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The Bayesian method is noted to produce spuriously high pos-
terior probabilities for phylogenetic trees in analysis of large
datasets, but the precise reasons for this overconfidence are
unknown. In general, the performance of Bayesian selection of
misspecified models is poorly understood, even though this is
of great scientific interest since models are never true in real
data analysis. Here we characterize the asymptotic behavior of
Bayesian model selection and show that when the competing
models are equally wrong, Bayesian model selection exhibits sur-
prising and polarized behaviors in large datasets, supporting one
model with full force while rejecting the others. If one model is
slightly less wrong than the other, the less wrong model will even-
tually win when the amount of data increases, but the method
may become overconfident before it becomes reliable. We sug-
gest that this extreme behavior may be a major factor for the
spuriously high posterior probabilities for evolutionary trees. The
philosophical implications of our results to the application of
Bayesian model selection to evaluate opposing scientific hypothe-
ses are yet to be explored, as are the behaviors of non-Bayesian
methods in similar situations.

Bayesian inference | fair-coin paradox | model selection |
posterior probability | star-tree paradox

The Bayesian method was introduced into molecular phyloge-
netics in the 1990s (1–3) and has since become one of the

most popular methods for statistical analysis in the field, in par-
ticular, for estimation of species phylogenies (4–7). It has been
noted that the method often produces very high posterior prob-
abilities for trees or clades (nodes in the tree). In the first-ever
Bayesian phylogenetic calculation, a biologically reasonable tree
for five species of great apes was produced from a dataset of 11
mitochondrial tRNA genes (739 sites), but the posterior prob-
ability for that tree, at 0.9999, was uncomfortably high (1). In
the past two decades, the Bayesian method has been used to
analyze thousands of datasets, with the computation made pos-
sible through Markov chain Monte Carlo (MCMC) (4, 5). It
has become a common practice to report posterior clade prob-
abilities only if they are <100% (because most estimates are
100%). In some cases the high posterior probabilities are decid-
edly spurious. For example, conflicting trees may be inferred
from the same data under different evolutionary models. Differ-
ent trees may be inferred depending on the species sampled in
the dataset (8) or on whether protein sequences or the encod-
ing DNA sequences are analyzed (9). In such cases, the different
trees cannot all be correct, even if the true tree is unknown. The
concern is not so much that the inferred species relationships
may be wrong but that they are supported by extremely high pos-
terior probabilities.

In the star-tree paradox, large datasets were simulated using
the star tree and then analyzed to calculate the posterior proba-
bilities for the three binary trees (Fig. 1). Most biologists would
want the posterior probabilities for the binary trees to converge

to ( 1
3
, 1
3
, 1
3
) when the amount of data increases (10–12). Instead

they fluctuate among datasets according to a statistical distribu-
tion, sometimes producing strong support for a binary tree even
though the data do not contain any information either for or
against any binary tree (13–15).

Bayesian model selection is known to be consistent (16). When
the data size n→∞, the true model “dominates,” with its pos-
terior probability approaching 1. If several models are equally
right, the model with fewer parameters dominates. However, this
theory applies only if the true model is included in the compar-
ison. Given that a model is a simplified representation of the
physical world, the more common situation in real data analysis
should be the comparison of models that are all wrong. Not many
theoretical results appear to exist concerning Bayesian compari-
son of misspecified models (17).

Here we study the asymptotic behavior of Bayesian model
selection in a general setting where multiple misspecified mod-
els are compared. We are interested in how the posterior prob-
abilities for models behave when the data size increases. Do the
dynamics depend on whether there are any free parameters in
the models? If one model is less wrong than another (in a certain
sense appropriately defined), will the less wrong model always
win? We present the proofs and mathematical analyses in Gen-
eral Theory for Equally Wrong Models with No Free Parameters
(d = 0) and General Theory for Equally Right or Equally Wrong
Models with Free Parameters (d > 0). In the main text, we summa-
rize our results and illustrate them using three canonical simple
problems. Our analysis suggests that the problem exposed by the
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Fig. 1. (A) The three binary rooted trees for three species T1, T2, and T3 and
the star tree T0. (B) The three binary unrooted trees for four species T1, T2,
and T3 and the star tree T0. The branch length parameters are shown next to
the branches, measured by the expected number of nucleotide changes per
site. In the star-tree simulations, the star tree is used to generate data, which
are analyzed to calculate the posterior probabilities for the three binary
trees, with the star tree excluded.

star-tree paradox is actually far more troubling than discussed
previously (11–15).

