
Bayesian Analysis (2018) 13, Number 4, pp. 1033–1059

Designing Simple and Efficient Markov Chain
Monte Carlo Proposal Kernels

Yuttapong Thawornwattana∗, Daniel Dalquen∗, and Ziheng Yang∗,†‡

Abstract. We discuss a few principles to guide the design of efficient Metropolis–
Hastings proposals for well-behaved target distributions without deeply divided
modes. We illustrate them by developing and evaluating novel proposal kernels
using a variety of target distributions. Here, efficiency is measured by the vari-
ance ratio relative to the independent sampler. The first principle is to introduce
negative correlation in the MCMC sample or to reduce positive correlation: to
propose something new, propose something different. This explains why single-
moded proposals such as the Gaussian random-walk is poorer than the uniform
random walk, which is in turn poorer than the bimodal proposals that avoid val-
ues very close to the current value. We evaluate three new bimodal proposals
called Box, Airplane and StrawHat, and find that they have similar performance
to the earlier Bactrian kernels, suggesting that the general shape of the proposal
matters, but not the specific distributional form. We propose the “Mirror” ker-
nel, which generates new values around the mirror image of the current value on
the other side of the target distribution (effectively the “opposite” of the current
value). This introduces negative correlations, leading in many cases to efficiency
of > 100%. The second principle, applicable to multidimensional targets, is that
a sequence of well-designed one-dimensional proposals can be more efficient than
a single d-dimensional proposal. Thirdly, we suggest that variable transformation
be explored as a general strategy for designing efficient MCMC kernels. We apply
these principles to a high-dimensional Gaussian target with strong correlations,
a logistic regression problem and a molecular clock dating problem to illustrate
their practical utility.

Keywords: asymptotic variance, bimodal kernel, Metropolis–Hastings algorithm,
Mirror kernel, molecular clock dating, variable transformation.

1 Introduction

Markov chain Monte Carlo (MCMC) is a class of algorithms for generating samples
from a probability distribution π on X ⊂ Rd, where π may be known up to a nor-
malizing constant. It is widely used to simulate samples from the posterior distribu-
tion in Bayesian inference where the normalizing constant is usually intractable. The
Metropolis–Hastings (MH) algorithm (Metropolis et al., 1953; Hastings, 1970) simulates
a discrete-time Markov chain on X with stationary distribution π as follows. Given the
chain is currently at x, a potential next state x′ is generated from a proposal kernel Q

∗Department of Genetics, Evolution and Environment, University College London, London, WC1E
6BT, UK

†Radcliffe Institute for Advanced Studies, Harvard University, Cambridge, MA 02138, USA
‡Corresponding author (z.yang@ucl.ac.uk)

c© 2018 International Society for Bayesian Analysis https://doi.org/10.1214/17-BA1084

1034 Designing Simple and Efficient MCMC Proposal Kernels

on X, with density q(x′|x). The chain then moves to x′ with probability

α(x, x′) := min

(
1,

π(x′)
π(x)

q(x|x′)
q(x′|x)

)
. (1)

Otherwise it stays at x. The resulting Markov chain has transition kernel P with density

p(x′|x) =
{
q(x′|x)α(x, x′) if x′ �= x,

1− ∫
X
q(x′|x)α(x, x′) dx if x′ = x.

By construction, this Markov chain is reversible with respect to π, with π(x)p(x′|x) =
π(x′)p(x|x′) for almost every x, x′ ∈ X. If the proposal kernel Q is irreducible and
aperiodic, the transition kernel P will also be irreducible, aperiodic and is π-invariant.

A simulated path (xn)
N
n=1 of the chain can be used to estimate an expectation

under π. Let f : X → R be an absolutely integrable function and let π(f) := Eπf(x) =∫
X
π(x)f(x) dx denote the expected value of f under π. Then π(f) can be estimated by

π̂(f) :=
1

N

N∑
n=1

f(xn). (2)

Provided the Markov chain is ergodic with stationary distribution π, this estimator π̂(f)
converges to π(f) almost surely as N → ∞ (see e.g. Theorem 3 in Tierney (1994)).
Moreover, under certain ergodicity assumptions, the central limit theorem holds for√
Nπ̂(f) (see e.g. Theorems 4 and 5 in Tierney (1994)), with the asymptotic variance

ν := lim
N→∞

NVar(π̂(f)) = Vf

(
1 + 2

∞∑
k=1

ρk

)
, (3)

where Vf := Varπ(f(x)) = Eπ(f(x) − Eπf(x))
2 is the variance of f(x) under π, and

ρk := Cor(f(xn), f(xn+k)) is the lag-k autocorrelation.

When the state space X is discrete, Peskun (1973) showed that given a transition
kernel Q, the choice of the acceptance probability α in (1) is optimal in terms of minimis-
ing the asymptotic variance of π̂(f). The analogous result for continuous state spaces
was provided by Tierney (1998). However, what features the proposal kernel Q should
have to minimise the asymptotic variance is not clear. The most common choice of Q is
based on the random walk x′ = x + u where u has a Gaussian or uniform distribution
with variance σ2. The Langevin proposal x′ = x+ σ2

2 ∇x log π(x) + u with u ∼ N(0, σ2)
makes use of gradient information to bias the proposal towards a local mode of the
target. All these proposals involve a step-size parameter σ yet to be specified.

It is well known that a poor choice of σ can adversely affect the mixing and con-
vergence properties of the algorithm. Determining the optimal choice of the step-size
parameter σ is an active area of research, known as optimal scaling. Gelman et al.

Y. Thawornwattana, D. Dalquen, and Z. Yang 1035

(1996) estimated the optimal σ (that minimises ν) for the Gaussian random walk
q(x′|x) = N(x′|x, σ2) for estimating the mean of the N(0, 1) target to be about 2.38,
with the corresponding expected acceptance probability

Pjump :=

∫
X

∫
X

π(x)α(x, x′)q(x′|x) dx′ dx

to be about 0.44. When the target distribution π is d-dimensional with identically
distributed components, Roberts et al. (1997) showed that for the Gaussian kernel
q(x′|x) = N(x′|x, σ2Id), the optimal step size σ that minimises ν is the one that leads
to Pjump ≈ 0.234 as d → ∞. Recent work on optimal scaling covers more complex
algorithms such as Multiple-try Metropolis (Bédard et al., 2012), delayed rejection
MH (Bédard et al., 2014), Hamiltonian Monte Carlo (HMC) (Beskos et al., 2013),
as well as the MH and Metropolis-adjusted Langevin algorithm (MALA) in the infinite-
dimensional setting (Beskos et al., 2009; Pillai et al., 2012). However, optimal scaling
analysis has been mostly limited to the Gaussian random walk and the Langevin pro-
posal (Roberts and Rosenthal, 1998). Beyond this small collection of proposal kernels,
there is no general theory available.

In this work, we address the problem of designing efficient proposal kernels (Q) for
the MH algorithm, with each kernel implemented at a nearly optimal scale. Recently,
Yang and Rodŕıguez (2013) empirically demonstrated that using the so-called Bactrian
kernels can substantially improve the asymptotic efficiency for a range of univariate
target distributions, compared with the uniform random walk, which is in turn more
efficient than the Gaussian random walk. We extend this work by proposing several new
proposal kernels and evaluate their statistical efficiency at the optimal step size.

In Section 2, we describe the calculation of efficiency and automatic adjustment
of the proposal step size (σ). We present new kernels for one-dimensional targets in
Section 3, and consider multidimensional targets in Section 4. In Section 5, we apply the
new kernels to the Bayesian molecular clock dating problem in molecular phylogenetics.
We discuss limitations of our work as well as connections to previous work in Section 6.

2 Targets and efficiency calculation

2.1 Target and proposal distributions

We consider the following five target distributions (Figure 1): (a) Standard normal dis-
tribution N(0, 1), with mean 0; (b) Mixture of two normal distributions 1

4N(−1, 1
4) +

3
4N(1, 1

4), with mean 1
2 ; (c) Mixture of two t4 distributions 3

4 t4(−3
4 , s

2) + 1
4 t4(

3
4 , s

2),

where s = 1
8

√
37
2 , with mean −3

8 ; (d) Gamma distribution G(4, 2), with mean 2; (e) Uni-

form distribution U(−√
3,
√
3), with mean 0. Each of the five targets has variance 1.

Note that even though the density in (b) has two modes, we focus in this paper on
simple targets with a single mode; we do not expect the proposals discussed here to
work well when the target has multiple peaks separated by deep valleys.

Note that targets (d) and (e) have a constrained support. Sampling from targets
with constrained support is often dealt with using rejection or truncated proposals (or

1036 Designing Simple and Efficient MCMC Proposal Kernels

Figure 1: Five target distributions: (a) standard normal N(0, 1), (b) mixture of two nor-
mals 1

4N(−1, 1
4)+

3
4N(1, 1

4), (c) mixture of two t4 distributions 3
4 t4(−3

4 , s
2)+ 1

4 t4(
3
4 , s

2),

(d) gamma G(4, 2) and (e) uniform U(−√
3,
√
3).

truncated full conditionals in the context of Gibbs sampling) (Gelfand et al., 1992;
Browne, 2006). We note that rejection can be very inefficient if a large proportion
of proposed values are discarded, while the truncated variables can be expensive to
simulate, often based on the inverse transform method (Devroye, 1986, p. 38). It is
simpler and typically more efficient (in terms of the amount of computation involved
as well as the asymptotic variance of the estimator) to use reflection (e.g. Yang and
Rodŕıguez (2013)). For example, if x has support on the interval [a,∞) and if the kernel
is symmetric with q(x′|x) = q(x|x′), we generate x′ ∼ q(x′|x), and set x′ ← 2a − x′ if
x′ < a. The proposal ratio is 1.

We evaluate five new proposals (Box, Airplane, StrawHat, MirrorU and MirrorN;
figures 2 and 3) described in Section 3, together with the uniform, Gaussian and Bac-
trianTriangle proposals from Yang and Rodŕıguez (2013).

2.2 Efficiency calculation

As in Gelman et al. (1996), we define statistical efficiency of the estimator π̂(f) (2) as
the ratio of the asymptotic variance of π̂(f) for an iid sample to the variance for an
MCMC sample of the same size

E :=
Vf/N

ν/N
=

Vf

ν
=

(
1 + 2

∞∑
k=1

ρk

)−1

. (4)

We use the identity function f = 1 in (2) and estimate the mean of π. We used two
methods to estimate E, one based on discretization of the target distribution, and
another based on the MCMC sample.

Method 1: Using the transition matrix on a discretized state space The state space
X ⊂ R is truncated to an interval [xL, xU], then discretized into K bins of width
Δ = xU−xL

K . For each bin k = 1, . . . ,K, we use the midpoint xk := xL + (k − 1/2)Δ as
its representative. Then we compute the transition matrix P on the discretized space,
and calculate E using a closed form expression from Kemeny and Snell (1960) or Peskun
(1973). This method requires an analytic expression of the proposal density q(x′|x). The
calculation details are described in Gelman et al. (1996) and Yang and Rodŕıguez (2013).

Y. Thawornwattana, D. Dalquen, and Z. Yang 1037

Here, we use xL = −5, xU = 5 and K = 500 for all targets, except for the mixture of
two t4, where we use xL = −10, xU = 10 and K = 1000.

While our focus is on the mixing property of the Markov chain at stationarity, we
also consider two measures of the convergence rate of the Markov chain, namely the
absolute value of the second largest eigenvalue of P , denoted |λ|2, and the largest total
variation distance to the target distribution after n steps among all possible starting
points, denoted δn. We use n = 8. These measures are computed on the discretized
space. See Yang and Rodŕıguez (2013).

Method 2: Using MCMC samples The initial positive sequence method of Geyer
(1992) is used, which truncates the infinite sum of (4) as soon as ρk−1 + ρk < 0. This
uses an MCMC run and requires the evaluation of the proposal ratio, but not the
proposal density. Our experience suggests that small sample sizes (say, N < 105) do not
allow reliable estimation, especially when E is small. We typically use N = 107 to 108,
after a burn-in of 104 iterations.

We also use the following efficiency measure in the case of one-dimensional targets

E2
π := E(xn − xn−1)

2 = 2(1− ρ1)Var(x),

where the expectation is over the joint distribution of xn−1 and xn. This has been used
for optimal scaling (Sherlock and Roberts, 2009) and adaptive MCMC (Pasarica and
Gelman, 2010). Maximising E2

π is equivalent to minimising the first-order autocorrela-
tion ρ1.

