Irrespective of the
starting species trees, BPP visited the same set of species trees
with substantial posterior probabilities among the 10 repli-
cate runs, although the frequencies with which those species
trees were visited may vary somewhat among the runs. The
MCMC samples for the runs were then merged to produce
the posterior summary (fig. 3A and B, table 2).

Out of the 24 Noncoding500 data subsets (N1–N24 in
table 2), four distinct MAP trees were observed: species tree
1 in 14 data sets with posterior ranging from 0.59 to 1.00; tree
2 in six data sets with posterior from 0.40 to 1.00, and trees 9
and 14 in three and one data set, respectively, with posterior
�0.50 (fig. 3A and table 2). Thus the posterior was never very
high except when the MAP tree was species trees 1 or 2.

Out of the 11 Coding1000 data subsets (C1–C11 in table 2),
three distinct MAP trees were observed: tree 1 in 6 data sets
with posterior 0.36–0.97, tree 2 in 4 data sets with posterior
0.26–0.85, and tree 3 only once with posterior 0.47 (fig. 3B and
table 2). The Coding1000 data sets, even with twice as many
loci, are far less informative than the Noncoding500 data sets,
because they have shorter sequences (200 sites instead of 1000)
and lower mutation rates. While tree 1 was the most commonly
favored species tree, the support was not very high. No other
species tree received strong support in any of the 11 data sets.

Thus the analyses of the data subsets did not suggest het-
erogeneous evolutionary histories among different regions of
the genome beyond the expectations of the coalescent model,
and that overall the whole genome covered by those loci
appeared to be consistent with tree 1 (or to a lesser extent
with tree 2).

The Simulated Data Sets
We used species tree 1 and the parameter estimates under
the MSC (the posterior means of ss and hs in the A00 analysis,
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fig. 1A and B) to simulate two data sets under JC (Jukes and
Cantor 1969) (NoncodingJC and CodingJC) and two data sets
under GTRþC (Yang 1994a, 1994b) (NoncodingGTR and
CodingGTR), with the same taxon sampling scheme as in
the real data. The GTR data were simulated with the param-
eters of the GTRþC model varying among loci (see
Materials). Each of noncoding data sets includes 10,000 align-
ments (loci), of 1,000 bp, whereas each of the coding data sets
includes 10,000 loci each of 200 bp. The data sets were

analyzed in the same way as the real data sets, first in full
and then divided as subsets.

In the analysis of the four full data sets, all 10 independent
BPP runs converged to the true species tree (tree 1), with
posterior �1.00, except for NoncodingJC. In that data set,
eight out of the ten runs converged to tree 1 (the true
tree), but the chain was stuck in a wrong tree in two other
runs. Compared with the coding loci, the noncoding loci have
longer sequences and higher mutation rate, and should be
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FIG. 3. Posterior probabilities for species trees in the BPP analysis of the real (A and B) and simulated (C–F) data subsets. The data of (C) and (D) were
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more informative and should estimate the true species
tree with higher accuracy and higher precision (that is,
the MAP species tree should be the true tree with higher
probability and the MAP species tree should have higher
posterior). Thus we did not calculate the marginal likeli-
hood values for this data set and concluded that the
Bayesian MSC method inferred the true species tree
with full support in all four simulated data sets, but BPP

had mixing problems in one of them.
The posterior estimates of parameters from the simulated

data sets are shown in figure 4. For the two JC data sets, the
posterior means were very close to the true values with the
exception that in CodingJC, hSB, and hSBN for the two very
short internal branches were not reliably estimated. For the
two GTR data sets, the posterior means of parameters for the
nonroot nodes were similarly close to the true values.
However, in both data sets, the age of the root (s) is under-
estimated (0.0115 vs. the true value 0.0153 for
NoncodingGTR and 0.0080 vs. 0.0115 for CodingGTR) and
the population size parameter for the root (h) is overesti-
mated (0.0128 vs. 0.0055 for NoncodingGTR and 0.0145 vs.
0.0078 for CodingGTR). The heterogeneity in the mutation
process among loci in the GTR data is misinterpreted as
heterogeneity in the gene trees from the coalescent process,
leading to an inflated ancestral population size (h) for the
root and a reduced species divergence time (s). This is the
same pattern observed in a previous analysis of the hominoid
genomics data (Burgess and Yang 2008), in which the param-
eters for the root species was found to be sensitive to possible
heterogeneity in the evolutionary process among loci.

We emphasize here that even though the JC model is
grossly wrong, the BPP estimates of parameters for the
nonroot nodes of the species tree were robust.

The BPP analyses of the simulated data subsets are sum-
marized in table 2 and figure 3. The runs were successful
in every case. For the NoncodingJC500 data, BPP inferred
the correct species tree 1 in 19 out of the 20 subsets, often
with high posterior, while the single wrong tree (tree 4)
had very weak support (0.40). For CodingJC1000, BPP in-
ferred the correct tree 1 in 9 out of the 10 subsets, but the
posterior was lower than in the noncoding data, and
again the single wrong tree had weak support (0.88). As
in the real data, the coding subsets are less informative
than the noncoding subsets. In the GTR subsets, BPP made
3 errors out of 20 for NoncodingGTR500, and 3 errors out
of 10 for CodingGTR1000. The wrong trees all had low
support. Overall, the GTR subsets are less informative
with lower support for the estimated species trees than
the JC subsets. Because the JC and GTR data were simu-
lated using the same values of MSC parameters (ss and hs)
so that the gene trees should have similar branch lengths,
the GTR data, due to biased base compositions and muta-
tion rates as well as variable mutation rates among sites,
should have fewer informative sites than the JC data.

In summary, BPP inferred the correct species tree with 1000
or 500 loci most of the time, and never attached high
posteriors to wrong trees in any data sets. This is the case
for the GTR data sets as well. Even though JC assumed by
BPP is grossly wrong, the analysis is quite robust, with low error
rates (table 3).
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FIG. 4. BPP estimates of parameters (ss and hs) on species tree 1 from the four simulated full data sets. The true parameter values are shown in
figure 1A and B. See legend to figure 1.
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ASTRAL Analyses of Real and Simulated Data Sets
Like BPP, ASTRAL inferred species tree 1 in the analyses of two
real and four simulated full data sets (table 4 and fig. 5). For
the simulated data, the inferred tree was also the true tree.
The “local posterior” support value was 100% for every node
in every data set except that for the Coding data set, the clade
(B, S) had 99% (fig. 5).

As ASTRAL and BPP produced the same species tree (tree 1) in
all six full data sets, we compared the parameter estimates in
the MSC model by the two methods. ASTRAL makes use of
gene tree topologies but not gene-tree branch lengths, and is
thus unable to identify or estimate most of the parameters in
the model. For example, there are 15 parameters (10 hs and 5
ss) on species tree 1 (fig. 1A), and ASTRAL can estimate only
three. The gene tree-species tree topological mismatches
around an internal branch provide information about the
time length of the branch relative to the ancestral population
size for the branch, and as a result, ASTRAL can estimate the
internal branch lengths on the species tree in coalescent units.
This branch length is 2Ds/h in BPP, where Ds is the difference
in species divergence times for the branch and h is the pop-
ulation size parameter for the branch, and its posterior can be
generated using the MCMC samples from the A00 analysis: si

and hi (the sampled parameter values at MCMC iteration i).
The estimates of internal branch lengths (2Ds/h) obtained

by ASTRAL and BPP were comparable (table 5). For the real data
(Noncoding and Coding), ASTRAL estimated a shorter SB
branch (meaning that there was more gene-tree conflicts
around the branch) than BPP. For the simulated data sets,

the ASTRAL estimates are close to but often slightly larger
than the true values. Note that phylogenetic reconstruction
errors inflate the gene tree-species tree conflicts, so that use of

Table 3. Error Rates for BPP, ASTRAL, SVDQUARTETS, and Concatenation (PHYML) in Analysis of Simulated Data Subsets.

BPP ASTRAL SVD ConJC ConGTR

JC data
NoncodingJC500 (500 loci, 1,000 sites) 1/20 3/20 11/20 12/20 19/20
CodingJC1000 (1,000 loci, 200 sites) 1/10 2/10 7/10 4/10 8/10

GTR data
NoncodingGTR500 (500 loci, 1,000 sites) 3/20 4/20 13/20 15/20 20/20
CodingGTR1000 (1,000 loci, 200 sites) 3/10 5/10 5/10 8/10 10/10

NOTE.—JC was assumed in the analysis of the JC data sets and GTRþC in the GTR data sets by ASTRAL (using PHYML), whereas JC is assumed in all BPP analyses.

Table 4. Species Trees (with support values) Inferred by Different Methods from the Real and Simulated Full Data Sets.