Results
Problem Description. We consider independent and identically
distributed (i.i.d.) models only. The data x = {x1, ..., xn} are an
i.i.d. sample from the true model g(·). We consider two mod-
els as the case for more models is obvious. Model Hk has den-
sity fk (x |θk ), with dk free parameters (θk ), k = 1, 2. We are
in particular interested in models of the same dimension, with
d1 = d2 = d . In the Bayesian analysis, we assign a uniform prior
for the two models (π1 =π2 = 1

2
) and also a prior for the param-

eters within each model Hk : fk (θk ). The posterior model prob-
abilities, Pk =P(Hk |x ), are then proportional to the marginal
likelihoods: Mk = fk (x ) =

∫
fk (θk )fk (x |θk ) dθk ; that is, P1/P2 =

(π1M1)/(π2M2) =M1/M2. We are interested in the asymptotic
behavior of P1 in large datasets (as n→∞).

The dynamics depend on how well the models fit the data.
Let θ̂k be the maximum-likelihood estimate (MLE) of θk under
model Hk from dataset x . Let θ∗k be the limiting value of
θ̂k when the data size n→∞. In other words θ∗k minimizes
the Kullback–Leibler (K-L) divergence from model Hk to the
true model,

Dk =DKL(g , fk ) =

∫
g(x ) log g(x ) dx −

∫
g(x ) log fk (x |θ∗k ) dx ,

[1]

and is known as the best-fitting or pseudotrue parameter value
under the model (18). Dk (calculated at θ∗k ) measures the dis-
tance from Hk to the true model, with Dk ≥ 0. We say a model
is “right” if it encompasses the true model, with D = 0, and
“wrong” if D > 0. Model 1 is less wrong than model 2 if D1<D2.
Both models are “equally right” if D1 =D2 = 0 and “equally
wrong” if D1 =D2> 0.

Characterization of Bayesian Model Selection. The asymptotic
behavior of P1 =P(H1|x ) when n→∞ is analyzed in SI Text
and summarized in Fig. 2. We identify three types of asymptotic
behaviors: type 1 (“balanced”), type 2 (“volatile”), and type 3
(“polarized”), as defined below. We also refer to three types of
inference problems that give rise to those behaviors.

Type 1 (balanced) is for the posterior model probability P1 to
converge (as n→∞) to a single reasonable value that is differ-
ent from 0 to 1, such as 1

2
. In other words, in essentially every

large dataset, P1≈ 1
2

. This behavior occurs when the two mod-

els are essentially identical. Examples include comparison of two
identical models with no parameters, such as H1 : p = 0.5 and
H2 : p = 0.5 irrespective of the true p in a coin-tossing experi-
ment (Fig. 2, cases A1 and A2), and overlapping models where
the best-fitting parameter values lie in the region of overlap (Fig.
2, A3 and A4). Whether the two models are both right (A1 and
A3) or both wrong (A2 and A4) does not affect the dynam-
ics. The case of overlapping models is interesting. If the truth
is p = 1

2
while the two compared models are H1 : 0.4< p< 0.6

and H2 : 0< p< 1, and if we assign a uniform prior on p in each
model, then as n→∞, P1→ 1

1+0.2
= 5

6
, which appears more rea-

sonable than 1
2

as it favors the more-informative model H1. At
any rate, the comparison of identical or overlapping models is
unusual for testing scientific hypotheses. This type of problem is
not considered further.