2.3 Tuning of the proposal step size

Ideally, the proposal step size σ should be set to give the optimal efficiency E. A com-
putationally intensive approach is to run the algorithm for a range of σ values and
choose the one that gives the highest efficiency, referred to as grid evaluation. This is
expensive and may not be practical in real applications. It is used for one-dimensional
targets in Section 3. In Section 4, we employ an approach of automatic scale adjustment
(Yang and Rodŕıguez, 2013), where we monitor Pjump and use it to adjust σ for a one-
dimensional proposal. Note that there is a monotonic decreasing relationship between
σ and Pjump (larger σ meaning smaller Pjump). Specifically, we use the relationship
Pjump(σ) = 2

π tan−1(2/σ), for the N(0, 1) target and x′|x ∼ N(x, σ2) kernel (Gelman
et al., 1996), to derive the update formula

σ∗ = σ
tan(π2Pjump)

tan(π2P
∗
jump)

, (5)

where σ is the current step size, Pjump is the observed acceptance proportion, while
σ∗ and P ∗

jump are the optimal values. The optimal Pjump is around 0.4 for unimodal
kernels (including Gaussian and uniform kernels) and 0.3 for bimodal kernels (including
Bactrian, Box, Airplane and StrawHat kernels); see Section 3 and Yang and Rodŕıguez
(2013). We update σ several times during the burn-in.

Choice of the step size σ for the Mirror moves is discussed below.

1038 Designing Simple and Efficient MCMC Proposal Kernels

Figure 2: Box, Airplane and StrawHat proposals. Each proposal is a one-parameter
family of distributions with parameter a.

Figure 3: Examples of the proposal distribution for the two Mirror kernels when the
current point is x = −1 and the estimated “centre” of the target distribution is μ∗ = 0.1.
The proposal is centred at the mirror point x∗ = 2μ∗ − x.

3 New one-dimensional proposals

These proposals attempt to reduce the autocorrelation of the Markov chain, thereby
improving the precision of the resulting MCMC estimates. One simple approach is to
use a bimodal distribution with two modes on both sides of the current position. We
describe three such proposals, called Box, Airplane and StrawHat (Figure 2). They
have a bimodal shape similar to the Bactrian-type kernels given in Yang and Rodŕıguez
(2013), and are symmetric, with q(x′|x) = q(x|x′). We then present a novel family of
non-symmetric kernels that induces negative correlations in the Markov chain, called
the Mirror kernel (Figure 3).

For each of the proposal kernels described below, we first introduce a standard
distribution version with zero mean and unit variance. Then given a current point x of
the Markov chain, we give the proposal density with mean x and variance σ2.

3.1 Box

Given x, we generate x′ uniformly from two intervals, one on each side of x (Fig-
ure 2a). The standard box distribution is p(y; a) := 1

2(b−a) , a ≤ |y| ≤ b, where b :

Y. Thawornwattana, D. Dalquen, and Z. Yang 1039

= 1
2 (
√
12− 3a2 − a), and a is a parameter taking values in the interval [0, 1). When

a = 0, this is U(−√
3,
√
3), which is the uniform kernel. In the proposal, we set

x′ := x+σy, where y has the standard box distribution, with density q(x′|x) = 1
2σ(b−a) ,

σa ≤ |x′−x| ≤ σb. To sample from q(x′|x), draw y ∼ U(a, b) and u ∼ U(0, 1). If u < 1
2 ,

set y ← −y. Then set x′ ← x+ σy.

3.2 Airplane

The standard Airplane distribution p(y; a) is 1
2b−a if a ≤ |y| ≤ b and 1

2b−a if |y| < a,

where b is the root of 4b3− 12b+6a−a3 = 0 with b > a, and a ∈ [0,
√
2) is a parameter

(Figure 2b). The proposal density with mean x and variance σ2 is q(x′|x) = 1
σ(2b−a)

if σa ≤ |x′ − x| ≤ σb and q(x′|x) = 1
σa(2b−a) |x′ − x| if |x′ − x| < σa. To sample from

q(x′|x), draw u1, u2, u3 ∼ U(0, 1) independently. If u1 < a
2b−a , set y ← a

√
u2, otherwise

draw y ∼ U(a, b). If u3 < 1
2 , set y ← −y. Then set x′ ← x+ σy.

3.3 StrawHat

The standard StrawHat distribution p(y; a) is 3
2(3b−2a) if a ≤ |y| ≤ b and 3

2a2(3b−2a)y
2

if |y| < a, where b is the root of 5b3 − 15b+ 10a− 2a3 with b > a, and a ∈ [0,
√
5/3) is

a parameter. The proposal density q(x′|x) can be derived similarly as for the Airplane
kernel. To sample from q(x′|x), draw u1, u2, u3 ∼ U(0, 1) independently. If u1 < a

3b−2a ,

set y ← au
1/3
2 , otherwise draw y ∼ U(a, b). If u3 < 1

2 , set y ← −y. Then set x′ ← x+σy.

In all three moves (Box, Airplane, StrawHat), when a = 0, the move reduces to the
uniform kernel. We note that if a is too close to the upper limit, efficiency tends to drop
off quickly as σ becomes too large (Figure S1). In practice, we fix a at a = 0.5 (b = 1.43)
for Box, a = 1 (b = 1.47) for Airplane and a = 1 (b = 1.35) for StrawHat. Each kernel
then has a step size (σ) which can be adjusted to achieve good mixing.

3.4 Mirror

In the Mirror kernel, we generate values around a point on “the other side” of the target
distribution that is the “mirror image” of the current point x. Specifically, let μ∗ be an
estimate of the location of the target such as the mean or median. The proposal kernel
is centred at x∗ := 2μ∗ − x, the point with the same distance from μ∗ as the current
point x (Figure 3). We consider two variants, using either the uniform or Gaussian
distribution. In the MirrorU kernel, we have

x′|x ∼ U(2μ∗ − x−
√
3σ, 2μ∗ − x+

√
3σ), (6)

and in the MirrorN kernel, we have

x′|x ∼ N(2μ∗ − x, σ2). (7)

Both have mean 2μ∗ − x and variance σ2.

1040 Designing Simple and Efficient MCMC Proposal Kernels

For example, consider the N(0, 1) target. If μ∗ is the true mean (μ) of the target,
optimal asymptotic efficiency (for estimating μ) is achieved by having σ = 0, in which
case E = ∞ with Pjump = 1. However, in that case, the chain does not sample from
the target, and E for estimating other functions may be 0. In general, if μ∗ is close to
the true mean, one would prefer a small σ to achieve a high efficiency (E), but a small
σ may lead to slow convergence to the target distribution. On balance, we suggest two
choices of the step size: σ = ŝ or σ = 1

2 ŝ, where ŝ is the estimated target standard
deviation. Both μ∗ and ŝ are estimated during the burn-in of the MCMC.

If the target support is not the whole real line, the proposed value may lie outside
the target support. While one could reject such values, rejection is not workable if all
possible proposed values are outside the target support (i.e. when the proposal and
target supports do not overlap). Reflection is another possibility but there are two
problems. First, reflection would defeat the purpose of moving to the other side of the
target. Second, with a small step size, the reverse move x′ → x of the MirrorU move
with reflection may not be possible, thus breaking the detailed balance condition. As
an example, consider a target with support [0,∞). For MirrorU (6) with μ∗ = 1.5 and
step size σ = 1, suppose the current value is x = 5. Then x∗ = 2μ∗ − x = −2 and
x′ ∼ U(−3.73,−0.27). Suppose the proposed value is x′ = −0.2, which is reflected to
x′ = 0.2. Now it is not possible to reach x = 5 from x′ = 0.2 in the reverse direction
because from x′ = 0.2, we have (x′)∗ = 2.8 and the proposal is x ∼ U(1.07, 4.53).

Instead of rejection or reflection, we transform the target supportX onto the real line
R before applying the Mirror move. For instance, if X = [a,∞), we apply the Mirror

move on the transformed variable y := log(x − a), with the proposal ratio q(x|x′)
q(x′|x) =

x′−a
x−a . For X = [a, b], we use y := log x−a

b−x , with
q(x|x′)
q(x′|x) = (b−x′)(x′−a)

(b−x)(x−a) . With these log

transformations, the original variable in the X space is multiplied by a random factor,
and the Mirror proposal is referred to as Mirror Multiplier.

3.5 Results

Figures 4 and 5 show the performance of eight proposal kernels applied to five targets
plotted against the proposal step size σ. We observe large variations in efficiency as σ
changes, which emphasises the importance of choosing σ to achieve high efficiency. We
also note that for the uniform and Gaussian kernels, optimal σ for convergence rate (δ8
and |λ|2) is larger than that for mixing, while the opposite is true for the bimodal kernels.

The Box, Airplane and StrawHat kernels have similar efficiency to the Bactrian-type
kernels from Yang and Rodŕıguez (2013), with Box and StrawHat generally performing
slightly better than the BactrianTriangle kernel (Table 1). In addition, all these bimodal
kernels are better than the unimodal Gaussian and uniform kernels. The detail of the
distributional form appears to be less important. Among the bimodal kernels, we prefer
the StrawHat as it tends to achieve high efficiency and it is not very sensitive to the
choice of step size.

For the MirrorU and MirrorN kernels, we fixed μ∗ to 0.1 for all targets in this
Section, except the gamma target, where we used μ∗ = 1.5. Using a fixed μ∗ allowed us

Y. Thawornwattana, D. Dalquen, and Z. Yang 1041

F
ig
u
re

4
:
E
ffi
ci
en

cy
(E

)
o
f
ei
g
h
t
p
ro
p
o
sa
l
k
er
n
el
s
fo
r
es
ti
m
a
ti
n
g
th
e
m
ea
n
o
f
fi
v
e
ta
rg
et

d
is
tr
ib
u
ti
o
n
s.

P
a
ra
m
et
er
:
a
=

0
.5

fo
r

B
ox

,
a
=

1
fo
r
A
ir
p
la
n
e
a
n
d
S
tr
aw

H
a
t,
a
n
d
μ
∗
=

0
.1

fo
r
M
ir
ro
rU

a
n
d
M
ir
ro
rN

(t
h
e
tr
u
e
m
ea
n
fo
r
N
0
1
,
T
w
o
N
o
rm

a
l
a
n
d
T
w
o
T
4

is
0
,

1 2
a
n
d
−

3 8
,
re
sp
ec
ti
v
el
y
).

T
h
e
re
su
lt
s
fo
r
M
ir
ro
rU

a
n
d
M
ir
ro
rN

k
er
n
el
s
fo
r
g
a
m
m
a
a
n
d
u
n
if
o
rm

ta
rg
et
s,

w
h
ic
h
re
q
u
ir
e
a

va
ri
a
b
le

tr
a
n
sf
o
rm

a
ti
o
n
,
a
re

in
F
ig
u
re

5
.

1042 Designing Simple and Efficient MCMC Proposal Kernels

Figure 5: Efficiency (E) of the Mirror Multiplier kernels for estimating the mean of the
gamma and uniform target distributions. For gamma target (mean 2), we use μ∗ = 1.5;
i.e. we apply the Mirror kernel to log x, with mean 0.563 and logμ∗ = 0.405. For uniform
target (mean 0), we use μ∗ = 0.1; i.e. we apply the Mirror kernel to log x−a

b−x , with mean

0 and log μ∗−a
b−μ∗ = 0.116.

to optimise the step length σ and obtain smooth efficiency curves (Figure 4) without
averaging over many simulation replicates. The two Mirror kernels generally achieve
several-fold improvements in efficiency, and are “super-efficient”, with E > 1, in most
cases (Table 1). In practical applications, we suggest setting μ∗ = μ̂ and σ = ŝ or
σ = 1

2 ŝ, with both the target mean μ and standard deviation s estimated during the
burn-in (Section 3.4). If the estimated mean is closer to the true mean than the fixed
μ∗ used in our experiments, performance will be better as well. For the N(0, 1) target,
the efficiency, averaged over 10 replicates, is 1.290 for σ = ŝ, and 2.815 for σ = 1

2 ŝ for
MirrorN, compared with E = 1.82 when μ∗ = 0.1 is fixed and σ is optimised in Table 1.

We note that the ranking of the proposal kernels is largely the same across these five
targets (Table 1), suggesting that this pattern may hold for fairly arbitrary targets. For
the Box, Airplane and StrawHat kernels, the optimal P ∗

jump is reasonably stable across
targets evaluated, and we suggest using the automatic scale adjustment (5) for setting
the proposal step size σ, with P ∗

jump = 0.3.