Real Data Simulated (JC) Simulated (GTR)

Method Noncoding Coding Noncoding Coding Noncoding Coding

BPP 1 (1.00) 1 (1.00) 1 (1.00) 1 (1.00) 1 (1.00) 1 (1.00)
ASTRAL 1 (1.00) 1 (1.00) 1 (1.00) 1 (1.00) 1 (1.00) 1 (1.00)
SVDQUARTETS 7 (1.00) 7 (0.96) 1 (1.00) 1 (0.95) 1 (1.00) 1 (0.95)
MP-EST 2 a 3 9 1 9
Concatenation

PHYML-JC 7 (0.41) 1 (0.95) 7 (1.00) 1 (0.95) 7 (1.00) 7 (0.88)
MRBAYES-JC 1 (1.00) 1 (1.00) 7 (1.00) 1 (1.00) 7 (1.00) 7 (1.00)
PHYML-GTRþC4 7 (1.00) 7 (0.70) 7 (1.00) 7 (0.96) 7 (1.00) 7 (1.00)
MRBAYES-GTRþC4 7 (1.00) 7 (1.00) 7 (1.00) 7 (1.00) 7 (1.00) 7 (1.00)

NOTE.—The trees are identified in table 1. For the four simulated data sets, tree 1 is the true tree. For BPP, support value is the posterior probability for the MAP tree. For ASTRAL,
SVDQUARTETS, and concatenation, it is the minimum support value among the internal nodes, which may be an overestimate of the support for the whole tree. The H node (Hm
and Hp) had full support except stated otherwise.
aMP-EST estimated (Hp, ((S, B), (N, Hm))) in the real Coding data, failing to recover the H clade.
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FIG. 5. Species trees inferred by ASTRAL from the two real (A) data sets
and four simulated (B) data sets. The trees are rooted with human (O)
as outgroup. The same tree (tree 1) is inferred in all six data sets.
Support values are 100% for all nodes in all analyses (not shown)
except that for the Coding data set, the SB node had 99%.
Estimates of internal branch lengths are in table 5. Note that ASTRAL

cannot estimate external branch lengths.
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reconstructed instead of true gene trees should lead to un-
derestimation of branch lengths (Yang 2002; Huang and
Knowles 2009). Here, ASTRAL uses the correction of Sayyari
and Mirarab (2016) to account for gene-tree estimation
errors, which appeared to be effective in this simulation.
The BPP estimates were close to the true values in the infor-
mative noncoding data sets (NoncodingJC and
NoncodingGTR) but were somewhat too large for the short
SB branch in the less informative coding data sets (CodingJC
and CodingGTR). This appears to be due to the impact of the
prior, which specifies too large Ds and too small h for the
short SB branch, relative to the posterior. Nevertheless, the
internal branch lengths in coalescent units (2Ds/h) were bet-
ter estimated than the s and h parameters for those short
branches (compare table 5 with fig. 4). The simple JC model
assumed by BPP is seen to produce good parameter estimates
in the two GTR data sets as well. We suggest that BPP instead
of ASTRAL be used for parameter estimation as BPP can esti-
mates all parameters in the model and can provide CIs to
indicate the sampling errors.

The ASTRAL analyses of the real data subsets are summa-
rized in table 2. Among the 24 Noncoding500 subsets, tree
1 was the inferred tree 11 times, with 6 times for tree 2, and
5 times for tree 9. Among the 11 Coding1000 subsets, tree
1 was the inferred tree 6 times, with tree 2 twice. Support is
low (<95% in every subset), especially in the coding sub-
sets. In general, ASTRAL showed more variation among sub-
sets than BPP.

In the analysis of the simulated data subsets, ASTRAL made
more errors than BPP (tables 2 and 3). This was the case even
for the GTR data sets, in which case the true GTRþC model
was assumed in ASTRAL whereas the wrong JC model was used
in BPP. The ASTRAL support value for the estimated species tree
never exceeded 95% in any of the subsets, in contrast to BPP,
which inferred the true species tree with high posterior in

many subsets (table 2). This suggests either that the subsets
may be too small for ASTRAL to infer the species tree with
confidence, or that the ASTRAL support values may be too
conservative. Figure 6 suggests that the former is the case,
because at such data sizes (500 noncoding or 1,000 coding
loci), ASTRAL does not recover the species tree with very high
frequency.

SVDQUARTETS Analyses of Real and Simulated Data Sets
The species trees inferred by SVDQUARTETS in the analyses of
the full data sets are shown in table 4. In both real data sets
(Noncoding and Coding), SVDQUARTETS inferred species tree
7, with the topology ((N, H), (B, S)), where H stands for
Hylobates or the (Hm, Hp) clade. The support value was

Table 5. ASTRAL and BPP Estimates of Internal Branch Lengths in Coalescent Units (2Ds/h) in Species Tree 1 from the Two Real and Four Simulated
Full Data Sets.

Method SB SBN HpHm SB SBN HpHm

Noncoding Coding
ASTRAL (JC) 0.039 0.042 2.254 0.044 0.073 2.136
BPP 0.065 0.078 2.330 0.072 0.075 2.051

(0.055, 0.076) (0.070, 0.087) (2.275, 2.386) (0.057, 0.088) (0.056, 0.095) (1.969, 2.137)
BPPa 0.065 0.078 2.330 0.071 0.074 2.050

NoncodingJC CodingJC
Truth 0.065 0.078 2.330 0.071 0.074 2.050
ASTRAL (JC) 0.072 0.076 2.541 0.083 0.084 2.295
BPP 0.064 0.081 2.264 0.109 0.099 2.062

(0.052, 0.076) (0.071, 0.092) (2.207, 2.323) (0.089, 0.128) (0.073, 0.126) (1.974, 2.155)
BPPa 0.064 0.081 2.263 0.108 0.099 2.062

NoncodingGTR CodingGTR
Truth 0.065 0.078 2.330 0.071 0.074 2.050
ASTRAL (GTRþC4) 0.089 0.064 2.581 0.089 0051 2.116
BPP 0.070 0.069 2.318 0.114 0.073 1.969

(0.057, 0.082) (0.059, 0.079) (2.258, 2.379) (0.094, 0.134) (0.046, 0.099) (1.887, 2.054)
BPPa 0.070 0.068 2.318 0.113 0.073 1.969

NOTES.—In the BPP analysis, the posterior means and 95% equal-tail CIs (in parentheses) are calculated by averaging 2Ds/h over the MCMC sample from the A00 analysis.
The approximate method (BPPa) simply uses the posterior means of ss and hs.
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FIG. 6. The percentage of correct species trees in simulated data sets
by three different methods, plotted against the number of loci. The
data were simulated under JC using parameter estimates obtained
from the BPP (A00) analysis of the Coding and Noncoding gibbon data
sets. For ASTRAL and SVDQUARTETS, the number of replicates is 100,
while for BPP, it is 100 for the 500-loci data sets and 30 for others.
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100% for every node for Noncoding whereas for Coding, the
two nodes had slightly weaker support (96% and 97%).

For the four simulated data sets, the inferred species tree
was tree 1 (the true tree; table 4), again with high support.
This result may be expected because SVDQUARTETS estimation
of the species tree is consistent since the species tree is iden-
tifiable in the case of quartets (four species and four sequen-
ces; Chifman and Kubatko 2015) and the quartets uniquely
determine the species tree (e.g., Allman et al. 2011). Note that
SVDQUARTETS was developed under the GTRþCþI model
and includes GTRþC and JC as special cases. Thus whereas
both BPP and ASTRAL estimated species tree 1 in all the six full
data sets (two real and four simulated), SVDQUARTETS recov-
ered species tree 1 (the true tree) in the four simulated data
sets, but favored tree 7 in the two real data sets. We discuss
this discrepancy later in Discussion.

The SVDQUARTETS analyses of the real data subsets pro-
duced highly variable results (table 2). Out of the 24
Noncoding500 data subsets, tree 7 was the best supported
tree 6 times, with 6 times for tree 2, and 5 times for tree 1. Out
of the 11 Coding1000 subsets, tree 7 was the best tree 4 times
(once for tree 1). Support was high more often in the coding
subsets (>95% in 3 out of the 11 subsets) than in the non-
coding subsets (none at 95%). This is somewhat surprising, as
the noncoding subsets are much more informative, with
stronger support for both BPP and ASTRAL species trees than
the coding subsets.

The analysis of the simulated data subsets by SVDQUARTETS

is summarized in table 2. The method made many errors: 11
and 7 for the JC data sets, compared with 1 and 1 for BPP; and
13 and 5 for the GTR data sets, compared with 3 and 3 for BPP

(table 3). A large proportion of the erroneous species trees
inferred by SVDQUARTETS were tree 7. The support value was
not related to the correctness of the inferred species tree.
High support (>95%) was attached to 7 out of the 11 wrong
species trees for NoncodingJC500, to 6 out of the 13 wrong
trees for NoncodingGTR500, and to 3 out of the 7 wrong trees
for CodingJC1000. Those results suggest that the
SVDQUARTETS support value is unreliable and overconfident,
and that the strong support for the conflicting species trees
among the Coding1000 real data subsets (table 2) is spurious.