Type 2 (volatile) is for P1 to converge to a nondegenerate sta-
tistical distribution, such as U (0, 1). In other words, if we analyze
different large datasets, all generated from the same true model,
to compare two equally right or equally wrong models, P1 varies
among datasets according to a nondegenerate distribution. This
behavior occurs when the two compared models become uniden-
tifiable as the data size n→∞. There are two scenarios. In the
first one, both models are right, with D1 =D2 = 0 (Fig. 2, B1

and B2). In the second one both models are equally wrong (with
D1 =D2> 0) but indistinct (Fig. 2, B3 and B4). We say that two
models are indistinct if and only if they, each at the best-fitting
parameter values, are unidentifiable, with f1(x |θ∗1) = f2(x |θ∗2) for
essentially all x . In other words, in infinite data, the two mod-
els make essentially the same predictions about the data and
are unidentifiable. In both scenarios of equally right and equally
wrong models, P1 varies among datasets according to a nonde-
generate distribution.

Type 3 (polarized) is for P1 to have a degenerate two-point
distribution, at values 0 and 1. If we analyze large datasets to
compare two models, we favor model 1 with total confidence in
some datasets and model 2 with total confidence in others. This
behavior is observed when the two models are equally wrong and
also distinct.

It is remarkable that the asymptotic behavior is determined
by whether or not the compared models are distinct and not by

A B C

Fig. 2. Classification of Bayesian model-selection problems involving two
equally right or equally wrong models, each with d free parameters. Solid
circles represent the true model, while the lines represent the parame-
ter space of the compared models, with the open circles showing the
best-fitting parameter value (θ∗). The two models are equally right (with
D1 = D2 = 0) if the solid and open circles coincide and equally wrong (with
D1 = D2 > 0) if they are separate. The models are “indistinct” if the two
open cycles coincide (as in A and B) and are “distinct” if they are separate (as
in C). The green, orange, and red boxes indicate the three different asymp-
totic behaviors of Bayesian model selection when the data size n→∞.
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whether they are both right or both wrong or by whether the com-
pared models have unknown parameters. For example, cases B1

(two right models) and B3 (two equally wrong models) in Fig. 2
show the same volatile behavior, while cases C1 (no free param-
eters) and C2 (with free parameters) show the same polarized
behavior.

Problem 1. Fair-Coin Paradox (Equally Wrong Models with No Free
Parameter). Consider a coin-tossing experiment in which the coin
is fair with the probability of heads p = 1

2
. We use the data of x

heads in n tosses to compare two models: H1 : p = 0.4 (tail bias)
and H2 : p = 0.6 (head bias). The two models are equally wrong.
We assign a uniform prior for the two models ( 1

2
each) and cal-

culate the posterior model probability P1 =P(H1|x ). This is a
type-3 problem (Fig. 2, C1).

As the models involve no free parameters, the likelihood (L)
and marginal likelihood (M ) are the same, given by the binomial
probability for data x . The posterior odds are the likelihood-ratio

P1

1−P1
=

M1

M2
=

0.4x · 0.6n−x

0.6x · 0.4n−x
=

(
0.4

0.6

)2x−n

. [2]

When n is large, P1 tends to be extreme (close to 0 or 1). Indeed,
α<P1< 1−α if and only if |2x −n|<B = log{α/(1−α)}

log{0.4/0.6} . If n is
large, 2x −n is ∼N(0,n), so that

P{|2x −n|<B}≈ 1− 2Φ(− B√
n

)≈ 2B√
2πn

, [3]

where Φ is the cumulative distribution function (CDF) for
N(0, 1). If α= 1%, we have B = 11.33296, so that only 11
data outcomes will give P1 in the range (0.01, 0.99), with
x − n

2
being −5,−4, · · · , 5. For n = 103, 104, 105, 106, we have

P{0.01<P1< 0.99} = 0.280, 0.090, 0.0286, and 0.0090 using
the normal approximation of Eq. 3 or 0.272, 0.0876, 0.0277,
and 0.0088 exactly by the binomial distribution. Thus, in large
datasets, moderate posterior probabilities will be rare, and either
H1 or H2 will be favored with posterior >0.99. When n→∞,
P1 has a degenerate two-point distribution, taking the values 0
and 1, each half of the times. This is the type-3 polarized behav-
ior. Note that there is no information either for or against either
model in the data. Fig. 3 A, i shows the distribution of P1 for
n = 103.