Finally, to assess whether the efficiency ordering of the kernels depends on the spe-
cific function estimated, we consider estimating a tail probability of the normal target
N(0, 1). For estimating the probability P(x > 2.3263) = 0.01, the same ordering of the
kernels holds as for estimation of the target mean, with comparable optimal σ (Fig-
ure 6a). The highest efficiency is E ≈ 0.4, achieved by the two Mirror kernels. Similar
results were obtained for estimating the probability P(x > 1.2815) = 0.1 (Figure 6b),
but with a generally narrower range of σ achieving the maximum efficiency. The MirrorU
kernel was the most efficient, with E ≈ 0.5.

Y. Thawornwattana, D. Dalquen, and Z. Yang 1043

Kernel optimal σ Pjump E E2
π ρ1 δ8 |λ|2

Target N(0, 1)
Uniform 2.2 0.405 0.276 0.879 0.560 0.230 0.671
Gaussian 2.5 0.426 0.228 0.744 0.628 0.286 0.657
BactrianTriangle (m = 0.95) 2.3 0.304 0.377 1.131 0.434 0.442 0.829
Box (a = 0.5) 2.3 0.290 0.394 1.150 0.410 0.608 0.857
Airplane (a = 1) 2.2 0.334 0.360 1.096 0.452 0.296 0.789
StrawHat (a = 1) 2.2 0.308 0.395 1.188 0.406 0.488 0.838
MirrorU (μ∗ = 0.1) 0.5 0.821 1.823 2.815 −0.408 1.828 0.865
MirrorN (μ∗ = 0.1) 0.5 0.828 1.824 2.884 −0.442 1.840 0.880

Target 1
4N(−1, 1

4) +
3
4N(1, 1

4)
Uniform 1.9 0.385 0.227 0.771 0.614 0.454 0.746
Gaussian 2.2 0.388 0.171 0.608 0.696 0.501 0.750
BactrianTriangle (m = 0.95) 2.2 0.271 0.303 1.010 0.495 0.705 0.880
Box (a = 0.5) 2.2 0.261 0.308 1.057 0.472 0.806 0.894
Airplane (a = 1) 2.2 0.283 0.304 1.004 0.498 0.603 0.863
StrawHat (a = 1) 2.2 0.269 0.339 1.114 0.443 0.693 0.878
MirrorU (μ∗ = 0.1) 0.35 0.525 1.045 2.503 −0.252 1.983 0.884
MirrorN (μ∗ = 0.1) 0.35 0.525 1.058 2.534 −0.267 1.980 0.893

Target 3
4 t4(−3

4 , s
2) + 1

4 t4(
3
4 , s

2)
Uniform 2.2 0.366 0.218 0.760 0.620 1.276 0.794
Gaussian 2.6 0.377 0.192 0.659 0.670 1.157 0.791
BactrianTriangle (m = 0.95) 2.3 0.276 0.289 0.986 0.507 1.054 0.881
Box (a = 0.5) 2.3 0.254 0.296 1.025 0.488 1.014 0.894
Airplane (a = 1) 2.2 0.295 0.277 0.954 0.523 1.147 0.852
StrawHat (a = 1) 2.2 0.272 0.300 1.041 0.480 1.086 0.884
MirrorU (μ∗ = 0.1) 1.0 0.550 0.769 1.922 0.039 1.964 0.925
MirrorN (μ∗ = 0.1) 1.0 0.542 0.710 1.964 0.018 1.960 0.931

Target G(4, 2)
Uniform 3.2 0.464 0.297 0.998 0.501 0.388 0.652
Gaussian 3.5 0.463 0.249 0.856 0.572 0.450 0.674
BactrianTriangle (m = 0.95) 3.5 0.403 0.378 1.241 0.379 0.213 0.665
Box (a = 0.5) 3.5 0.398 0.392 1.284 0.358 0.200 0.702
Airplane (a = 1) 3.5 0.412 0.371 1.209 0.395 0.224 0.654
StrawHat (a = 1) 3.5 0.414 0.388 1.302 0.349 0.206 0.717

Target U(−√
3,
√
3)

Uniform 2.8 1 1.537 2.425 −0.212 0.000 0.216
Gaussian ∞ 1 1.000 2.000 0.000 0.000 0.000
BactrianTriangle (m = 0.95) 3.2 1 3.875 3.190 −0.595 0.022 0.604
Box (a = 0.5) 3.2 1 4.916 3.346 −0.673 0.060 0.682
Airplane (a = 1) 3.2 1 3.439 3.107 −0.554 0.013 0.562
StrawHat (a = 1) 3.2 1 5.801 3.421 −0.710 0.091 0.719

Table 1: Efficiency and convergence rate of proposal kernels for estimating the mean
of the five 1-D target distributions (all have variance 1). NOTE: Parameter μ∗ for the
Mirror kernels was chosen arbitrarily to be 0.1 and not optimised; see text.

1044 Designing Simple and Efficient MCMC Proposal Kernels

Figure 6: Efficiency (E) of five proposal kernels for estimating the tail probability of the
normal distribution N(0, 1): P(x > 2.3263) = 0.01 (a) and P(x > 1.2815) = 0.1 (b).
For MirrorU and MirrorN kernels, μ∗ is fixed to 0.1.

4 Multidimensional target distributions

4.1 Multivariate Gaussian target using multidimensional uniform
and Mirror kernels

We extend the one-dimensional uniform and MirrorN kernels to multiple dimensions for
the Nd(0, I) target, obtaining optimal scaling, optimal efficiency and Pjump (Table 2).
For the uniform kernel, we consider the Cube and Sphere extensions in multi-dimensions.
For MirrorN, we consider two variants, MirrorN1 with x′|x ∼ N(x∗, Σ̂) and MirrorN1

2

with x′|x ∼ N(x∗, 1
4 Σ̂), where x∗ = 2μ∗ − x, with μ∗ and Σ̂ to be the estimated target

mean and variance. Efficiency is calculated by averaging over 10 replicates.

We find that the Cube and Sphere kernels are more efficient than the Gaussian kernel
for d = 1, 2, 3, 4, but both are very similar to the Gaussian when d > 4. The MirrorN1
and MirrorN1

2 kernels are several times more efficient than Gaussian, Cube and Sphere
kernels for d ≤ 10, with MirrorN1

2 being over twice more efficient than MirrorN1. Note
that these MirrorN moves evaluated in Table 2 are d-dimensional moves. In comparison,
the efficiency of one-dimensional MirrorU and MirrorN is higher than 100% whatever
the dimension of the target is (Table S1).

In the supplementary material (Thawornwattana et al., 2017), we also perform de-
tailed simulations for the two-dimensional case, comparing the two-dimensional exten-
sions of the uniform kernel (the Square and Disc), with one-dimensional Gaussian,
uniform and MirrorU kernels.

Y. Thawornwattana, D. Dalquen, and Z. Yang 1045

d
G
a
u
ss
ia
n
k
er
n
el

C
u
b
e
k
er
n
el

S
p
h
er
e
k
er
n
el

M
ir
ro
rN

1
k
er
n
el

M
ir
ro
rN

1 2
k
er
n
el

o
p
ti
m
a
l
σ

E
P
ju
m
p

o
p
ti
m
a
l
σ

E
P
ju
m
p

o
p
ti
m
a
l
σ

E
P
ju
m
p

E
P
ju
m
p

E
P
ju
m
p

1
2
.4
0

0
.2
3
3

0
.4
4
1

2
.2
0

0
.2
7
6

0
.4
1
6

2
.2
0

0
.2
7
6

0
.4
1
6

1
.2
9
0

0
.7
0
6

2
.8
1
5

0
.8
4
6

2
1
.7
0

0
.1
3
6

0
.3
5
2

1
.6
4

0
.1
5
5

0
.3
1
7

1
.6
2

0
.1
5
7

0
.3
1
5

0
.8
6
9

0
.5
5
2

2
.1
1
8

0
.7
5
6

3
1
.3
9

0
.0
9
8

0
.3
1
6

1
.3
6

0
.1
0
7

0
.2
8
4

1
.3
6

0
.1
0
9

0
.2
7
9

0
.6
4
3

0
.4
5
3

1
.7
2
7

0
.6
9
4

4
1
.2
5

0
.0
7
6

0
.2
7
9

1
.2
0

0
.0
8
1

0
.2
6
6

1
.1
8

0
.0
8
3

0
.2
6
2

0
.5
0
1

0
.3
8
2

1
.4
1
8

0
.6
3
5

5
1
.1
0

0
.0
6
2

0
.2
7
5

1
.0
7

0
.0
6
5

0
.2
5
9

1
.0
7

0
.0
6
7

0
.2
5
2

0
.3
7
5

0
.3
1
4

1
.2
5
9

0
.6
0
1

6
1
.0
0

0
.0
5
3

0
.2
6
6

0
.9
8

0
.0
5
5

0
.2
5
2

0
.9
8

0
.0
5
6

0
.2
4
5

0
.2
9
7

0
.2
6
6

1
.1
0
0

0
.5
6
7

7
0
.9
3

0
.0
4
7

0
.2
6
1

0
.9
1

0
.0
4
7

0
.2
4
9

0
.9
1

0
.0
4
8

0
.2
4
2

0
.2
5
1

0
.2
3
3

0
.9
7
0

0
.5
3
3

8
0
.8
7

0
.0
4
1

0
.2
5
5

0
.8
5

0
.0
4
1

0
.2
4
5

0
.8
5

0
.0
4
2

0
.2
4
0

0
.1
9
0

0
.1
9
1

0
.8
6
1

0
.5
0
3

9
0
.8
0

0
.0
3
7

0
.2
6
1

0
.8
0

0
.0
3
7

0
.2
4
5

0
.8
0

0
.0
3
7

0
.2
3
7

0
.1
6
0

0
.1
7
0

0
.7
4
9

0
.4
6
9

1
0

0
.7
4

0
.0
3
4

0
.2
6
7

0
.7
6

0
.0
3
3

0
.2
4
3

0
.7
6

0
.0
3
4

0
.2
3
6

0
.1
2
9

0
.1
4
5

0
.6
8
3

0
.4
4
4

T
a
b
le

2
:
O
p
ti
m
a
l
st
ep

si
ze

(σ
)
a
n
d
a
sy
m
p
to
ti
c
effi

ci
en
cy

(E
)
fo
r
th
e
G
a
u
ss
ia
n
ta
rg
et

N
d
(0
,I
)
a
n
d
fi
v
e
p
ro
p
o
sa
l
k
er
n
el
s.

T
h
e

re
su
lt
s
fo
r
th
e
G
a
u
ss
ia
n
k
er
n
el

a
re

fr
o
m

T
a
b
le

1
in

G
el
m
a
n
et

a
l.
(1
9
9
6)
.
F
o
r
M
ir
ro
rN

1
a
n
d
M
ir
ro
rN

1 2
,
th
e
p
ro
p
o
sa
l
co
va
ri
a
n
ce

is
Σ̂

a
n
d

1 4
Σ̂
,
re
sp
ec
ti
v
el
y,

w
h
er
e
Σ̂

is
th
e
es
ti
m
a
te
d
ta
rg
et

co
va
ri
a
n
ce

fr
o
m

th
e
b
u
rn
-i
n
.
T
h
e
re
su
lt
s
a
re

av
er
a
g
ed

ov
er

1
0

re
p
li
ca
ti
o
n
s.

1046 Designing Simple and Efficient MCMC Proposal Kernels

Kernel Proposal σ Pjump E ρ1

1DTransfGaussian (true Σ) Automatic 0.392 0.225 0.631
1DTransfGaussian (estimated Σ) Automatic 0.401 0.228 0.624
1DTransfMirrorU1 (true Σ) σ = s 0.674 1.072 −0.034
1DTransfMirrorU1 (estimated Σ) σ = ŝ 0.675 1.031 −0.016
1DTransfMirrorU 1

2 (true Σ) σ = 1
2s 0.830 2.433 −0.423

1DTransfMirrorU1
2 (estimated Σ) σ = 1

2 ŝ 0.821 2.319 −0.397
HMC (Stan) Automatic 0.894 0.00682 0.983

Table 3: Efficiency for estimating the mean of the first component of the target
N100(0,Σ).

4.2 Hundred-dimensional Gaussian distribution

To demonstrate the scalability of our approach to high dimensions, we consider the
N100(0,Σ) target where Σ−1 is generated from a Wishart distribution with identity
scale matrix and 100 degrees of freedom. The target distribution used has many strong
correlations, with 1627 out of 4950 pairs of variables having correlations with magnitude
greater than 0.99.