MP-EST Analyses of Real and Simulated Data Sets
In the analysis of the two real full data sets, MP-EST inferred tree
2 for Noncoding, and the tree (Hp, ((S, B), (N, Hm))) for
Coding. This latter tree fails to group the two Hylobates spe-
cies into the same clade and should be wrong.

When MP-EST was applied to the four simulated full data
sets, it inferred the correct species tree (tree 1) in only one of
them: NoncodingGTR. The inferred incorrect tree was tree 9
for CodingJC and CodingGTR, and tree 3 for NoncodingJC
(table 4). This poor performance may be due to the fact that
many of the loci had few parsimony-informative sites with
very weak phylogenetic information so that the recon-
structed gene trees had large uncertainties and errors.
Gene-tree errors are known to have a considerable adverse
effect on MP-EST (Liu et al. 2015; Xu and Yang 2016). Because
MP-EST performed poorly in the simulated full data sets,

we did not examine its performance in the data subsets or
consider its results for the real data sets any further.

Concatenation Analyses of Real and Simulated
Data Sets
We used maximum likelihood (ML) implemented in PHYML
(Guindon 2013) and Bayesian inference (BI) implemented in
MRBAYES (Ronquist et al. 2012) to analyze the concatenated
alignments for the full data sets, under the JC and GTRþC4

models. In all analyses, the sequences from the same species
formed monophyletic groups, making it possible to extract a
species phylogeny from the estimated gene trees. The results
are summarized in table 4. Under JC, MRBAYES recovered spe-
cies tree 1 in both real data sets, with full support for all nodes,
while PHYML inferred tree 7 from the Noncoding data set,
although the bootstrap support for the node (H, N) is only
41%. Under GTRþC4, both PHYML and MRBAYES recovered
tree 7 from both the Noncoding and Coding data sets. Note
that tree 7 is the balanced tree: ((H, N), (S, B)) (table 1).

In the analysis of the data sets simulated under JC
(NoncodingJC and CodingJC), the true species tree (tree 1)
was recovered only from CodingJC under the JC model, while
the incorrect tree 7 was inferred in the other three data-
model combinations (table 4). In particular, under
GTRþC4, both PHYML and MRBAYES inferred tree 7. Support
values were always high, with bootstrap values>95% and
Bayesian posterior �100% for all nodes in all analyses. In
the analysis of the GTR data sets (NoncodingGTR and
CodingGTR), both ML and BI under both JC and GTRþC4

inferred the incorrect species tree 7, with high support.
We also applied ML (PhyML) to the concatenated align-

ments of the real data subsets (table 2). In the JC analysis of
the 24 Noncoding500 subsets, tree 1 was the ML tree 5 times,
with 8 times for tree 7. In the JC analysis of the 11 Coding1000
subsets, tree 1 was recovered 7 times, whereas tree 7 was
never the ML tree. However, when GTRþC4 was assumed,
tree 7 was the most common ML tree in both the coding and
noncoding subsets.

The ML analysis of the simulated JC data subsets was sum-
marized in table 2. PHYML/JC recovered the true tree 1 in only
8 out of the 20 NoncodingJC500 subsets and 6 out of the 10
CodingJC1000 subsets, whereas tree 7 were inferred from 12
NoncodingJC500 subsets and from one CodingJC1000 subset.
When GTRþC4 model was used, the inferred tree was pre-
dominantly tree 7. In the analysis of the GTR data subsets, the
inferred species tree was predominantly tree 7, whether JC or
GTRþC4 was assumed by PhyML. It appears that in those
simulated data sets, the concatenation/ML method of species
tree estimation is inconsistent (see Discussion).

Test of Migration and Estimation of Migration Rates
Using Triplets
We used the ML program 3S to test for gene flow (migration)
between the gibbon species and to estimate the directions
and rates of migration (Zhu and Yang 2012; Dalquen et al.
2017). The program works with three species only, with three
sequences per locus. Thus we constructed triplet data sets by
sampling three sequences per locus from each of the
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Noncoding and Coding data sets (table 6). We fitted two
models using ML. Model M0 (no gene flow) assumes no mi-
gration and fits the MSC model to the species tree ((A, B), C).
Model M2 (gene flow) allows migration between A and B,
with two additional parameters: MAB and MBA, where MAB

is the expected number of immigrants in population B
from population A per generation, and so on. MLEs of
parameters and the log likelihood values under models
M0 and M2 for the triplet data sets are summarized in
table 6. We use the likelihood ratio test (LRT) to compare
models M0 and M2.

For the Noncoding data, gene flow is detected at the 1%
level (with critical value v2

2; 1%¼ 9.21) from the Hm-B-O, Hm-
N-O, B-S-O, Hm-Hp-O, and Hm-Hp-B data sets. In the
analysis of the two Hylobates species, use of different out-
groups such as the human (O) and Hoolock leuconedys (B)
produced consistent results. In both cases, migration from H.
moloch to H. pileatus was inferred, at the rate of
M¼ 0.0084 6 0.0008 migrants per generation in the case of
the human outgroup or 0.0078 6 0.0012 for the H. leuconedys
outgroup. In neither case was migration inferred in the oppo-
site direction from H. pileatus to H. moloch. Migration between
the two Hylobates species should have the effect of causing BPP

(which ignores migration) to group the two species into the
same clade, although the monophyly of the Hylobates genus
was not in doubt. For all other species pairs, the migration rate
was around 0.001 migrant individuals per generation or lower.
Migration rates of such magnitude are expected to have little
impact on species tree estimation (Leaché et al. 2014).

For the Coding data, the LRT did not reach the 1% level for
any of the data sets, whereas at the 5% level (with critical
value v2

2; 5%¼ 5.99), there was evidence for gene flow be-
tween species pairs Hm-B, B-S, B-N, and Hm-Hp (table 6).
For the Hm-Hp pair, parameter estimates suggested a migra-
tion rate of 0.007 6 0.003 from H. moloch to H. pileatus, and
no migration in the reverse direction when the human was
used as the outgroup, consistent with the analysis of the
Noncoding data set. When H. leuconedys was used as the
outgroup, the estimates were 0.006 6 0.003 from Hm to
Hp, and 0.016 6 0.009 in the reverse direction from Hp to
Hm. The large standard errors indicate that the estimates may
be unreliable. As the results differed among replicate datasets
and among different choices of the outgroup, and the test is
only marginally significant, we do not emphasize the esti-
mates from the Coding data. In general, the coding data
are much less informative than the Noncoding data. For

Table 6. Estimates of Parameters (�10�3) under the MSC Model with Migration for Three Species.

Data & Model sABC sAB hABC hAB hA hB MAB MBA ‘ 2D‘

Noncoding
Hm-B-O M0 15.17 4.23 5.60 2.53 1.36 0.90 �2238959.32
Hm-B-O M2 15.17 4.36 5.60 2.40 1.36 0.85 1.12 0.15 �2238928.59 61.46
Hm-S-O M0 15.23 4.28 5.61 2.54 1.43 1.22 �2253001.66
Hm-S-O M2 15.23 4.38 5.61 2.44 1.39 1.22 0.16 1.20 �2252990.65 22.03
Hm-N-O M0 15.10 4.28 5.70 2.43 1.33 1.88 �2253031.08
Hm-N-O M2 15.10 4.37 5.70 2.33 1.29 1.89 0.00 1.36 �2253019.96 22.23
B-S-O M0 15.21 4.22 5.63 2.40 0.91 1.22 �2236902.43
B-S-O M2 15.20 4.34 5.63 2.27 0.87 1.22 0.04 1.10 �2236881.40 42.07
B-N-O M0 15.12 4.21 5.62 2.38 0.92 1.78 �2238554.36
B-N-O M2 15.12 4.25 5.62 2.34 0.90 1.78 0.00 0.55 �2238549.60 9.52
S-N-O M0 15.17 4.30 5.67 2.33 1.20 1.83 �2252698.72
S-N-O M2 15.17 4.33 5.66 2.30 1.20 1.82 0.44 0.00 �2252697.60 2.24
Hm-Hp-O M0 15.11 1.42 5.82 2.76 1.26 0.61 �2110388.99
Hm-Hp-O M2 15.11 1.66 5.82 2.55 1.29 0.48 8.39 0.00 �2110332.65 112.69
Hm-Hp-B M0 4.32 1.49 2.45 2.60 1.34 0.59 �945232.51
Hm-Hp-B M2 4.31 1.74 2.47 2.32 1.36 0.49 7.82 0.00 �945188.92 87.18