Fig. 3 A, ii shows the comparison of H1 : p = 0.42 against H2 :
p = 0.6 when the truth is p = 0.5. Here H1 is less wrong and will
eventually dominate. However, in large and finite datasets, the
more wrong model H2 can often receive high support. For exam-
ple, for n = 103, nonextreme posterior probabilities in the range
0.01<P1< 0.99 occur for only 13 data outcomes, with x being
504–516, and in 14.8% of datasets, x is greater than those values
so that P2> 0.99. Indeed over the whole range 36≤n ≤ 11,611,
the more wrong model H2 is strongly favored too often, with
P(P2> 0.99)> 0.01. The method becomes overconfident before
it becomes reliable. It may be noted that such strong support
for the more wrong model occurs only when the two models
are opposing each other. It does not occur if both models are
wrong in the same direction: In the comparison of H1 : p = 0.4
and H2 : p = 0.42 when the truth is p = 0.5, the less wrong model
H2 dominates in the posterior.

Problem 2. Fair-Balance Paradox (Equally Right Models or Equally
Wrong and Indistinct Models). The true model is N(0, 1), and we
compare two modelsH1 :N(µ, 1/τ),µ< 0 andH2 :N(µ, 1/τ),µ>
0, with τ given. The data may represent measurement errors
observed on a fair balance while the models claim that the bal-
ance has an unknown negative or positive bias. The best-fitting
parameter value (the MLE when the data size n→∞) is µ∗= 0

A B C

Fig. 3. The distribution of posterior model probability P1 = P{H1|x} in
three inference problems. (A) Problem 1 (fair-coin paradox) is for a coin-
tossing experiment, where the true model is p = 0.5 (a fair coin), and the
compared models are (A, i) H1 : p = 0.4 and H2 : p = 0.6 so that the two
models are equally wrong and (A, ii) H1 : p = 0.42 and H2 : p = 0.6 so that
H1 is less wrong than H2. The data size (the number of coin tosses) is
103. (B) Problem 2 (fair-balance paradox) is for a normal-distribution exam-
ple in which the true model is N(0, 1), and the two compared models are
H1 :N(µ, 1/τ ),µ< 0 and H2 :N(µ, 1/τ ),µ> 0, with variance 1/τ given. The
two models are equally right when τ = 1 and equally wrong but indistinct
when τ = 1/9 or 9. The data size is n = 103. The plots for n = 100 or ∞
are nearly the same. (C) Problem 3 (fair-balance paradox) is for a normal-
distribution example in which the true model is N(0, 1), and the two com-
pared models are H1 :N(µ, 1/τ1) and H2 :N(µ, 1/τ2), with (C, i) τ1 = 0.25 and
τ2 = 2.58666, so that the two models are equally wrong, and (C, ii) τ1 = 0.3
and τ2 = 2.58666, so that H1 is less wrong than H2. The prior is µ∼N(0, 1/ξ)
under each model, with ξ= 1. The data size is n = 100. All densities are esti-
mated by simulating 105 samples for P1.

in each model, when the two models become identical (indistinct).
Thus, the two models are equally right if τ = 1 (Fig. 2,B2), and are
equally wrong if τ = 1/9 or 9 (Fig. 2, B4).

We assign a uniform prior on the two models ( 1
2

each), and
µ∼N(0, 1/ξ) with ξ fixed, truncated to the appropriate range
under each model. The data (x ), an i.i.d. sample from N(0, 1),
can be summarized as the sample mean x̄ . It can be shown
that the posterior model probability P1 =P{H1|x} varies among
datasets according to the density

f (P1) =

√
τ + ξ/n

τ
· exp

{
[Φ−1(P1)]

2

2

[
1− 1

τ
− ξ

nτ2

]}
, [4]

where Φ−1 is the inverse CDF for N(0, 1) (Analysis of Prob-
lem 2 (Two Equally Right Models or Equally Wrong but Indistinct
Models)).

Fig. 3B shows the density of P1 for different values of preci-
sion (τ), with n = 103. If τ = 1, the two models are equally right,
and f (P1)→ 1 when n→∞ so that P1 behaves like a U(0, 1)
random number (11, 12). If τ < 1, the assumed variance (1/τ) is
larger than the true variance, so that the distribution has a mode
at 1

2
. If τ > 1, the assumed variance is too small, and P1 has a

U-shaped distribution. If one overstates the precision of the
experiment, one tends to overinterpret the data and generate
extreme posterior model probabilities. In all three cases (τ <
1, = 1,> 1), P1 has a nondegenerate distribution.