We compare the one-dimensional Gaussian and MirrorU kernels. For MirrorU, the
parameter μ∗ is set to the target mean estimated during the burn-in, and the component-
specific proposal step size σ is set to either ŝ or 1

2 ŝ where ŝ is the estimated standard
deviation of the component in the target. These two proposals are referred to as Mir-
rorU1 and MirrorU1

2 , respectively. We use the whitening transformation

y = Σ−1/2x (8)

to remove correlations among the components and rescale all the components to have
variance 1. This transformation requires the target’s covariance matrix Σ, which can be
estimated during the burn-in.

We use 105 iterations of burn-in and 107 iterations of the main chain. If estimation
of Σ is required, we initialise Σ with the identity matrix and update every 104 iterations
(thus ten rounds of update in total). The final covariance matrix used by the sampler
is based on the last 104 burn-in samples. For the Gaussian kernel, we use automatic
tuning of proposal step size (5) with optimal Pjump = 0.4.

For this problem, the MirrorU1 and MirrorU1
2 kernels give about four-fold and ten-

fold increase in efficiency compared with the Gaussian kernel (Table 3). Efficiency is
similar whether the true or estimated variances are used, illustrating that the approach
of estimating the variance is practical. Stan does not perform well and takes about 100
times longer than the Gaussian and MirrorU kernels.

4.3 Bayesian logistic regression

Next, we apply the MirrorU kernel to the Bayesian logistic regression analysis of the
German credit dataset. The same dataset was used by Girolami and Calderhead (2011)

Y. Thawornwattana, D. Dalquen, and Z. Yang 1047

to demonstrate several state-of-the-art MCMC algorithms, namely MALA, HMC and
their Riemannian manifold versions. We also include for comparison the Stan algorithm
(version 2.15.1) (Carpenter et al., 2017), which implements HMC with automatic tuning.
Note that MALA and HMC require the first derivatives, while their manifold versions
additionally require the Fisher information matrix as well as its derivatives. The target
distribution is

p(θ|x, y) ∝ p(θ)

N∏
n=1

p(yn|xn, θ)

∝ exp

(
− 1

2α
θ�θ +

N∑
n=1

yn(θ
�xn)−

N∑
n=1

log(1 + eθ
�xn)

)
,

where θ is a vector of an intercept term and 24 regression coefficients, xn is a vector of
24 normalized predictors (with zero mean and unit variance), yn ∈ {0, 1} is an indicator
for a good credit risk, and N = 1000. We give each component of θ an independent
Gaussian prior N(0, α) with α = 100, following Girolami and Calderhead (2011). Each
chain is run for 107 iterations after 104 burn-in iterations. For MALA, MCMC and
the manifold versions, we use the Matlab implementation of Girolami and Calderhead
(2011) and run for 106 iterations.

From Table 4, the multidimensional MALA and HMC proposals are worse than the
simple one-dimensional 1DUniform and are comparable to the 1DGaussian kernel. The
manifold versions of MALA and HMC are much better than all those four, and Stan
performs the best. The MirrorU1

2 kernel has comparable efficiency to manifold HMC
and Stan, achieving super-efficiency (E > 1) for most of the 25 parameters, while tak-
ing less time. We note that the Mirror kernel requires estimation of the target mean
and variance, but is otherwise very simple to implement, and does not require any fine-
tuning. MALA and HMC require estimation of the target variance, and the manifold
versions in addition need higher derivatives or Fisher information. In complex models
where analytic expressions of the required derivatives are not available, automatic differ-
entiation may be used to evaluate derivatives at machine precision, but with increasing
running time. In addition, MALA, HMC and their manifold versions all have at least
one parameter that requires tuning. Thus the Mirror kernel is simpler to implement.

However, manifold MALA, HMC and manifold HMC give consistent efficiency across
dimensions, while for the Mirror kernel, some components can have much lower efficiency
than the rest.

5 Application to phylogenetics

We apply the proposal kernels studied above to a Bayesian inference problem of esti-
mating species divergence time and evolutionary rate using molecular sequence data
from two species. The dataset is the 12S rRNA gene from the mitochondrial genome of
human and orangutan from Horai et al. (1995), summarized as x = 90 differences out
of n = 948 sites.

1048 Designing Simple and Efficient MCMC Proposal Kernels

P
a
ra
m
et
er

K
er
n
el

1
D
U
n
if
o
rm

1
D
M
ir
ro
rU

1 2
1
D
G
a
u
ss
ia
n
M
A
L
A

H
M
C

M
a
n
if
o
ld

M
A
L
A

M
a
n
if
o
ld

H
M
C

H
M
C

(S
ta
n
)

1
0
.2
5
5

0
.6
7
8

0
.1
4
3

0
.0
7
5

0
.1
4
4

0
.7
1
0

1
.0
9
9

1
.4
0
2

2
0
.2
6
0

1
.2
4
5

0
.1
6
6

0
.0
8
8

0
.1
4
9

0
.7
3
2

1
.1
2
0

1
.5
3
2

3
0
.2
5
3

1
.1
5
3

0
.0
8
8

0
.0
4
9

0
.1
5
3

0
.7
5
2

1
.0
9
3

1
.3
4
6

4
0
.2
4
4

1
.5
7
2

0
.1
4
4

0
.0
7
4

0
.1
5
1

0
.7
4
3

1
.0
9
8

1
.4
5
9

5
0
.2
3
9

1
.0
7
1

0
.0
8
2

0
.0
4
5

0
.1
5
3

0
.7
6
2

1
.0
9
2

1
.3
2
5

6
0
.2
6
0

1
.1
9
6

0
.1
7
5

0
.0
8
2

0
.1
4
9

0
.7
4
6

1
.0
9
0

1
.5
4
9

7
0
.2
5
9

1
.6
3
4

0
.1
4
9

0
.0
8
0

0
.1
5
6

0
.7
3
9

1
.0
9
0

1
.5
0
5

8
0
.2
5
3

1
.2
3
6

0
.1
9
5

0
.1
1
8

0
.1
5
0

0
.7
4
5

1
.0
9
4

1
.6
3
4

9
0
.2
5
0

1
.3
2
0

0
.1
4
7

0
.0
8
2

0
.1
5
5

0
.7
5
8

1
.0
7
1

1
.5
6
6

1
0

0
.2
8
0

1
.2
7
0

0
.0
7
6

0
.0
3
8

0
.1
5
5

0
.7
3
7

1
.0
9
9

1
.3
0
3

1
1

0
.2
6
9

1
.0
8
6

0
.1
1
4

0
.0
5
9

0
.1
5
4

0
.7
3
1

1
.0
8
9

1
.4
5
4

1
2

0
.2
4
1

1
.8
0
2

0
.1
9
3

0
.1
2
5

0
.1
5
4

0
.7
5
6

1
.1
0
2

1
.5
9
6

1
3

0
.2
5
2

1
.2
6
6

0
.1
4
1

0
.0
7
3

0
.1
5
1

0
.7
4
3

1
.0
9
8

1
.4
5
8

1
4

0
.2
6
6

1
.6
2
5

0
.1
8
4

0
.1
0
5

0
.1
5
1

0
.7
3
8

1
.0
8
8

1
.6
0
8

1
5

0
.2
6
1

1
.2
4
4

0
.1
1
5

0
.0
5
9

0
.1
5
3

0
.7
3
9

1
.0
8
4

1
.4
2
0

1
6

0
.2
4
5

0
.1
6
1

0
.1
8
4

0
.0
5
1

0
.1
3
1

0
.7
1
2

1
.1
4
3

1
.4
3
3

1
7

0
.2
6
0

1
.5
4
8

0
.1
8
1

0
.1
0
9

0
.1
5
3

0
.7
4
1

1
.0
9
2

1
.5
6
6

1
8

0
.2
5
3

1
.3
1
4

0
.1
5
5

0
.0
6
2

0
.1
4
9

0
.7
1
7

1
.1
0
3

1
.5
3
4

1
9

0
.2
6
3

0
.4
7
3

0
.0
7
0

0
.0
3
4

0
.1
4
7

0
.7
0
0

1
.1
0
5

1
.2
8
9

2
0

0
.2
6
6

0
.6
0
1

0
.0
7
0

0
.0
3
6

0
.1
4
9

0
.7
1
3

1
.0
9
2

1
.2
9
2

2
1

0
.2
7
3

1
.2
9
3

0
.0
3
9

0
.0
2
0

0
.1
5
8

0
.7
3
6

1
.1
0
3

1
.1
0
2

2
2

0
.2
6
9

1
.5
3
5

0
.0
3
8

0
.0
2
0

0
.1
5
3

0
.7
3
5

1
.1
0
2

1
.1
0
5

2
3

0
.2
5
0

1
.1
3
4

0
.1
1
9

0
.0
6
5

0
.1
5
0

0
.7
3
7

1
.1
0
9

1
.3
5
1

2
4

0
.2
6
6

1
.4
5
5

0
.0
5
4

0
.0
2
6

0
.1
5
3

0
.7
2
5

1
.0
8
7

1
.1
5
5

2
5

0
.2
7
3

1
.0
0
6

0
.0
5
4

0
.0
2
6

0
.1
5
2

0
.7
2
3

1
.0
8
7

1
.1
4
9

R
u
n
n
in
g
ti
m
e
(s
),

C
9
3
6

9
3
6

9
3
7

n
/
a

n
/
a

n
/
a

n
/
a

2
2
6
3

R
u
n
n
in
g
ti
m
e
(s
),

M
a
tl
a
b

n
/
a

n
/
a

1
9
8
1

2
9
9

4
6
4
9

7
0
6
9

2
5
0
3
9

n
/
a

T
a
b
le

4
:
E
ffi
ci
en
cy

fo
r
es
ti
m
a
ti
n
g
th
e
m
ea
n
o
f
th
e
p
o
st
er
io
r
d
is
tr
ib
u
ti
o
n
fo
r
th
e
lo
g
is
ti
c
re
g
re
ss
io
n
p
ro
b
le
m
.
R
u
n
n
in
g
ti
m
e
(i
n

se
co
n
d
s)

is
fo
r
1
0
6
it
er
a
ti
o
n
s
fo
r
a
ll
k
er
n
el
s.

T
h
e
1
D

G
a
u
ss
ia
n
k
er
n
el

is
im

p
le
m
en
te
d
in

b
o
th

C
a
n
d
M
a
tl
a
b
,
a
n
d
in
d
ic
a
te
s
a

2
-f
o
ld

d
iff
er
en
ce

in
ru
n
n
in
g
ti
m
e
b
et
w
ee
n
th
e
tw

o
la
n
g
u
a
g
es
.

Y. Thawornwattana, D. Dalquen, and Z. Yang 1049

5.1 Model

The evolutionary process at each site is modelled as a continuous time Markov process
on the four nucleotides (T, C, A, and G) with the transition rate matrix Q = {qij},
with qij = λ for any i �= j (Jukes and Cantor, 1969). The substitution rate for each
nucleotide is thus r = 3λ per time unit, which is defined as one million years (Myrs).
The transition probability matrix is Pt = {Pt(i, j)}, with

Pt(i, j) =

{
1
4 + 3

4e
− 4

3 tr if i = j,
1
4 − 1

4e
− 4

3 tr if i �= j.

Given the data of x differences at n sites, the likelihood is

p(x|t, r) =
(

1

16
+

3

16
e−

8
3 tr

)n−x (
1

16
− 1

16
e−

8
3 tr

)x

.

This is a function of the genetic distance θ := 2tr, but not of t and r individually. The
maximum likelihood estimate of θ is θ̂ = 3

4 log(
3n

3n−4x) = 0.1015, and the 95% likelihood
interval is (0.0817, 0.1245).

We assign gamma priors t ∼ G(40, 40/15), with mean 15 Myrs and 95% interval
(10.7, 20.0), and r ∼ G(4, 800), with mean 0.005 substitutions per million years, and
95% interval (0.0014, 0.0110) (Figure 7a). The posterior distribution is

p(t, r|x) ∝ p(y|t, r)p(t)p(r)

∝
(

1

16
+

3

16
e−

8
3 tr

)n−x (
1

16
− 1

16
e−

8
3 tr

)x

t39e−(40/15)tr3e−800r. (9)

We sample from this posterior p(t, r|x) (Figure 7b) using MCMC algorithms with
different proposal schemes, and compare their efficiencies for estimating the posterior
means of t and r.