Coding
Hm-B-O M0 11.27 2.76 8.17 2.29 0.94 0.56 �353419.45
Hm-B-O M2 11.27 2.91 8.17 2.14 0.91 0.53 1.15 1.05 �353416.45 6.01
Hm-S-O M0 11.34 2.76 8.22 2.40 0.96 0.77 �356126.75
Hm-S-O M2 11.34 2.87 8.22 2.31 0.93 0.75 0.83 1.10 �356126.18 1.14
Hm-N-O M0 11.26 2.68 8.21 2.61 1.00 1.22 �356688.67
Hm-N-O M2 11.26 2.85 8.21 2.45 0.98 1.14 3.57 0.72 �356687.58 2.19
B-S-O M0 11.31 2.52 8.21 2.49 0.58 0.81 �352745.31
B-S-O M2 11.31 2.80 8.22 2.24 0.52 0.77 1.82 2.26 �352740.97 8.69
B-N-O M0 11.32 2.71 8.03 2.22 0.55 1.20 �353303.96
B-N-O M2 11.32 2.94 8.04 1.99 0.51 1.15 2.79 1.45 �353300.55 6.81
S-N-O M0 11.31 2.88 8.22 2.15 0.73 1.17 �356074.00
S-N-O M2 11.31 2.97 8.22 2.06 0.72 1.14 1.51 0.34 �356073.52 0.96
Hm-Hp-O M0 11.18 0.94 8.50 1.99 0.83 0.43 �335891.18
Hm-Hp-O M2 11.18 1.03 8.22 1.94 0.85 0.36 6.90 0.00 �335889.87 2.62
Hm-Hp-B M0 2.64 0.94 2.61 1.87 0.82 0.40 �129393.88
Hm-Hp-B M2 2.62 1.34 2.66 1.42 0.76 0.32 6.28 16.46 �129390.74 6.28

NOTE.—The migration rate Mij¼Njmij is the expected number of immigrants in population j from population i.
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the other cross-genera species pairs, either the migration rates
are low or the test is not highly significant.

We note that MLEs of parameters for the root of the spe-
cies tree (sABC and hABC) are very similar between models M0
and M2 and also very similar to the Bayesian estimates from
the full data (supplementary table S1, Supplementary
Material online). For example, for the Noncoding data, the
MLEs are �0.0151 for sABC and �0.0056 for hABC, compared
with the Bayesian posterior means 0.0154 and 0.0055. For the
Coding data, the MLEs are 0.0112–0.0113 for sABC and
0.0080–0.0082 for hABC, compared with the posterior means
0.0115 and 0.0078. Population size parameters (hs) for the
modern species are also extremely similar between the ML
and Bayesian analyses.

Because the four gibbon genera diverged at very similar
times, the age sAB in the first six data sets (table 6) maps either
exactly or approximately to the root of the gibbon clade in
the species tree (fig. 1A and B). Its MLE was �0.0043 for the
Noncoding data and �0.0028 for the Coding data, slightly
smaller than the posterior means from the full data (0.0045
for Noncoding and 0.0031 for Coding). Parameter hAB (with
MLEs 0.0023–0.0025) mostly reflect the long branch ancestral
to the gibbon clade in figure 1A and B (with posterior mean
0.0024 in the BPP analysis), because the internal branches in-
side the gibbon clade are all very short. Even though the 3S

analysis used three sequences per locus, whereas the BPP anal-
ysis used 17, data sets of over 10,000 loci are informative
enough for the two methods to produce highly similar pa-
rameter estimates.

When there is gene flow between species A and B, ignoring
gene flow can lead to biased parameter estimates. Compared
with estimates under M0 (no gene flow), M2 (gene flow)
produced larger sAB and smaller hAB estimates. In other
words, if the migration between A and B is ignored, one
will underestimate the species divergence sAB and overesti-
mate the ancestral population size parameter hAB. The size of
the population receiving immigrants will also be seriously
overestimated. In computer simulations, a small amount of
migration was noted to affect parameter estimation more
than species tree estimation (Leaché et al. 2014).

Discussion

Utility of Coding Sequences in Inference under the
MSC
The coding loci are clearly under purifying selection, which
removes deleterious nonsynonymous mutations, while the
MSC model assumes neutral sequence evolution. However,
we expect that protein-coding genes under Darwinian selec-
tion or species-specific directional selection are rare in the
gibbon genome and that most genes or exons are performing
the same functions and are under similar selective constraints
among the gibbon species. Purifying selection thus has the
predominant role of reducing the neutral mutation rate, with
a less important role of affecting the shape of the gene trees.
We thus suggest that coding loci may be sensibly analyzed
under the MSC. Indeed in this study the coding and noncod-
ing data sets produced highly consistent results in terms of

both the species tree topology and the parameters in the
MSC model, highlighting the utility of examining different
parts of the genome for such analyses (see also Ebersberger
et al. 2007; Dalquen et al. 2017).

As mentioned earlier, the posterior means of ss (which
measure the between-species divergences) and hs (which
measure the within-species polymorphism) form near perfect
linear relationships between the coding and noncoding data
sets, with s(C)¼ 0.73s(NC) and h(C)¼ 0.62h(NC). If the noncod-
ing loci and the synonymous sites in the coding exons are
evolving neutrally and if the proportion of synonymous sites
in the exons is 1/4, then the slope of 0.73 may be translated
into an average genome-wide estimate of the nonsynony-
mous/synonymous rate ratio of x¼ 0.64 (since
1=4þ 3=4 x ¼ 0:73).

We suggest that the smaller slope for h than for s (0.62 vs.
0.73) is expected from the population genetics theory of
background selection, which predicts a reduction in polymor-
phism at a neutral locus due to its linkage to sites or loci
under purifying selection (Charlesworth et al. 1993; Hudson
and Kaplan 1995; Nordborg et al. 1996; McVicker et al. 2009).
Recall that both s and h are defined on a per-site basis.
Suppose we use a particular site in the exon as reference to
define s and h, and assume no recombination within the
exon so that all sites in the exon share the same genealogical
history. As a simple model, assume that mutations in the
noncoding loci are neutral and mutations in the exon consist
of three types: neutral synonymous mutations, and lethal and
deleterious nonsynonymous mutations. We first consider
mutations at the reference site and then the impact of selec-
tion on sites elsewhere in the exon. Neutral mutations at the
reference site are fixed at the same rate as mutations in the
noncoding loci even though they are linked to nonsynony-
mous sites under purifying selection elsewhere in the exon
(Birky and Walsh 1998). Lethal nonsynonymous mutations
have the effect of reducing the neutral mutation rate. Those
two types of mutations at the reference site have the same
effect on divergence and polymorphism (s and h). Slightly
deleterious mutations at the reference site reduce the prob-
ability of fixation relative to neutral mutations and lead to a
reduction in both divergence and polymorphism; this reduc-
tion may not be very different on s and h. However, s and h
(defined for the reference site) are affected differently by se-
lection removing lethal or deleterious mutations elsewhere in
the exon. When a lethal or deleterious mutation at any other
site in the exon is removed in the population, the linked allele
at the reference site will be lost. Such background selection
will cause a reduction in the effective population size or the
average coalescent time between alleles at the reference site
(h), but have no effect on divergence (s). The effect will de-
pend on the combined strength of purifying selection across
all codons in the exon and may be greater in a longer exon if
selective strength is comparable on a per-codon basis. At any
rate, background selection should be the main factor ac-
counting for the smaller slope for h than for s observed in
the gibbon data. The model we consider here is simplistic and
does not account for variable selection among different genes
or exons or among different sites of the same exon. It will be
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interesting to explore the potential of using the MSC frame-
work to study the distribution of selective coefficients of non-
synonymous mutations in the genome.

We note that background selection, especially when selec-
tion is weak, can distort the shape of the gene genealogy,
resulting in longer external branches in the gene tree or an
excess of rare variants relative to the neutral expectation
(Charlesworth et al. 1993; Fu 1997; Zeng and Charlesworth
2011). This constitutes a violation of the assumption of the
MSC model that mutations do not affect the gene tree dis-
tribution (Rannala and Yang 2003). The model violation may
be expected to have a larger effect on the estimation of hs, as
discussed above, than on the species tree topology. Here, we
emphasize the fact that the two sets of loci, although under
very different selective pressures, produced consistent esti-
mates of the species tree topology and parameters, with a
neutral mutation rate difference of �73%.