5.2 MCMC algorithms for posterior inference

Since the uniform proposal is generally more efficient than the Gaussian proposal, we
consider seven proposal kernels (A1-7) based on the uniform and MirrorU kernels and
five state-of-the-art MCMC algorithms: MALA, HMC, HMC (Stan), manifold MALA,
manifold HMC (A8-A12), which are based on a multivariate Gaussian proposal. The
derivatives and Fisher information matrices required by algorithms A8-A12 are derived
using the unnormalized posterior (9); these quantities are tractable but tedious (see sup-
plementary material). We use variable transformations to deal with correlations and/or
scale differences of the target variables (Figure 7b). Depending on the transformation
used, each algorithm has component-specific scaling parameters. Specifically, σt and
σr are standard deviations of proposals on t and r; σw and σz are for w := log t and
z := log r (Figure 7c); σx and σy are for x := log(tr) and y := log(t/r) (Figure 7d). The
details for tuning these step-size parameters are summarised in Table 5, and explicit
steps for each algorithm are provided in the supplementary material.

1050 Designing Simple and Efficient MCMC Proposal Kernels

Figure 7: (a) Prior p(t, r) and (b) posterior p(t, r|x) distributions for the molecular clock
dating problem. The dashed curve in the posterior indicates the values of (t, r) for which

2tr = θ̂ = 0.1015 (see text). (c) and (d) are different transformations of (b). All plots
are based on the same ranges of values of t and r.

Algorithm A1 1D Uniform on t, r.

Algorithm A2 1D Uniform on w, z.

Algorithm A3 2D Uniform on w, z.

Algorithm A4 1D Uniform on w, z with whitening transformation (8).

Algorithm A5 1D Uniform on x, y.

Algorithm A6 1D MirrorU on x, y. A6a 1D MirrorU1 on x, y. A6b 1D MirrorU1
2

on x, y.

Y. Thawornwattana, D. Dalquen, and Z. Yang 1051

K
er
n
el

P
ro
p
o
sa
l
st
ep

si
ze

(σ
)

R
u
n
n
in
g

ti
m
e
(s
)

T
im

e
(t
)

R
a
te

(r
)

c
P
ju
m
p

E
c

P
ju
m
p

E

A
1

1
D

U
n
if
o
rm

o
n
t,
r

A
u
to
m
a
ti
c

2
6

1
.2
9

0
.3
9
6

0
.0
5
4

1
.2
4

0
.4
0
5

0
.0
5
2

A
2

1
D

U
n
if
o
rm

o
n
w
,z

A
u
to
m
a
ti
c

2
8

1
.4
6

0
.4
0
3

0
.0
5
5

1
.3
3

0
.3
8
8

0
.0
5
4

A
3

2
D

U
n
if
o
rm

o
n
w
,z

σ
w
←

ŝ w
×
2
.2
×

1
.7

2
.4
,

σ
z
←

ŝ z
×

2
.2
×

1
.7

2
.4

2
2

1
.7
6

0
.2
0
6

0
.0
7
9

1
.5
5

0
.2
0
6

0
.0
7
8

A
4

1
D

U
n
if
o
rm

o
n
w
,z

w
it
h
w
h
it
en

in
g

A
u
to
m
a
ti
c

2
4

2
.1
8

0
.4
1
2

0
.2
6
5

2
.2
2

0
.3
9
5

0
.2
6
3

A
5

1
D

U
n
if
o
rm

o
n
x
,y

A
u
to
m
a
ti
c

2
6

2
.1
5

0
.4
0
1

0
.2
8
4

2
.1
6

0
.3
9
9

0
.2
1
1

A
6
a

1
D

M
ir
ro
rU

1
o
n
x
,y

σ
x
←

ŝ x
,σ

y
←

ŝ y
3
8

1
.0
7

0
.6
2
1

0
.9
7
0

0
.9
6

0
.6
4
6

0
.6
2
1

A
6
b

1
D

M
ir
ro
rU

1 2
o
n
x
,y

σ
x
←

1 2
ŝ x
,σ

y
←

1 2
ŝ y

3
8

0
.4
8

0
.7
6
2

1
.1
6
8

0
.4
6

0
.7
6
6

0
.4
1
1

A
7

1
D

M
ir
ro
rU

1 2
o
n
w
,z

w
it
h
w
h
it
en

in
g

σ
w
←

1 2
,σ

z
←

1 2
2
7

0
.4
8

0
.8
2
9

2
.3
0
8

0
.4
9

0
.8
2
3

1
.8
0
2

A
8

M
A
L
A

M
a
n
u
a
l

3
0

1
.4
8

0
.6
1
7

0
.6
0
0

1
.4
7

0
.6
1
7

0
.5
9
1

A
9

H
M
C

M
a
n
u
a
l

5
5

3
.4
4

0
.8
8
2

1
.1
4
3

2
.4
6

0
.8
8
2

1
.1
1
7

A
1
0

H
M
C

(S
ta
n
)

A
u
to
m
a
ti
c

1
0
5
6

2
.6
0

0
.9
4
9

0
.2
9
8

2
.6
1

0
.9
4
9

0
.2
9
1

A
1
1

M
a
n
if
o
ld

M
A
L
A

M
a
n
u
a
l

1
6
2

n
/
a

0
.6
3
1

0
.5
7
1

n
/
a

0
.6
3
1

0
.5
6
8

A
1
2

M
a
n
if
o
ld

H
M
C

M
a
n
u
a
l

2
7
2
7

n
/
a

0
.9
3
9

1
.7
1
5

n
/
a

0
.9
3
9

1
.6
7
0

T
a
b
le

5
:
E
ffi
ci
en

cy
o
f
tw

el
v
e
k
er
n
el
s
fo
r
th
e
m
o
le
cu

la
r
cl
o
ck

d
a
ti
n
g
p
ro
b
le
m
.
T
h
e
sc
a
li
n
g
fa
ct
o
r
c
=

σ
/
s
is

th
e
ra
ti
o
o
f
th
e

p
ro
p
o
sa
l
st
a
n
d
a
rd

d
ev
ia
ti
o
n
σ
ov
er

th
e
ta
rg
et

st
a
n
d
a
rd

d
ev
ia
ti
o
n
s.

N
O
T
E
:
s w

a
n
d
s z

a
re

th
e
st
a
n
d
a
rd

d
ev
ia
ti
o
n
s
o
f
w

: =
lo
g
t

a
n
d
z
: =

lo
g
r;

s x
a
n
d
s y

a
re

th
e
st
a
n
d
a
rd

d
ev
ia
ti
o
n
s
o
f
x
=

lo
g
(t
r)

a
n
d
y
=

lo
g
(t
/
r)
,
μ̂

d
en
o
te
s
th
e
es
ti
m
a
te

o
f
th
e
tr
u
e

m
ea
n
μ
,
a
n
d
ŝ
d
en
o
te
s
th
e
es
ti
m
a
te

o
f
th
e
tr
u
e
st
a
n
d
a
rd

d
ev
ia
ti
o
n
s.

T
h
e
ru
n
n
in
g
ti
m
e
is
a
n
av
er
a
g
e
fr
o
m

1
0
re
p
li
ca
ti
o
n
s.
T
h
e

sc
a
li
n
g
fa
ct
o
rs

fo
r
A
6
a
a
n
d
A
6
b
a
re

n
o
t
ex
a
ct
ly

1
a
n
d
0
.5

b
ec
a
u
se

th
e
va
ri
a
n
ce
s
es
ti
m
a
te
d
d
u
ri
n
g
b
u
rn
-i
n
in
v
o
lv
e
in
a
cc
u
ra
ci
es
.

F
o
r
m
a
n
if
o
ld

M
A
L
A

a
n
d
m
a
n
if
o
ld

H
M
C
,
th
e
sc
a
li
n
g
fa
ct
o
r
d
ep

en
d
s
o
n
th
e
cu
rr
en
t
p
o
si
ti
o
n
o
f
th
e
M
a
rk
ov

ch
a
in
.

1052 Designing Simple and Efficient MCMC Proposal Kernels

Algorithm A7 1D MirrorU1
2 on w, z with whitening transformation (8).

Algorithm A8 MALA with preconditioning on w, z.

Algorithm A9 HMC on w, z.

Algorithm A10 HMC (Stan) on w, z.

Algorithm A11 Manifold MALA on w, z.

Algorithm A12 Manifold HMC on w, z.

Note that A4 and A7 use generic logarithm and whitening transformations to deal

with correlations and scale differences, while A5 and A6 use certain features of the

model (namely the fact that the likelihood depends on tr only) to design efficient trans-

formations or search direction.

For each kernel, we simulate a Markov chain for 5×107 iterations, after a burn-in of

8×104 iterations. The estimates of the two marginal posterior means (and the 2.5th and

97.5th percentiles) are identical for all algorithms: 14.58 (10.5, 19.4) for t and 0.00361

(0.0025, 0.0051) for r, while the efficiency of the algorithms varies by nearly 40 folds

(Table 5).

When the target’s covariance structure is not taken into account, the efficiency

achieved is less than 10%. The one-dimensional uniform proposals on t and r and on

log t and log r (A1 and A2, respectively) are very inefficient, with E ≈ 5%, even less

efficient than the two-dimensional uniform kernel (A3). This is not surprising as both

pairs (t, r) and (log t, log r) are highly correlated (correlation about −0.8), as is ex-

pected from the fact that the likelihood depends on the product tr only. Removing the

correlation and adjusting for the scale differences between the target variables via the

whitening transformation (8) (A4) improves the efficiency significantly. An alternative

and computationally cheaper way to reduce the correlation is to use the transformation

x = log(tr) and y = log(t/r) (A5), based on our knowledge of the model. This reduces

the correlation to −0.28, and yielded a similar efficiency boost as A4.

The MirrorU kernels A6 and A7 show a superior performance to the uniform kernel

using the same transformation (A4 and A5) with no extra computational cost. Inde-

pendent simulations with different estimates of the target mean and variance suggest

that efficiency is stable around the values given in Table 5 (supplementary material).

Both MALA (A8) and manifold MALA (A11) perform better than the uniform ker-

nel (A4) (E ≈ 60%), but do not beat the MirrorU kernel. HMC (A9) and manifold

HMC (A12) also give super-efficient estimates, but at greater computational and im-

plementation cost. Stan (A10) does not perform as well as other variants of HMC (A9,

A12). In terms of efficiency per second, all variants of the MirrorU kernel outperform

manifold MALA, manifold HMC and Stan by a substantial margin (Table 5). Finally,

although well-tuned MALA and HMC also give good efficiency-per-time results, the

need for high-order derivatives and manual tuning of the step-size parameters makes

them challenging to implement.

Y. Thawornwattana, D. Dalquen, and Z. Yang 1053

6 Discussion

6.1 Measures of performance

We have compared the mixing efficiencies of different MH proposals, measured by the
asymptotic variance for estimating a function defined on the target distribution (such
as the mean or tail probability). As the efficiency of the kernel may depend on the
function or target (Mira, 2001), we have included several targets in our evaluation. We
note that the rankings of the proposal kernels are largely the same for all the targets we
evaluated, suggesting the existence of some general principles that may apply to fairly
arbitrary targets.

Besides the mixing efficiency, another useful measure is the rate of convergence of the
Markov chain to the stationary distribution (such as δ8 in Table 1). This rate should
affect the desired length of the burn-in. We consider the convergence rate to be less
important than the mixing efficiency because the burn-in is typically a small fraction
of the MCMC run, and because a kernel efficient for mixing tends to also be good for
convergence. For example, the uniform kernel converges faster and mixes more efficiently
than the Gaussian kernel (Table 1). It is also cheaper to simulate than the Gaussian
kernel. For the Mirror kernel, a small step size gives an estimate with a lower asymptotic
variance, but causes slower convergence. It is thus preferable to use large steps during
the burn-in for fast convergence, and small steps afterwards for fast mixing.

In practical MCMC applications, the computational and implementational costs are
of major concern. We note that the computational cost may depend on hardware and
software implementation details, as well as the specific inference problem. For example,
certain one-dimensional moves may not change the likelihood and are thus computa-
tionally efficient, such as the change to y = t/r when x = tr is fixed in the molecular
clocking dating example. Our analyses of the logistic regression and the molecular clock
dating examples suggest that the Mirror moves are simpler to implement and run faster
than the manifold MALA and HMC kernels. We leave it to the algorithm developer to
assess the computational cost of different proposals in their specific applications.

6.2 Comparison with other MCMC algorithms

Several MCMC algorithms have been proposed to improve mixing by suppressing the
diffusive behaviour of random walk proposals in which every iteration tends to take a
small step in a random direction. We discuss a few that are related to our work.