Computational Challenges of Bayesian MSC Methods
Full-likelihood implementations of the MSC model as in BPP

involve intensive computation. While computation increases
with the increase in the number of species, the number of
loci, the number of sequences at each locus, and the number
of sites in the sequence, the most important factor appears to
be the increased difficulty of moving from one species tree to
another when a large number of loci are analyzed (Rannala
and Yang 2017). The six full data sets analyzed in this study,
each with�10,000 loci, are unprecedented for Bayesian spe-
cies tree estimation. Indeed we observed mixing problems
with BPP in three of them, with the Markov chain getting
stuck in tree 2 even though the MAP tree (tree 1) is a simple
NNI-move away.

While there are five gibbon species in the data analyzed in
this study, there is never uncertainty concerning the two
Hylobates species grouping into one clade: effectively only
the 15 possible species trees for the four genera (table 1)
were entertained in all analyses. We note that in the difficult
data sets where BPP had mixing problems, the chain was able
to move freely between species trees during the early stages of
the run, but sometimes became stuck in tree 2 at later stages
of the run. There did not appear to be any relation between
the starting species tree and the final tree (either tree 1 or tree
2) that the chain eventually settled in. The mixing difficulty
appears to be due to the fact that the gene trees (topologies
and branch lengths) are nearly optimized for the sequence
data (within the constraint of species tree 2), and that when
the algorithm attempts to move from species tree 2 to tree 1,
the new gene trees—generated in the proposal by applying a
number of SPR manipulations on the current gene trees
(Yang and Rannala 2014; Rannala and Yang 2017)—tend to
be poor, leading to the rejection of the proposed species tree
1 even though it has overall a higher posterior than species
tree 2. We hope to develop smart MCMC proposal algo-
rithms by generating better gene trees to improve the accep-
tance rate of such moves across species trees. Our results also
highlight the importance of running the same analysis mul-
tiple times as a means of diagnosing mixing problems with
transmodel MCMC algorithms.

Concatenation and the Anomaly Zone
Analyses of simulated data sets allowed us to compare the
statistical efficiency of the methods used in this study. Our
simulation was used to aid the interpretation of the real data
analysis, and is not intended to be a comprehensive simula-
tion study. In particular, we did not explore the parameter
space extensively and considered only challenging shallow
species trees characterized by extremely short internal
branches with data consisting of many loci of weak phyloge-
netic information.

To “quantify” the challenge of the gibbon species tree,
we used MCCOAL to simulate the gene-tree distribution
under the MSC model, using parameter estimates for the
coding and noncoding data of figure 1A and B. This is the
same simulation as discussed above except that we use
one sequence per species. The gene-tree distribution can
be calculated analytically using the algorithm of Degnan
and Rosenberg (2006) but here we use MCCOAL to sim-
ulate 107 (true) gene trees. For the noncoding (or cod-
ing) data, the majority-rule consensus tree of all
simulated gene trees has only two resolved nodes, the
H node (for Hm–Hp) with frequency 92.0% (or 89.5% for
coding) and the gibbon node (exclusive of the human
outgroup) with frequency 100.0% (or 100.0%); no other
nodes occur in more than half of the gene trees. Gene
tree 1, (((B, S), N), H), which matches the species tree,
has frequency 8.3% (or 8.2% for coding loci) so that for
�92% of the genome, the gene tree has different topologies
from the species tree. With so much incomplete lineage sort-
ing and gene tree fluctuations across the genome, the gibbon
phylogeny is indeed a hard problem. The most common gene
tree is tree 7, ((B, S), (H, N)), with frequency 11.3% (or 11.0%).
Thus a majority-vote approach, which uses the most com-
mon gene tree as the estimate of the species tree, will be
inconsistent, and the species tree is in the anomaly zone
(Degnan and Rosenberg 2006).

Indeed this case of an unbalanced species tree for four
species is the simplest case for anomalous gene trees
(Degnan and Salter 2005; Yang 2014, p. 333–5). When the
true species tree is tree 1 with two extremely short internal
branches, most coalescent events occur in the common an-
cestor that is the root of the species tree. Then the matching
gene tree 1 occurs with probability �1/18 while the mis-
matching gene tree 7, ((B, S), (H, N)), has probability �2/
18, because tree 1 can arise through only one sequence of
coalescent events (B-S followed by BS-N) but tree 7 can arise
through two (either B-S followed by H-N or H-N followed by
B-S). In other words, the coalescent process assigns equal
probabilities to labeled histories (which are rooted gene trees
with internal nodes ordered by age) but not to rooted gene
trees. If the internal branches in the true species tree 1 are
sufficiently short, it will be possible for tree 7 to have a greater
probability than tree 1 (although not twice as great). In such a
case, majority vote will be inconsistent; it will produce the
wrong species tree 7 with higher probability, the more genes
or gene trees are in the data. The argument here assumes true
gene trees. In real data analysis, phylogenetic errors will alter
the gene tree probabilities, so that the boundaries of the
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anomaly zone will be more complex (Yang 2002; Huang and
Knowles 2009).

Similar to majority vote, concatenation is known to pro-
duce strongly supported but incorrect species trees when the
internal branches in the species tree are very short (Giarla and
Esselstyn 2015). It has anomaly zones similar to majority-vote,
although the boundaries are different (Kubatko and Degnan
2007; Roch and Steel 2015). The results of table 4 suggest that
the species trees of figure 1A and B may be in the anomaly
zone for concatenation. Our results support the early sugges-
tion that concatenation is not suitable for challenging species
tree problems (Giarla and Esselstyn 2015; Kubatko and
Degnan 2007; Edwards et al. 2016).

We also note that in the concatenation analysis ML under
GTRþC4 performed in general worse than under JC. Judged
by the log-likelihood values, GTRþC4 fits the JC data much
better than JC, with D‘¼ 42,133 between the two models for
NoncodingJC and 6,398 for CodingJC. The difference is even
much greater for the GTR data sets. Use of any model-
selection criterion will lead to rejection of JC by a huge margin.
However, in this case the fault lies with concatenation fitting
one tree with branch lengths to all loci and all sites in the data
set, and not with the assumed model of nucleotide substitu-
tion. The GTRþC4 model misinterprets the heterogeneity
among loci in the gene tree topologies and coalescent times,
which is predicted by the coalescent theory (Rannala and
Yang 2003), as substitution rate heterogeneity among sites
in the concatenated alignment. Our results highlight the im-
portance of considering model robustness or the impact of
model assumptions on the analysis, and argue against the
mechanical use of model-selection procedures (such as the
LRT, AIC, BIC, and Bayes factor) that appear to be common in
modern phylogenetic analysis.

The Assumptions and Performance of SVDQUARTETS

While concatenation performed poorly on the simulated
data, the coalescent-based species tree methods also showed
large performance differences in the simulated data subsets.
In general, BPP performed better than ASTRAL, whereas
SVDQUARTETS was the worst (tables 2 and 3). The poorer
performance of ASTRAL and in particular SVDQUARTETS than
BPP on the GTR data (table 3) may seem surprising because
the ASTRAL/PHYML analysis assumed GTRþC and SVDQUARTETS

assumes GTRþCþI so that all model assumptions are satis-
fied for both methods, whereas BPP assumes JC, which is seri-
ously violated. We note that the performance difference of
table 3 is not due to the small number of simulation repli-
cates. Figure 6 shows a similar simulation with different num-
bers of loci. A large performance gap exists between the full
likelihood method (BPP) and the summary methods (ASTRAL,
SVDQUARTETS). Whereas BPP was able to infer the true tree with
high accuracy with 500 loci (99% for noncoding and 71% for
coding), SVDQUARTETS had little power at this data size (36%
and 28%).

Here, we discuss two factors that may account for the poor
performance of SVDQUARTETS in our simulations. We focus on
SVDQUARTETS as it produced a different species tree (tree 7)
from the real full data sets than BPP and ASTRAL. We believe that

the quartet-assembly algorithm is not to blame, and focus
here on the case of four species and four sequences, with one
sequence from each species. First, SVDQUARTETS is a heuristic
method based on summary statistics and its use of data sum-
maries instead of the full likelihood leads to unidentifiability of
model parameters and loss of power in species tree estima-
tion. The method does not operate on sequence alignments,
and instead merges all sites across all loci to generate the
counts of the 256 site patterns for four sequences, which
are a marginal summary of the original sequence alignments
at multiple loci. In the MSC, sites in the alignment for the
same locus share the gene tree (topology and branch lengths),
and analysis of sequence alignments at multiple loci allows
full likelihood methods such as BPP to tease apart the variation
among sites of the same locus due to the Poisson mutation
process and the variation among the gene trees for loci due to
the coalescent process. Note that fluctuations in genealogical
histories among loci provide important information about
the coalescent process such as the ancestral population sizes.
Merging sites across loci means that such information is lost
and the two sources of variation are confounded. This sum-
mary of data leads to unidentifiability of parameters in the
MSC model. For example, in the case of two species and two
sequences, there are two parameters in the model (h for the
common ancestor and s for the divergence time between the
two species), but the summary data consist of only one ob-
servation, the proportion of different sites, so that it is im-
possible to identify two parameters. (Here, we use the JC
model although the assumed mutation model is inconse-
quential to the argument.) Similar unidentifiability arises in
the case of three species and three sequences, and the case of
four species and four sequences. The method is thus able to
identify the species tree topology (Chifman and Kubatko
2015), but not all parameters of the MSC model. This situa-
tion is similar to that for ASTRAL, which uses the gene tree
topologies as data summary and is able to identify the species
tree topology but not all parameters of the model (table 5).
As in the case of ASTRAL, a loss of power in the estimation
of the species tree topology due to the use of data sum-
mary is thus expected. It is also noteworthy that
SVDQUARTETS has similarity to concatenation in that
both merge sites across loci. Both inferred the incorrect
balanced species tree 7 in many of the simulated data subsets
(table 2). Nevertheless, SVDQUARTETS is a coalescent-based
method, aware of the distinction between labeled histories
and rooted trees so that it is consistent while concatenation
may be inconsistent. The reasons why SVDQUARTETS favored
tree 7 are thus not so clear.

The decision to merge sites across loci appears to have
been motivated by the discussion of Gatesy and Springer
(2014) of the so-called coalescent-gene or c-gene, a gene locus
without recombination throughout the gene tree. Springer
and Gatesy (2016) calculated the c-gene size to be very short
(�12 bp for mammals, say), but that calculation may be too
stringent, because recombination is relevant only during the
gene history when there are two or more lineages so that it is
possible for recombination to occur (Lanier and Knowles
2012; Edwards et al. 2016; Xu and Yang 2016). At any rate,
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in simulations SVDQUARTETS failed to show an advantage over
ASTRAL for very short alignments (Chou et al. 2015).

The second factor that may be important for the poor
performance of SVDQUARTETS is its departure from the princi-
ples of statistical inference and its reliance on phylogenetic
invariance for tree comparison, which may lead to inefficiency
and sensitivity to the details of the mutation model. In BPP and
ASTRAL (PHYML), the mutation model is used to correct for
multiple hits to estimate the gene tree topology and branch
lengths, and the analysis is expected to be insensitive to the
mutation model at high sequence similarity (e.g., Xu and Yang
2016). Note that the sequence distance between gibbons and
humans is �3.6% at the noncoding loci and �3.0% at the
coding loci, whereas between gibbons it is only 1.1% and 0.8%
(table 7). At such divergence levels, any mutation model will
produce a distance that is close to the raw proportion of
differences (the so-called p distance). SVDQUARTETS does not
use information in the gene tree topologies or branch lengths,
and instead rely on phylogenetic invariants. Given the data of
256 site pattern frequencies, the standard practice is to apply
ML or BI to evaluate different species trees, as outlined by Xu
and Yang (2016). Instead SVDQUARTETS takes a mathematical
shortcut. The expected site pattern probabilities, when ar-
ranged into a 16� 16 matrix according to the true species
tree, has rank �10, whereas the rank is >10 if the matrix is
arranged according to an incorrect species tree. The rank of a
square matrix is equal to the number of nonzero eigenvalues.
A nonsingular 16� 16 matrix has rank 16, but linear relation-
ships among rows or columns reduce its rank. In other words,
the site pattern probabilities generated by a species tree sat-
isfy a number of linear relationships, depending on the as-
sumed mutation model. The method uses a heuristic
criterion to measure how close the 11–16th eigenvalues are
to 0 (Chifman and Kubatko 2014, eq. 2). This departure from
statistical principles (in particular, the likelihood principle)
means that the method may be inefficient (Edwards 1972;
Xu and Yang 2016). Its reliance on the symmetry relationships
implied by the substitution model may mean high sensitivity
to model assumptions (such as the detailed-balance condi-
tion of the GTR model). Even though both the GTR (Yang
1994a) and the C (Yang 1994b) components of the model are
useful improvements to phylogenetic substitution models,
they are never supposed to represent the truth when applied
to real data. Complex features of the mutation process such
as nonreversibility and context-dependence (Hwang and
Green 2004) should have little effect on correction for mul-
tiple hits or on the performance of BPP when the sequences

are highly similar, but they may well cause the symmetry
conditions required by SVDQUARTETS to break down. We leave
it to future work to investigate which of these or other factors
are the most important for the poor performance of
SVDQUARTETS.

We note that our results concerning SVDQUARTETS are
consistent with previous simulation studies that evaluated
the method. Chifman and Kubatko (2014) simulated data
using a balanced 4-species tree with equal internal and exter-
nal branch lengths and found that SVDQUARTETS behaved
well. Species trees of that shape are easy to recover as the
internal branches are relatively long. In another simulation
study, Chou et al. (2015) found that SVDQUARTETS performed
well when the species tree had long internal branches and
incomplete lineage sorting was infrequent, but was inferior to
ASTRAL when the species tree had very short internal branches
and incomplete lineage sorting was common. In our simula-
tion, the species tree (tree 1) had extremely short internal
branches and accordingly SVDQUARTETS performed poorly.

In summary, SVDQUARTETS made many errors in the sim-
ulated data subsets, where the incorrect inferred species tree
was predominantly tree 7. The support values calculated by
the method were unreliable and overconfident. By consider-
ing the construction of the method, we suggest that the
method may be sensitive to details of the substitution model
although this claim needs further verification. Similarly, its
tendency to favor the balanced species tree 7 over the un-
balanced species tree 1, as does concatenation in the anomaly
zone, needs further investigation.

Estimation of Gibbon Phylogeny as an Exemplar for
Challenging Species Tree Problems
We examine some of the assumptions made in our analyses
before reaching a conclusion concerning the gibbon phylog-
eny. First, we assumed the JC mutation/substitution model.
The JC model is grossly wrong in terms of its fit to data.
However, for closely related species like gibbons, JC should
be adequate because the role of the model in BPP is to correct
for multiple hits at the same site but multiple hits are rare
between highly similar sequences (Yang 2015; Rannala and
Yang 2017). The BPP analysis under JC of the data sets simu-
lated under GTRþC confirmed this expectation (tables 2–4).
Previously even the infinite-sites model produced very similar
results to finite-sites models such as JC in analysis of data from
the apes (Satta et al. 2004). Second, our BPP analyses assumed
the molecular clock. The clock assumption was examined by

Table 7. Average JC Distances across the Noncoding (lower triangle) and Coding (upper triangle) Loci, with the within-Species Distances on the
Diagonal.

B S N Hm Hp Human

B 0.0009/0.0006 0.0076 0.0076 0.0078 0.0079 0.0307
S 0.0108 0.0012/0.0008 0.0079 0.0080 0.0081 0.0310
N 0.0108 0.0110 0.0018/0.0012 0.0080 0.0081 0.0307
Hm 0.0110 0.0111 0.0110 0.0014/0.0010 0.0039 0.0308
Hp 0.0111 0.0112 0.0111 0.0056 0.0006/0.0004 0.0309
Human 0.0359 0.0362 0.0358 0.0360 0.0361 NA
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Burgess and Yang (2008) in their analysis of the hominoid
genomic sequence data, who found that the clock approxi-
mately holds and accommodating its violation had virtually
no effect on estimation of parameters under the MSC model.
Given that the gibbon species are even more closely related,
we expect the clock to be adequate (see also table 7). Note
that neither ASTRAL nor SVDQUARTETS assumes the clock and
both use the human outgroup to root the trees, so that the
different species trees inferred by the two methods in the two
real full data sets cannot be explained by the assumption of
the clock. Third, the species tree methods we used assume no
migration or introgression. While introgression is a major
complicating factor in many shallow phylogenies, it
does not appear to be a serious issue for the gibbon
data sets analyzed here. We have focused on the genus-
level relationships so that the species involved are quite
distant, and do not appear to hybridize today. Our
analysis testing for migration and estimating the migra-
tion rates suggests possible gene flow from H. moloch to
H. pileatus (at the low rate of �0.008 migrants per gen-
eration), which should have little effect on species tree
estimation, while migration across genera is either absent
or extremely low. We note that the test of Carbone et al.
(2014) using the D-statistic (Durand et al. 2011) failed to
identify unequivocal evidence of gene flow. In summary,
we suggest that our species tree estimation may not have
been affected by those simplistic assumptions.