The idea of proposing values on the other side of the distribution appeared in the
literature before. For instance, the overrelaxation method (Adler, 1981; Barone and
Frigessi, 1990) is a Gibbs sampler for Gaussian conditionals that makes a move to the
other side of each component’s full conditional. The update for the component i is

x′
i = μi|−i + α(xi − μi|−i) +

√
σ2
i|−i(1− α2)z, z ∼ N(0, 1),

where μi|−i and σ2
i|−i are the conditional mean and variance of xi given all other variables

x−i, and α ∈ (−1, 1) is a user-specified parameter. Choosing α ∈ (−1, 0) will make a

1054 Designing Simple and Efficient MCMC Proposal Kernels

Figure 8: Sample path from a few steps of four algorithms for sampling from N2(0,Σ),
with Σ = (1 9

9 100): (a) standard Gibbs sampler, (b) overrelaxed Gibbs sampler (α =
−0.98), (c) MH using 1D TransfMirrorN1

2 kernel, and (d) MH using 2DMirrorN 1
2 kernel.

The first three consist of a sequence of two one-dimensional moves, while the last one
is a single two-dimensional move. The 1D TransfMirrorN 1

2 kernel applies the MirrorN

kernel y′i|yi ∼ N(2(Σ̂−1/2μ∗)i − yi,
1
4), i = 1, 2, on y = Σ̂−1/2x, where x = (x1, x2) is

the target variable, and μ∗ and Σ̂ are estimated mean and covariance matrix of the
target from the burn-in as described in Section 4.2. The 2D MirrorN1

2 kernel proposes

x′|x ∼ N(2μ∗ − x, 1
4 Σ̂). Triangle = starting point (−1, 4); filled circle = state of the

Markov chain; empty circle = intermediate step (for the one-dimensional moves). Two
ellipses enclose the 50% and 90% probability mass of the target.

move to the other side of the full conditional distribution of xi. The Markov chain
does not move to the other side of the target in one step, but instead moves along
the density contour (Figure 8b), with higher-order autocorrelations oscillating between
positive and negative signs (Figure 9). This results in cancellations of autocorrelations
in (3), yielding a lower asymptotic variance than the standard Gibbs sampler in certain
cases. In contrast, the Mirror is a general MH proposal kernel that moves to the other
side of the target in one step, giving a negative first-order autocorrelation (Figure 9). In
addition, its implementation does not require the knowledge of the full conditionals. The
mirror reflection of the current state through a centre point as an MH proposal kernel to
induce negative correlations has been suggested by Tierney (1994, Section 4.3.3), who
referred to it as an antithetic variate method, but theoretical analysis and empirical
comparisons have been lacking.

In the antithetic coupling method (Hammersley and Morton, 1956; Frigessi et al.,
2000), two Markov chains are constructed with one to be the mirror reflection of the
other. Combining the two chains yields a low-variance estimate. In contrast, the Mirror
kernel introduces negative correlations within a chain rather than between chains.

HMC is another method that aims to propose a value away from the current position,
in the direction of the peak of the target. A proposal is generated by simulating a
trajectory of the so-called Hamiltonian dynamics. It requires computation of the first
derivative of the log target density, and the tuning of its parameters is currently a topic
of research (Wang et al., 2013; Hoffman and Gelman, 2014). MALA is an MH algorithm

Y. Thawornwattana, D. Dalquen, and Z. Yang 1055

Figure 9: Autocorrelation function for the four proposal kernels of Figure 8, calculated
using 106 iterations after a burn-in of 8,000 iterations. The efficiency for the four kernels
is 0.104, 11.127, 2.784 and 2.122.

that uses the Langevin proposal (see Section 1) and can be viewed as a special case
of HMC. For the N(μ, s2) target, choosing step size σ = 2s gives the MALA update
x′|x ∼ N(2μ− x, 4s2), which is equivalent to the MirrorN kernel with a fixed step size
of 2s.

6.3 Parametrisation, variable transformation and efficiency for
different functions

Parametrisation of the target distribution or variable transformation is a useful ap-
proach to designing efficient MCMC samplers. We have illustrated this with several
transformations that deal with correlations and/or scales of the variables. We note that
using different functions f in (2) to evaluate MCMC mixing efficiency for the same
target π is equivalent to using different transformations or target densities but the same
function (such as the mean). Given that the ranking of kernels does not appear to be
sensitive to the target used or the function to be estimated, a useful approach may be
to transform the variable into a density for which efficient proposal kernels are known,
and design proposals for the original variables accordingly.

To find a good proposal q(x′|x) for the target πX(x), we use a one-to-one trans-
formation y = T (x) so that the resulting density πY (y) resembles a simple density for
which an efficient proposal q(y′|y) is known. The X- and Y -chains are then coupled,
in the sense that if the initial states are the same with y0 = T (x0) and if the same
sequence of random numbers is used to run the two chains, then yn = T (xn) for all
n ≥ 1. Estimating EπX

(f(x)) using the X-chain sample (xn)
N
n=1 is then the same as

estimating EπY
(f(T−1(y))) using the Y -chain sample (yn)

N
n=1. Thus finding an efficient

proposal kernel for a given target is equivalent to finding a good variable transformation
or parametrisation. It is then profitable to study the mixing efficiency for estimating
various functions for simple targets such as the uniform. Viewed in this light, our early

1056 Designing Simple and Efficient MCMC Proposal Kernels

Kernel Pjump E E2
π ρ1

Exp(1) target, Exp(1)-CDF transform
Uniform (σx = 2.5) 0.408 0.161 0.589 0.705
TransfUniform (σy = 2.8) 1.000 1.298 2.283 −0.142
TransfBactrianTriangle (m = 0.95, σy = 3.2) 1.000 2.014 2.820 −0.410
TransfStrawHat (a = 1, σy = 3.2) 1.000 2.026 2.950 −0.474

Folded Gaussian target N+(0, 1), Exp(1)-CDF transform
Uniform (σx = 2.3) 0.392 0.213 0.259 0.643
TransfUniform (σy = 2.8) 0.839 1.075 0.755 −0.039
TransfBactrianTriangle (m = 0.95, σy = 3.2) 0.834 1.919 0.961 −0.322
TransfStrawHat (a = 1, σy = 3.2) 0.847 2.224 1.013 −0.394

N(0, 1) target, t2-CDF transform
Uniform (σx = 2.2) 0.405 0.275 0.879 0.561
TransfUniform (σy = 2.8) 0.832 0.959 1.961 0.020
TransfBactrianTriangle (m = 0.95, σy = 3.2) 0.836 1.592 2.471 −0.236
TransfStrawHat (a = 1, σy = 3.2) 0.846 1.680 2.548 −0.274

N(0, 1) target, logistic-CDF transform
TransfUniform (σy = 2.8) 0.739 0.875 1.880 0.060
TransfBactrianTriangle (m = 0.95, σy = 3.2) 0.710 1.292 2.268 −0.134
TransfStrawHat (a = 1, σy = 3.2) 0.752 1.459 2.382 −0.191

Table 6: Efficiency for estimating the mean of three target distributions. The transfor-
mation y = e−x is used for Exp(1) and folded Gaussian, and the transformations y ∼ t2
and y ∼ logistic are used for N(0, 1).

observation that different proposal kernels with the same general shape have similar per-
formances is equivalent to the observation that the ranking of proposals is insensitive
to the target or function used.

Consider the target x ∼ Exp(1/μ) with mean μ. Then y = e−x/μ ∼ U(0, 1). From
Table 1, the uniform kernel y′|y ∼ U(y − w

2 , y + w
2) with reflection at w = 2.8 achieves

E = 1.537 for estimating E(y). Transformed onto the original variable x, the move is
as follows. Set y = e−x/μ, sample y′|y ∼ U(y− w

2 , y+
w
2) and reflect so that y′ ∈ (0, 1).

Then set x′ = −μ log y′. The acceptance probability is

α(x, x′) = min

(
1, e(x

′−x)/μ × π(x′)
π(x)

)
, (10)

which equals 1. This algorithm gives E = 1.298 for estimating E(x) = E(−μ log y)
(Table 6). This is good performance since w was optimized for estimating E(y) instead
of E(x). Even higher efficiency is achieved by using bimodal kernels such as Bactrian-
Triangle or the new StrawHat on y (Table 6).

Next, we use the same transformation y = e−x/μ to sample from the folded Gaussian

Y. Thawornwattana, D. Dalquen, and Z. Yang 1057

π(x) ∝ exp(−1
2x

2), x > 0, to estimate E(x) = 0.7979. The acceptance probability is
given by (10) although this does not equal 1. The uniform kernel on y gives E = 1.075
(Table 6). This is good because Exp(1) has only a passing resemblance to the folded
Gaussian. Again bimodal kernels such as BactrianTriangle and StrawHat give even
higher efficiency (Table 6).

Lastly, we consider two generic transformations for targets with support on the real
line. We sample from x ∼ N(0, 1) using uniform, BactrianTriangle or StrawHat kernel
on y = h((x− μ̂)/ŝ) where h is the CDF of the t2 or logistic distribution, and μ̂ and ŝ
are estimates of the mean and standard deviation of the target from the burn-in. For
both transformations, the uniform kernel gives E close to 1, for estimating E(x) = 0,
whereas BactrianTriangle and StrawHat kernels give E > 1 (Table 6).

Supplementary Material

Supplementary Material of “Designing Simple and Efficient Markov Chain Monte Carlo
Proposal Kernels” (DOI: 10.1214/17-BA1084SUPP; .pdf). (I) Efficiency curves for Box,
Airplane and StrawHat kernels for a range of a values. (II) Two-dimensional Gaussian
target example. (III) MCMC algorithms for the phylogenetic problem. (IV) Effect of μ∗

on efficiency.

References
Adler, S. L. (1981). “Over-relaxation method for the Monte Carlo evaluation of the par-
tition function for multiquadratic actions.” Physical Review. D. Particles and Fields,
23: 2901–2904. 1053

Barone, P. and Frigessi, A. (1990). “Improving stochastic relaxation for Gaussian ran-
dom fields.” Probability in the Engineering and Informational Sciences, 4(3): 369–389.
1053

Bédard, M., Douc, R., and Moulines, E. (2012). “Scaling analysis of multiple-try MCMC
methods.” Stochastic Processes and Their Applications, 122(3): 758–786. MR2891436.
1035

Bédard, M., Douc, R., and Moulines, E. (2014). “Scaling analysis of delayed rejection
MCMC methods.” Methodology and Computing in Applied Probability, 16(4): 811–
838. MR3270597. 1035

Beskos, A., Pillai, N., Roberts, G., Sanz-Serna, J.-M., and Stuart, A. (2013). “Optimal
tuning of the hybrid Monte Carlo algorithm.” Bernoulli , 19(5A): 1501–1534. 1035

Beskos, A., Roberts, G., and Stuart, A. (2009). “Optimal scalings for local Metropolis-
Hastings chains on nonproduct targets in high dimensions.” The Annals of Applied
Probability, 19(3): 863–898. 1035

Browne, W. J. (2006). “MCMC algorithms for constrained variance matrices.” Compu-
tational Statistics & Data Analysis, 50(7): 1655–1677. 1036

1058 Designing Simple and Efficient MCMC Proposal Kernels

Carpenter, B., Gelman, A., Hoffman, M., Lee, D., Goodrich, B., Betancourt, M.,
Brubaker, M., Guo, J., Li, P., and Riddell, A. (2017). “Stan: a probabilistic pro-
gramming language.” Journal of Statistical Software, 76(1): 1–32. 1047

Devroye, L. (1986). Non-uniform random variate generation. Springer-Verlag, New
York. 1036

Frigessi, A., G̊asemyr, J., and Rue, H. (2000). “Antithetic coupling of two Gibbs sampler
chains.” Annals of Statistics, 28(4): 1128–1149. MR1810922. 1054

Gelfand, A. E., Smith, A. F. M., and Lee, T.-M. (1992). “Bayesian analysis of con-
strained parameter and truncated data problems using Gibbs sampling.” Journal of
the American Statistical Association, 87(418): 523–532. 1036

Gelman, A., Roberts, G. O., and Gilks, W. R. (1996). “Efficient Metropolis jumping
rules.” In Bayesian statistics, 5 , 599–607. Oxford Univ. Press, New York. 1034,
1036, 1037, 1045

Geyer, C. J. (1992). “Practical Markov chain Monte Carlo.” Statistical Science, 7(4):
473–483. 1037

Girolami, M. and Calderhead, B. (2011). “Riemann manifold Langevin and Hamiltonian
Monte Carlo methods.” Journal of the Royal Statistical Society. Series B, Statistical
Methodology, 73(2): 123–214. With discussion and a reply by the authors. MR2814492.
1046, 1047

Hammersley, J. M. and Morton, K. W. (1956). “A new Monte Carlo technique: antithetic
variates.” Mathematical Proceedings of the Cambridge Philosophical Society, 52: 449–
475. MR0080984. 1054