Our simulation mimicking the real data sets has supported
the reliability of BPP and ASTRAL, which were able to recover the
true species tree despite the extremely short internal
branches and widespread incomplete lineage sorting. The
consistency of results between the coding and noncoding
loci (despite their great differences in the selective pressure)
is also indicative of the reliability the inferred species tree. Our
results for the full data sets are consistent with the analysis of
the data subsets, in which there is no mixing problem and
only trees 1 and 2 received substantial support. Our results
are also largely consistent with the sliding window analysis of
Carbone et al. (2014), which slides 100-kb nonoverlapping
windows along the genome, instead of the well-spaced short
fragments analyzed in this paper. Species trees 1 and 2 were
the top UPGMA gene trees found in 15.4% and 13.2% of the
100-kb windows (Carbone et al. 2014, supplementary table ST
8.4, Supplementary Material online). If 10-kb windows were
used instead, trees 2 and 1 were the most frequent gene trees,
with frequency 9.105% and 9.103% (Carbone et al. 2014, SI
text 8.3). Thus even though the choice of the window size was
arbitrary, there was a consistent signal of weak support for
trees 1 and 2, whereas tree 7 ranked #7, found in only 5.6% of
the 100-kb sliding windows. It was not found in any of the
data subsets by BPP or ASTRAL (table 2). Tree 1 was also the NJ
tree based on sequence divergences calculated over the whole
genome (similar to p distance; Carbone et al. 2014).

Given the overall reliability of BPP and ASTRAL in the simu-
lations, and the consistency of our results between the coding
and noncoding data sets and with previous genome-scale
analyses using sliding windows and genomic distances, we
suggest that species tree 1 represents the true gibbon

phylogeny, and that species tree 7, inferred by SVDQUARTETS,
may be an artefact of the method.

Does the overall consistency of our results with the anal-
yses of Carbone et al. (2014) mean that we merely confirm the
result of Carbone et al. except for attaching a higher confi-
dence? The answer to this question is “No”. The phylogenetic
methods used by Carbone et al. (2014) are not based on the
coalescent and fail to account for the gene tree heterogeneity
across the genome. They are known to fail in challenging
species tree problems characterized by short internal
branches. The sliding window analysis produced results that
depend on the window size, with the most frequent gene tree
to be tree 1 for a window size of 100-kb and tree 2 for 10-kb,
while in both cases the support is extremely low. The main
conclusion from the analyses of Carbone et al. (2014; see also
Veeramah et al. 2015) was that the gibbon species tree was a
hard problem: even the existence of a binary tree for the
gibbons was questioned. In contrast, full likelihood methods
such as BPP can recover the true species tree with high prob-
ability and high confidence, as demonstrated by our simula-
tions. To such methods, the heterogeneous gene trees across
the genome are not really in conflict with the species tree, but
are a natural outcome of the biological process of reproduc-
tion and random drift; they are not a curse but an important
source of information for estimating evolutionary parameters
such as ancestral population sizes and species divergence
times.

The gibbons arose through a series of radiative speciation
events, leading to nearly simultaneous divergences and an
extremely hard species tree estimation problem. Here the
BPP and ASTRAL analyses of the genome-scale data sets under
the MSC model led to a fully resolved species tree for the five
species or four genera of gibbons. Both independent data sets,
Noncoding and Coding, strongly support the genus-level phy-
logeny: ((Nomascus, (Hoolock, Symphalangus)), Hylobates),
with Hylobates to be the earliest diverging lineage. The knowl-
edge of the gibbon species tree should be useful for a rein-
terpretation of the morphological, anatomical, and behavioral
data. We leave such work for the future. Here we highlight the
intriguing fact that at over 90% of the exonic loci, just like the
noncoding DNA, the genes have different histories from the
species phylogeny. It may be interesting to examine the pos-
terior distribution of the gene trees for the individual exons,
and to correlate the most likely gene tree with the evolution
of the morphological characters or biological functions that
are encoded by the exon.

Adaptive radiations create challenging species tree prob-
lems (Schluter 2000). However, the availability of genome-
scale data sets and the development of powerful statistical
inference methods offer hopes for their resolution. The cod-
ing loci analyzed in this study contain no or very few
parsimony-informative sites, and gene trees inferred at such
loci are highly uncertain. However, with thousands of loci,
coalescent methods such as BPP and ASTRAL inferred the species
tree with near certainty and our simulations support the re-
liability of such inference. Thus a reliable estimation of the
species tree is possible even if the phylogenetic informa-
tion at every locus is very weak and all gene trees are poor.
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These results run counter to the intuition that species
trees can be only as good as the gene trees on which
they are built (Salichos and Rokas 2013; Liu et al. 2015).
We suggest that other canonical examples of recent adap-
tive radiations, such as Darwin’s finches on the Gal�apagos
Islands (Petren et al. 2005), Cichlid fish in the African lakes
(Salzburger et al. 2002), the Hawaiian honeycreepers
(Lerner Heather et al. 2011), the Hawaiian silverswords
(Baldwin and Sanderson 1998), and the Anolis lizards in
Central and South America (Losos 2009), may be similarly
resolved.

Adaptive radiations in deep phylogenies offer even greater
challenges. With divergent sequences, multiple-hit correction
becomes important, and the molecular clock is often violated.
Extending the mutation/substitution model and relaxing the
molecular clock will be important avenues for expanding the
functionality of the BPP program. It should be straightforward
to implement a complex substitution model such as GTRþU
instead of JC to correct for multiple hits, and it appears
straightforward to modify the relaxed-clock models for anal-
ysis of mixed within- and between-species data (Xu and Yang
2016). However, the violation of the molecular clock means
that, even if the rate drift is adequately accommodated in the
model, the temporal information in the sequence data about
the relative node ages in the gene trees may be seriously
eroded. One may work with either rooted gene trees with
node ages relying on relaxed-clock models or with unrooted
gene tree topologies discarding branch-length information. It
will be interesting to examine to what extent Bayesian full-
likelihood methods are advantageous over heuristic methods
that rely on gene tree topologies only when the molecular
clock is seriously violated.

Materials and Methods

Gibbon Data Sets
We used two genome-scale data sets generated and analyzed
previously by Carbone et al. (2014) and Veeramah et al.
(2015). The first data set includes 12,413 loci, each of
1,000 bp in length, which are at least 50 kbp away from the
nearest exons. This is referred to as the Noncoding data set.
The second data set, referred to as the Coding data set, con-
sists of 11,323 loci, each of 200 bp, which are exons or overlap
with exons. One species, with two individuals, was sampled
from each of the three genera: Hoolock (H. leuconedys),
Nomascus (N. leucogenys), and Symphalangus (S. syndactylus).
Two species, with one individual from each, were sampled
from the fourth genus Hylobates (H. moloch and H. pileatus).
Two phased sequences were included for every individual at
every locus. A human genome (hg19) was included as the
outgroup. Thus the alignment at every locus consists of 17
sequences. The number of parsimony-informative sites ranges
from 5 to 78 (with a median of 23) among the noncoding loci,
and from 0 to 18 (median 3) among the coding loci. All loci
including those with no parsimony-informative sites were
used; in the Bayesian analysis, these loci are informative about
the population size parameters (hs) and indirectly about the
species tree.

As the BPP program involves intensive computation and
may suffer from mixing problems in large data sets, we sep-
arated the noncoding loci into 24 smaller subsets according
to their genomic locations in N. leucogenys. Each subset con-
sisted of 500 loci whereas the last one had 913. Similarly, the
coding loci were separated into 11 data subsets, each of 1,000
loci (1,323 for the last). Those are referred to as the
Noncoding500 and Coding1000 data subsets, respectively.
Those subsets as well as the two full data sets were analyzed
using a variety of methods, including BPP (Yang 2015), ASTRAL

(Mirarab and Warnow 2015), MP-EST (Liu et al. 2010),
SVDQuartets (Chifman and Kubatko 2014), and concatena-
tion. The analysis of the data subsets allows us to evaluate the
efficiency of the different species tree estimation methods
and to assess possible heterogeneity in the evolutionary his-
tory across the genome.

Estimation of Species Tree Using BPP

We used the Bayesian program BPP 3.3 (Rannala and Yang
2003, 2017; Yang and Rannala 2014) to infer the species tree
and to estimate the parameters under the MSC model.
Species assignment and delimitation were fixed (this is anal-
ysis A01 of Yang 2015). Gamma priors were assigned to the
parameters, which are the species divergence times (ss) and
population size parameters (hs), both of which are measured
by the expected number of mutations or substitutions per
site. For the noncoding data, we used h�G(2, 1,000), with
mean 0.002, and s0�G(1.6, 100), with mean 0.016, for the age
of the root. For the coding data, we used h�G(2, 2,000) and
s0�G(2, 200). The shape parameter of the gamma distribu-
tion (a¼ 2) means that those priors are fairly diffuse, whereas
the rate parameter (b) was chosen so that the prior mean (a/
b) was reasonable. The sequence likelihood was calculated
under the JC model (Jukes and Cantor 1969).