Hastings, W. K. (1970). “Monte Carlo sampling methods using Markov chains and their
applications.” Biometrika, 57(1): 97–109. 1033

Hoffman, M. D. and Gelman, A. (2014). “The no-U-turn sampler: adaptively setting
path lengths in Hamiltonian Monte Carlo.” Journal of Machine Learning Research,
15: 1593–1623. MR3214779. 1054

Horai, S., Hayasaka, K., Kondo, R., Tsugane, K., and Takahata, N. (1995). “Recent
African origin of modern humans revealed by complete sequences of hominoid mi-
tochondrial DNAs.” Proceedings of the National Academy of Sciences of the United
States of America, 92(2): 532–536. 1047

Jukes, T. H. and Cantor, C. R. (1969). “Evolution of protein molecules.” In Munro,
H. N. (ed.), Mammalian Protein Metabolism, volume 3, 21–132. Academic Press,
New York. 1049

Kemeny, J. G. and Snell, J. L. (1960). Finite Markov chains . D. Van Nostrand Co., Inc.
1036

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E.
(1953). “Equation of state calculations by fast computing machines.” The Journal of
Chemical Physics, 21(6): 1087–1092. 1033

Y. Thawornwattana, D. Dalquen, and Z. Yang 1059

Mira, A. (2001). “Efficiency of finite state space Monte Carlo Markov chains.” Statistics
& Probability Letters , 54(4): 405–411. MR1861386. 1053

Pasarica, C. and Gelman, A. (2010). “Adaptively scaling the Metropolis algorithm using
expected squared jumped distance.” Statist. Sinica, 20(1): 343–364. 1037

Peskun, P. H. (1973). “Optimum Monte-Carlo sampling using Markov chains.”
Biometrika, 60: 607–612. 1034, 1036

Pillai, N. S., Stuart, A. M., and Thiéry, A. H. (2012). “Optimal scaling and diffusion
limits for the Langevin algorithm in high dimensions.” The Annals of Applied Prob-
ability, 22(6): 2320–2356. MR3024970. 1035

Roberts, G. O., Gelman, A., and Gilks, W. R. (1997). “Weak convergence and optimal
scaling of random walk Metropolis algorithms.” The Annals of Applied Probability,
7(1): 110–120. MR1428751. 1035

Roberts, G. O. and Rosenthal, J. S. (1998). “Optimal scaling of discrete approximations
to Langevin diffusions.” Journal of the Royal Statistical Society. Series B, Statistical
Methodology, 60(1): 255–268. MR1625691. 1035

Sherlock, C. and Roberts, G. (2009). “Optimal scaling of the random walk Metropolis
on elliptically symmetric unimodal targets.” Bernoulli , 15(3): 774–798. MR2555199.
1037

Thawornwattana, Y., Dalquen, D., and Yang, Z. (2017). “Supplementary Material of
the “Designing Simple and Efficient Markov Chain Monte Carlo Proposal Kernels”.”
Bayesian Analysis. doi: https://doi.org/10.1214/17-BA1084SUPP. 1044

Tierney, L. (1994). “Markov chains for exploring posterior distributions.” Annals of
Statistics, 22(4): 1701–1762. MR1329166. 1034, 1054

Tierney, L. (1998). “A note on Metropolis-Hastings kernels for general state spaces.”
The Annals of Applied Probability, 8(1): 1–9. 1034

Wang, Z., Mohamed, S., and de Freitas, N. (2013). “Adaptive Hamiltonian and Rie-
mann Manifold Monte Carlo.” In Proceedings of the 30th International Conference
on Machine Learning (ICML), 1462–1470. 1054

Yang, Z. and Rodŕıguez, C. E. (2013). “Searching for efficient Markov chain Monte Carlo
proposal kernels.” Proceedings of the National Academy of Sciences of the United
States of America, 110(48): 19307–19312. MR3153956. 1035, 1036, 1037, 1038, 1040

Acknowledgments

This study was supported by a grant from Biotechnological and Biological Sciences Research

Council (BBSRC) to Z.Y., and in part by the Radcliffe Institute for Advanced Study at Harvard

University. Y.T. was supported by the Royal Thai Government Scholarship.

Supplementary Material

I Efficiency curves for Box, Airplane and StrawHat
kernels

0 1 2 3 4 5 6

0.
0

0.
1

0.
2

0.
3

0.
4

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

1
0.

2
0.

3
0.

4

a

0
0.2
0.4
0.5
0.6
0.8
0.9

Box

0 1 2 3 4 5 6

0.
0

0.
1

0.
2

0.
3

0.
4

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

a

0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.414

Airplane

0 1 2 3 4 5 6

0.
0

0.
1

0.
2

0.
3

0.
4

σ

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

a

0
0.2
0.4
0.6
0.8
1
1.2
1.29

Pjump

StrawHat

E

Figure S1: Effect of parameter a of the Box, Airplane and StrawHat kernels on efficiency
for estimating the mean of N(0, 1).

II Two-dimensional Gaussian target distributions
We consider two bivariate Gaussian targets N2(0, I) and N2(0,Σ) with Σ =

(1 ρ
ρ 1

)
with ρ = 0.9. For N2(0, I), we compare proposals that are either a two-dimensional
distribution, or a cycle of two one-dimensional distributions. For N2(0,Σ), we also use
a variable transformation to deal with the correlation.

The proposal kernels considered are as follows. Let x = (x1, x2) be the current value
and x′ = (x′

1, x
′
2) be the proposed value from q(x′

1, x
′
2|x1, x2).

• Two-dimensional proposals on R2:

– K1. Gaussian:

q(x′
1, x

′
2|x1, x2) = N(x′

1, x
′
2|(x1, x2), σ

2I2).

This is a symmetric kernel, with q(x′
1, x

′
2|x1, x2) = q(x1, x2|x′

1, x
′
2). Thus the

proposal ratio is 1.
– K2. Square:

q(x′
1, x

′
2|x1, x2) =

1

12σ2
1S(x1, x2)

where S := {(u, v) ∈ R2 : x1 −
√
3σ ≤ u ≤ x1 +

√
3σ, x2 −

√
3σ ≤ v ≤ x2 +√

3σ} is the square of side length 2
√
3σ, centred at (x1, x2), and 1S(x1, x2) :=

1 if (x1, x2) ∈ S, and 0 otherwise; this has mean (x1, x2) and covariance
matrix I2. To generate (x′

1, x
′
2) from this kernel, draw x′

i ∼ U(xi −
√
3σ, xi +√

3σ) independently for i = 1, 2. The proposal ratio is 1.
– K3. Disc:

q(x′
1, x

′
2|x1, x2) =

1

4πσ2
1S(x1, x2)

where S := {(u, v) ∈ R2 : (x1 − u)2 + (x2 − v)2 ≤ 4σ2} is the disc of radius
2σ, centred at (x1, x2); this has mean (x1, x2) and covariance I2. To generate
(x′

1, x
′
2) from this kernel, first draw r ∼ U(0, 1) and θ ∼ U(0, 2π), then set

x′
1 := x1 + 2σ

√
r cos θ and x′

2 := x2 + 2σ
√
r sin θ. The proposal ratio is 1.

• Two one-dimensional proposals (one for each coordinate):

– K4. Two 1D uniform proposals:

1. First, draw u ∼ U(x1 −
√
3σ, x1 +

√
3σ) and set (x′

1, x2) = (u, x2) with
probability min

(
1, π(u,x2)

π(x1,x2)

)
, otherwise set (x′

1, x2) = (x1, x2). The pro-
posal ratio is 1.

2. Then, draw v ∼ U(x2 −
√
3σ, x2 +

√
3σ) and set (x′

1, x
′
2) = (x′

1, v) with
probability min

(
1,

π(x′
1,v)

π(x′
1,x2)

)
, otherwise set (x′

1, x
′
2) = (x′

1, x2). The pro-
posal ratio is 1.

– K5. Two 1D Gaussian proposals. This is similar to the uniform one (K4), but
with u ∼ N(x1, σ

2) and v ∼ N(x2, σ
2) instead.

For the N2(0,Σ) target, we consider four additional proposal kernels, based on the
whitening transformation (8).

• K6. 2D Gaussian with transformation. Generate y′ ∼ N(y, σ2I) and set x′ =
Σ1/2y′. The proposal ratio is 1.

• K7. Two 1D Uniform with transformation. This is similar to K4, but uses the
transformed variable y.

• K8. Two 1D Gaussian with transformation. This is similar to K7, but uses the
Gaussian proposal instead of uniform.

• K9. Two 1D MirrorU with transformation. This is similar to K7, but uses the
MirrorU proposal instead of uniform, with μ∗ = 0.1 for both components.

For the N2(0, I) target, the two two-dimensional versions of the uniform kernel,
Square2D (K2) and Disc2D (K3), are more efficient than Gaussian2D (K1) (Table S1).
This is apparently due to the fact that Gaussian2D is more concentrated on points close
to the current point so that the samples are more strongly correlated. The efficiency
is almost doubled when two one-dimensional proposals are used instead of a single
two-dimensional move (compare Two1DUniform (K4) with Square2D and Disc2D, and
Two1DGaussian (K5) with Gaussian2D in Table S1). The optimal σ and efficiency for
these kernels agree with those for the N(0, 1) target in Table 1. Note, however, that
this improvement in statistical efficiency comes at an extra cost in computation that
scales with the target’s dimensionality. If the target is d-dimensional, a sequence of d 1D
moves requires d evaluations of the target density and d MH acceptance steps instead
of just one.

For the N2(0,Σ) target, applying kernels K1-K5 directly gives poor results, with
efficiency of only 2−6%, compared with over 10% for the N2(0, I) target (Table S1 and
Figure S2). This inefficiency is because these proposals fail to account for the high cor-
relation (ρ = 0.9) between the variables in the target. When the correlation is removed
via the whitening transformation (8) in TransfGaussian2D (K6), we recover the same
efficiency of 0.134 as achieved by Gaussian2D (K1) on N2(0, I) target. The same pat-
tern applies to the one-dimensional moves with transformation (8): Two1DTransfUnif
(K7) achieves the same efficiency as Two1DUnif (K4) on N2(0, I) (E = 0.276), and
Two1DTransfGaussian (K8) achieves the same efficiency as Two1DGaussian (K5) on
N2(0, I) (E = 0.228). Note that simply using one-dimensional proposals without trans-
formation can yield worse performance than the corresponding two-dimensional moves
as correlations make it more difficult to make a large move along the axis-aligned di-
rections. Finally, the Two1DTransfMirrorU (K9) kernel is several times more efficient
than any other kernel considered.

III MCMC algorithms for the phylogenetic problem

K
ernel

N
2 (0,I

)
N

2 (0,Σ
)

optim
al

σ
P

jum
p

E
E

2π
ρ
1

optim
al

σ
P

jum
p

E
E

2π
ρ
1

K
1

G
aussian2D

1.7
0.352

0.134
0.544

0.762
1.8

0.159
0.043

0.174
0.913

K
2

Square2D
1.7

0.300
0.155

0.475
0.728

1.5
0.167

0.060
0.236

0.882
K

3
D

isc2D
1.7

0.294
0.156

0.552
0.724

1.5
0.153

0.048
0.192

0.904
K

4
T
w

o1D
U

niform
2.2

0.407
0.276

0.880
0.560

1.0
0.393

0.030
0.166

0.917
K

5
T
w

o1D
G

aussian
2.5

0.430
0.228

0.744
0.628

1.0
0.456

0.024
0.141

0.930
K

6
T
ransfG

aussian2D
n/a

1.7
0.352

0.134
0.475

0.762
K

7
T
w

o1D
T
ransfU

nif
n/a

2.2
0.407

0.276
0.880

0.560
K

8
T
w

o1D
T
ransfG

aussian
n/a

2.5
0.430

0.228
0.743

0.629
K

9
T
w

o1D
T
ransfM

irrorU
(μ ∗

=
0.1)

n/a
0.4

0.852
1.825

2.987
−
0
.494

T
able

S1::E
ffi

ciency
for

estim
ating

the
m

ean
of

tw
o-dim

ensionalG
aussian

targets.

N
O

T
E

:
T

he
N

2 (0,Σ
)

target
has

covariance
Σ

=
(

1
0
.9

0
.9

1
).

E
ffi

ciency
(E

)
is

for
estim

ating
the

m
ean

of
the

first
com

ponent
μ
1
=

E
(x

1).

0.0

0.5

1.0

1.5

2.0

0 1 2 3 4 5 6
σ

E

Gaussian2D

Square2D

Disc2D

Two1DUniform

Two1DGaussian

TransfGaussian

Two1DTransfGaussian

Two1DTransfUnif

Two1DTransfMirrorU

Figure S2: Efficiency of proposal kernels for the N2(0,Σ) target, with Σ =(1 0.9
0.9 1).

Algorithm A1 (1D Uniform on t, r). The algorithm consists of two MH steps. In
step 1, draw t′|t ∼ U(t−σt

√
3, t+σt

√
3). If t′ < 0, set t′ ← −t′ (proposal ratio is 1). In

step 2, draw r′|r ∼ U(t− σr

√
3, t+ σr

√
3). If r′ < 0, set r′ ← −r′ (proposal ratio is 1).

The step-size parameters σt and σr are automatically tuned to achieve Pjump = 0.4
(see Section 2.3).

Algorithm A2 (1D Uniform on w, z). The algorithm consists of two MH steps. In
step 1, draw u ∼ U(−√

3,
√
3) and set t′ ← teσwu (proposal ratio is t′

t). In step 2, draw
v ∼ U(−√

3,
√
3) and set r′ ← reσzv (proposal ratio is r′

r).

The step-size parameters σw and σz are tuned to achieve Pjump = 0.4.

Algorithm A3 (2D Uniform on w, z). The algorithm uses a single two-dimensional
proposal. First, draw u ∼ U(−√

3,
√
3) and set t′ ← teσwu. Then draw v ∼ U(−√

3,
√
3)

and set r′ ← reσzv. The proposal ratio is t′r′
tr .

It is hard to adjust two step-sizes σw and σz in one proposal. We use σw = sw×2.2×
1.7
2.4 and σz = sz × 2.2 × 1.7

2.4 , where sw and sz are the standard deviations of w = log t
and z = log r, estimated during burn-in. Here, 2.4 and 1.7 are optimal scales in 1D and
2D for the Gaussian kernel, while 2.2 is the optimal scale for the uniform kernel in 1D
(tables 1 and S1).

Algorithm A4 (1D Uniform on w, z with whitening transformation (8)). Let w :=

log t, z := log r. Let Σ̂ denote the estimated covariance matrix of (w, z) during the
burn-in. The algorithm consists of two one-dimensional MH steps on w and z.

1. Set (wz) ←
(

log t
log r

)
and (w̃z̃) ← Σ̂−1/2 (wz). Draw u ∼ U(−√

3,
√
3) and set w̃′ ←

w̃+σwu and z̃′ ← z̃. Then set
(
w′
z′
) ← Σ̂1/2

(
w̃′
z̃′
)

and
(
t′
r′
) ← (

ew
′

ez
′

)
. The proposal

ratio is t′r′
tr .

2. Set (wz) ←
(

log t
log r

)
and (w̃z̃) ← Σ̂−1/2 (wz). Draw v ∼ U(−√

3,
√
3) and set w̃′ ← w̃

and z̃′ ← z̃ + σzv. Then set
(
w′
z′
) ← Σ̂1/2

(
w̃′
z̃′
)

and
(
t′
r′
) ←

(
ew

′

ez
′

)
. The proposal

ratio is t′r′
tr .

The step-size parameters σw and σz are tuned to achieve Pjump = 0.4.

Algorithm A5 (1D Uniform on x := log(tr), y := log(t/r)). The algorithm consists
of two one-dimensional MH steps on x and y.

1. Set x ← log(tr) and y ← log(t/r). Draw u ∼ U(−√
3,
√
3) and set x′ ← x + σxu

and y′ ← y. Then set t′ ← e
x′+y′

2 and r′ ← e
x′−y′

2 . The proposal ratio is t′r′
tr .

2. Set x ← log(tr) and y ← log(t/r). Draw v ∼ U(−√
3,
√
3) and set x′ ← x and

y′ ← y+σyv. Then set t′ ← e
x′+y′

2 and r′ ← e
x′−y′

2 . The proposal ratio is t′r′
tr = 1.

The step-size parameters σx and σy are tuned to achieve Pjump = 0.4.

Algorithm A6 (1D MirrorU on x, y). The algorithm consists of two one-dimensional
MH steps on x and y.

1. Set x ← log(tr) and y ← log(t/r). Draw x′|x ∼ U(2μ∗
x−x−σx

√
3, 2μ∗

x−x+σx

√
3)

and set y′ ← y. Then set t′ ← e
x′+y′

2 and r′ ← e
x′−y′

2 . The proposal ratio is t′r′
tr .

2. Set x ← log(tr) and y ← log(t/r). Draw y′|y ∼ U(2μ∗
y−y−σy

√
3, 2μ∗

y−y+σy

√
3)

and set x′ ← x. Then set t′ ← e
x′+y′

2 and r′ ← e
x′−y′

2 . The proposal ratio is
t′r′
tr = 1.

Here, μ∗
x, μ

∗
y are set to the estimated means μ̂x, μ̂y of x and y, respectively, and σx, σy

are set to either ŝx, ŝy (A6a) or 1
2 ŝx,

1
2 ŝy (A6b), where ŝx and ŝy are the estimated

standard deviations of x and y from the burn-in sample.

Algorithm A7 (1D MirrorU on w, z with whitening transformation). Let Σ̂ denote
the estimated covariance matrix of (w, z) during burn-in. The algorithm consists of two
MH steps.

1. Set (wz) ←
(

log t
log r

)
and (w̃z̃) ← Σ̂−1/2

(
(wz)−

(
μ̂w

μ̂z

))
. Draw u ∼ U(−√

3,
√
3)

and set w̃′ ← −w̃ + σwu and z̃′ ← z̃. Then set
(
w′
z′
) ← Σ̂1/2

(
w̃′
z̃′
)
+

(
μ̂w

μ̂z

)
and

(t
r) ←

(
ew

ez
)
. The proposal ratio is t′r′

tr .

2. Set (wz) ←
(

log t
log r

)
and (w̃z̃) ← Σ̂−1/2

(
(wz)−

(
μ̂w

μ̂z

))
. Draw v ∼ U(−√

3,
√
3)

and set w̃′ ← w̃ and z̃′ ← −z̃ + σzv. Then set
(
w′
z′
) ← Σ̂1/2

(
w̃′
z̃′
)
+

(
μ̂w

μ̂z

)
and

(t
r) ←

(
ew

ez
)
. The proposal ratio is t′r′

tr .

The step-size parameters σw and σz are set to 1
2 .

Algorithm A8 (MALA with preconditioning on w, z). The algorithm uses a single
two-dimensional proposal.

1. Set (w, z) ← (log t, log r). Draw (w′, z′) ∼ N(m(w, z), ε2A), where

m(w, z) := (w, z) +
ε

2
A∇ log p(w, z|x),

and the first derivatives are derived using (9). Then set (t′, r′) ← (ew
′
, ez

′
). The

proposal ratio is N((w,z)|(w′,z′)+ ε2

2 A∇ log p(w′,z′|x),ε2A)

N((w′,z′)|(w,z)+ ε2

2 A∇ log p(w,z|x),ε2A)

t′r′
tr .

The scalar step-size parameter ε is tuned manually to achieve the highest efficiency. The
matrix A is set to 1

(det Σ̂)1/2
Σ̂, where Σ̂ is denotes the estimate of the target’s covariance

matrix from burn-in samples, following Marshall and Roberts (2012).

Algorithm A9 (HMC on w, z). Let Lmax be the upper bound on the number of
leapfrog steps and let ε be the leapfrog step-size. Let Σ̂ denote the estimated covariance
matrix of (w, z) from burn-in. This algorithm uses a single two-dimensional proposal.

1. Set (w, z) ← (log t, log r). Draw an auxiliary variable φ ∼ N(0, Σ̂). Set (w′, z′) ←
(w, z) and φ′ ← φ. Draw L ∼ U{1, . . . , Lmax}. For � = 1, . . . , L, (a) set φ′ ←
φ′ + ε

2∇ log p(w′, z′), (b) set (w′, z′) ← (w′, z′) + εΣ̂−1φ′, and (c) set φ′ ← φ′ +
ε
2∇ log p(w′, z′). Then set (t′, r′) ← (ew

′
, ez

′
). The proposal ratio is N(φ′|0,Σ̂)

N(φ|0,Σ̂)

t′r′
tr .

The parameters Lmax and ε are tuned manually to achieve the highest efficiency.

Algorithm A10 (HMC (Stan) on w, z). NUTS algorithm. See Hoffman and Gelman
(2014) for description.

Algorithm A11 (Manifold MALA on w, z). This algorithm uses a single two-
dimensional proposal.

1. Set (w, z) ← (log t, log r). Draw (w′, z′) ∼ N(m(w, z), ε2G−1(w, z)) where

m(w, z) := (w, z) + ε2
(
1

2
G−1(w, z)∇ log p(w, z|x) + Ω(w, z)

)
,

G(w, z) := −Ep(x|w,z)∇2
(w,z) log p(x|w, z)−∇2

(w,z) log p(w, z)

(the Fisher information matrix of the likelihood plus the negative Hessian of the
log prior density), and

Ω(w, z) :=
1

2
G−1

(
tr
(
G−1∂wG

)
tr
(
G−1∂zG

))−
∑

j=w,z

(G−1∂jG)G−1
·,j .

Set (t′, r′) ← (ew
′
, ez

′
). The proposal ratio is N((w,z)|m(w′,z′),ε2G−1(w′,z′))

N((w′,z′)|m(w,z),ε2G−1(w,z))
t′r′
tr .

The step-size parameter ε is tuned manually to achieve the highest efficiency.

Algorithm A12 (Manifold HMC on w, z). Let Lmax be the upper bound on the
number of leapfrog steps and let ε be the leapfrog step-size. Let M be the number of fixed
point iterations for the generalized leapfrog integrator from Girolami and Calderhead
(2011). This algorithm uses a single two-dimensional proposal.

1. Set (w, z) ← (log t, log r). Draw an auxiliary variable φ ∼ N(0, G). Set (w′, z′) ←
(w, z) and φ′ ← φ. Draw L ∼ U{1, . . . , Lmax}. For � = 1, . . . , L,

(a) Set φ̃ ← φ′. For m = 1, . . . ,M , set

φ̃ ← φ′ +
ε

2

(
∇ log p(w′, z′|x)− 1

2
tr(G−1∇G) +

1

2
φ̃�G−1(∇G)G−1φ̃

)
.

Then set φ′ ← φ̃.

(b) Set (w̃, z̃) ← (w′, z′). For m = 1, . . . ,M , set

(w̃, z̃) ← (w′, z′) +
ε

2

(
G−1(w′, z′) +G−1(w̃, z̃)

)
φ′.

Then set (w′, z′) ← (w̃, z̃).

(c) Set

φ′ ← φ′ +
ε

2

(
∇ log p(w′, z′|x)− 1

2
tr(G−1∇G) +

1

2
φ′�G−1(∇G)G−1φ′

)
.

Then set (t′, r′) ← (ew
′
, ez

′
). The proposal ratio is N(φ′|0,G(w′,z′))

N(φ|0,G(w,z))
t′r′
tr .

The parameters Lmax and ε are tuned manually to achieve the highest efficiency, and
M is fixed to 3.

Note that the parameters of the model are t and r, as are the state of the Markov
chain. Transformed variables w and z or x and y are used to design efficient moves in
the t-r space.

IV Effect of μ∗ on efficiency
We used the burn-in to estimate the means and variances of the posterior distribution.
To assess the impact of this estimation on the efficiency of the chain, we performed 100
independent runs of algorithm A6b for the phylogenetic example. The means (μx, μy)
and standard deviations (sx, sy) are estimated using four rounds during the burn-in,
with each round consisting of 20,000 iterations. The estimates are then used to construct
the mirror move. From Figure S3, we see that the mean and variance estimates from
the burn-in are reasonably accurate, with mean efficiency 1.165 for t and 0.497 for r,
slightly higher than values shown in Table 5.

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

0.9

1.0

1.1

1.2

−2.980 −2.976 −2.972 −2.967
µx*

E

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.4

0.5

0.6

8.29 8.30 8.31 8.32
µy*

E

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

0.9

1.0

1.1

1.2

0.100 0.105 0.110 0.115

ŝx

E

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.4

0.5

0.6

0.30 0.32 0.34 0.36

ŝy

E

Figure S3: Efficiency (E) for estimating t (left column) and r (right column) over 100
replicate runs of kernel A6b in the phylogenetic example, plotted as a function of μ∗

x,
μ∗
y, ŝx, and ŝy estimates obtained from the burn-in.