For each data set we conducted 10 independent runs,
using different starting species trees. The burn-in was set to
105 for all analyses except for the Noncoding500 data sets for
which 2� 105 were used. We sampled 2� 104 trees after the
burn-in with a sampling frequency of 10. MCMC convergence
was assessed mainly through consistency of results between
runs (Rannala and Yang 2017). When convergence was
achieved, the samples were combined to generate the max-
imum a posteriori (MAP) species tree (i.e., the species tree
with the highest posterior probability).

We also estimated the parameters of the MSC model with
the species tree fixed at tree 1 (the A00 analysis, Yang 2015).
We conducted 10 independent runs. The within-model
MCMC algorithms in BPP use automatic step-length adjust-
ments and have good mixing efficiencies.

Computing time for each run on a single core was �10 h
for each Noncoding500 data set, �80 h for Coding1000, and
�200 h for the full data sets: Noncoding and Coding.

Estimation of Species Tree Using ASTRAL, MP-EST, and
SVDQUARTETS

We used ASTRAL 4.10.8 to estimate the species tree topologies
and internal branch lengths and to calculate local posterior
probabilities (Mirarab et al. 2014; Mirarab and Warnow 2015;
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Sayyari and Mirarab 2016). ASTRAL is a coalescent-based gene-
tree summary method that operates on quartets. It collects
the quartet trees in all the reconstructed unrooted gene trees,
and evaluates different species trees according to how well
they match the quartet trees in the set (Mirarab et al. 2014).
We used the ML method implemented in PHYML v3
(Guindon et al. 2010) to reconstruct unrooted gene trees
under the JC model. Short branch lengths in the gene trees
(<10�6) were collapsed into polytomies using the di2multi
function in APE (Paradis et al. 2004), before the gene trees were
processed by ASTRAL. The ML gene tree should be preferred
over bootstrapped gene trees as the former is more likely to
match the true gene tree (Xu and Yang 2016): for example,
Mirarab et al. (2016) found that use of bootstrapped gene
trees led to deteriorated performance by ASTRAL.

We also inferred species trees from the ML gene trees using
MP-EST 1.5 (Liu et al. 2010). The MP-EST method estimates spe-
cies tree from a set of rooted gene trees by maximizing a
pseudo-likelihood, which is the probability of the three alter-
native gene trees given a triplet species tree. Gene trees recon-
structed using PHYML were rooted with the outgroup
(human) before they were used by MP-EST to estimate the
species tree. We ran 100 independent searches for the max-
imum pseudo-likelihood tree.

SVDQUARTETS (for Singular Value Decomposition for quar-
tets) is another quartet-based summary method (Chifman
and Kubatko 2014). For every quartet (four sequences from
four species), the competing species trees are evaluated using
a criterion based on phylogenetic invariant under the as-
sumption that different sites in the sequence data have inde-
pendent histories given the species tree (see Xu and Yang
2016 and Discussion of this paper). Like ASTRAL, the method
infers an unrooted tree, with the outgroup (human) used to
root the species tree. We used the implementation in PAUP*
version 4.0a151 and evaluated all possible quartets. Node
supports were calculated by using 1,000 bootstrap replicates.

Estimation of Species Tree Using Concatenation
We applied concatenation analysis to the two full data sets:
Noncoding and Coding. For each one, the sequences from the
same individual were merged across loci to form a
“supergene”. The resulting super-matrix of sequence align-
ment was analyzed using ML (PhyML, Guindon et al. 2010)
and BI (MrBayes3.2.6, Ronquist et al. 2012), and the resulting
ML tree or MAP tree was taken as the estimate of the species
tree. Two nucleotide substitution models were used: JC (Jukes
and Cantor 1969) and GTRþC4 (Yang 1994a, 1994b). Node
supports on the ML tree were calculated by using 1,000 boot-
strap replicates. MRBAYES analysis used four chains (one cold
and three hot), with the “temperature” parameter set to 0.2.
The chain is started with random starting trees and run for
4� 106 iterations, sampling every 400 iterations. The MAP
tree as well as the majority-rule consensus tree were gener-
ated using the sample from the cold chain, after the first 40%
of the sample was discarded as burn-in.

Computation for ASTRAL, SVDQUARTETS, and concatenation
by ML was incomparably faster than for BPP. MRBAYES had
mixing problems for Noncoding (and the simulated

counterpart, NoncodingJC and NoncodingGTR), as the data
sets with>107 sites are large. The program always converged
to the same tree, but had trouble traversing the space of the
branch lengths for the same topology, with different runs
visiting different branch lengths and achieving different log-
likelihood values.

Simulation
Our species tree estimation analyses suggest that species tree
1 of figure 1A and B is the best estimate for both full data sets
(Noncoding and Coding). We used species tree 1 and the
parameter estimates under the MSC (the posterior means
of ss and hs in the A00 analysis) to simulate two data sets
under JC (Jukes and Cantor 1969) (NoncodingJC and
CodingJC) and two data sets under GTRþC5 (Yang 1994a,
1994b) (NoncodingGTR and CodingGTR). The MCCOAL pro-
gram in BPP was used. The same taxa sampling scheme was
used as in the real data. Each of the noncoding data sets
(NoncodingJC and NoncodingGTR) includes 10,000 align-
ments (loci) each of 1,000 bp, whereas each of the coding
data sets (CodingJC and CodingGTR) includes 10,000 loci
each of 200 bp. The two GTR data sets were generated mainly
to examine the robustness of BPP, which currently implements
the JC model only. To allow for heterogeneous mutation
processes among loci, we sample the substitution parameters
for the GTR model for each locus. The base frequencies (pT,
pC, pA, pG) are sampled from the Dirichlet distributions
D(44.8, 30.5, 44.8, 30.6) for NoncodingGTR and D(11.7, 11.4,
11.7, 11.3) for CodingGTR. Those values are ML estimates
when the Dirichlet distribution was fitted to the observed
base frequencies in the real data sets. Most of the loci are
not informative enough to estimate the other parameters of
the GTRþC model, and we sample those parameters as
follows. The exchangeability parameters (a, b, c, d, e, f; Yang
1994a) are sampled from D(10, 5, 5, 5, 5, 10) for both the
coding and noncoding loci, with an expected transition/
transversion rate ratio of j� 2, whereas the gamma shape
parameter for rate variation among sites (Yang 1994b) is
generated from the gamma distribution G(100, 20) with
mean 5 for NoncodingGTR, and from G(100, 50) with
mean 2 for CodingGTR. The molecular clock is assumed in
the simulation.

The simulated data sets were subjected to the same anal-
yses as the real data sets. The 10,000 noncoding loci were
analyzed as a whole and then divided into 20 subsets of 500
loci each. The 10,000 coding loci were analyzed as a whole and
then divided into 10 subsets of 1,000 loci each. The BPP analysis
always assumed the JC model, with the same prior specifica-
tions as in the analysis of the real data. The PHYML analysis,
used by ASTRAL, assumed the JC model for the real and the JC
data sets, and GTRþC4 for the GTR data sets.

Test of Migration and Estimation of Migration Rates
Dealing with both incomplete lineage sorting and migration
or hybridization is challenging. We used the ML program 3S to
test for gene flow between the gibbon species and to estimate
the directions and rates of migration (Zhu and Yang 2012;
Dalquen et al. 2017). This is a full likelihood implementation
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of the MSC model with migration (or the isolation-with-
migration, IM, model, Hey 2010) that can handle thousands
of loci. However, 3S is limited to three species with three
sequences per locus. We thus constructed eight triplet data
sets by sampling three sequences per locus from each of the
Coding and Noncoding data sets (table 6). The first six triplets
are for testing gene flow between any pair of the four gibbon
genera, with Hylobates represented by H. moloch (Hm). Two
more data sets are for testing gene flow between the two
Hylobates species, with either human (O) or H. leuconedys (B)
as the outgroup.

Let the species tree be ((A, B), C), in which A and B are the
ingroup species with possible gene flow whereas C is the
outgroup involving no gene flow. Three sequences were sam-
pled at random at each locus, with half of the loci having the
configuration ABC (meaning one sequence from each spe-
cies), a quarter of AAC (two sequences from A and one from
C) and another quarter of BBC. The data were analyzed under
two models. Model M0 (no gene flow) assumes no migration
and involve six parameters: sABC, sAB, hABC, hAB, hA, and hB,
whereas model M2 (gene flow) allows migration between A
and B, with two additional migration rate parameters: MAB

and MBA, where Mij¼Njmij is the expected number of immi-
grants in population j from population i per generation. The
likelihood function for the sequence data is calculated by
summing over the gene tree topologies and integrating
over the two coalescent times by Gaussian–Legendre quad-
rature, using 32 points (Yang 2002; Dalquen et al. 2017). Gene
flow between species A and B is tested using an LRT com-
paring models M0 and M2, using the v2 distribution with
df¼ 2. ML iteration to fit the two models to each data set
took �5 min on an IBM Intel Xeon server with 80 cores.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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