Problem 3. Fair-Balance Paradox (Equally Wrong and Distinct Models).
The true model is N(0, 1), and the two compared models are H1 :
N(µ, 1/τ1) and H2 :N(µ, 1/τ2), with τ1< 1<τ2 given, while µ is
a free parameter in each model. The best-fitting parameter value
is µ∗= 0 in each model, irrespective of the value of τ assumed.
Both models are wrong because of the misspecified variance: H1

is overdispersed while H2 is underdispersed. They are equally
wrong, in the sense that D1 =D2 in Eq. 1, if

log
τ1
τ2

= τ1− τ2 [5]
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(Analysis of Problem 3 (Two Equally Wrong and Distinct Mod-
els, Gaussian with Incorrect Variances)). This is a type-3 problem
(Fig. 2, C2). We assign a uniform prior over the models ( 1

2
each),

and µ∼N(0, 1/ξ), with ξ given, within each model. The dataset,
an i.i.d. sample of size n from N(0, 1), can be summarized as the
sample mean x̄ and sample variance s2 = 1

n

∑
i (xi − x̄ )2. The

posterior odds are given in Eq. S15 in Analysis of Problem 3
(Two Equally Wrong and Distinct Models, Gaussian with Incorrect
Variances).

We use τ1 = 0.25 and τ2 = 2.58666, so that Eq. 5 holds and
the two models are equally wrong, to generate independent vari-
ables x̄ ∼N(0, 1/n) and ns2∼χ2

n−2 and to calculate P1. Fig. 3
C, i shows the estimated density of P1 for n = 100, with ξ= 1.
When n→∞, P1 degenerates into a two-point distribution at
0 and 1, each with probability 1

2
. These are the same dynam-

ics as in problem 1 (Fig. 3 A, i), even though in problem 1
the models do not involve any unknown parameters while here
they do.

Fig. 3 C, ii shows the density of P1 when τ1 = 0.3 (which is
closer to the true τ = 1 than is 0.25), so that H1 is less wrong
than H2 (with D1<D2). In this case when n→∞, P1→ 1. How-
ever, in large but finite datasets, P2 for the more wrong model
H2 can be large in too many datasets: For example, with n = 100,
P{P2> 0.99}= 0.0504: in 5.04% of datasets, the more wrong
model H2 has posterior higher than 99%.

Star-Tree Paradox and Bayesian Phylogenetics. In Bayesian phy-
logenetics (1, 2), each model has two components: the phy-
logenetic tree describing the relationships among the species
and the evolutionary model describing sequence evolution along
the branches on the tree (19). Each tree Tk has a set of time
or branch-length parameters (tk ), which measure the amount
of evolutionary changes along the branches. The evolutionary
model may also involve unknown parameters (ψ). The tree and
the evolutionary model together specify the likelihood (20), with
θ= {t ,ψ} being the unknown parameters. One of the trees is
true, and all other trees are wrong, while the evolutionary model
may be misspecified. The main objective is to infer the true tree.
The data consist of an alignment of sequences from the modern
species and have a multinomial distribution in which the cate-
gories correspond to the possible site patterns (configurations of
nucleotides observed in the modern species) while the data size
is the number of sites or alignment columns (21).

Here we consider three simple cases involving three or four
species (Fig. 1). We use the general theory described above to
predict the asymptotic behavior of posterior probabilities for
trees and use computer simulation to verify the predictions.

Case A (Fig. 4 A and A′) involves equally right models. We
use the rooted star tree T0 for three species with t = 0.2 (Fig.
1A) to generate datasets to compare the three binary trees. The
Jukes–Cantor (JC) substitution model (22) is used both to gen-
erate and to analyze the data, which assumes that the rate of
change between any two nucleotides is the same. The molecular
clock (rate constancy over time) is assumed as well, so that the
parameters in each binary tree are the two ages of nodes (t0, t1),
measured by the expected number of nucleotide changes per site.

The best-fitting parameter values are t∗0 = 0 and t∗1 = 0.2 for
each of the three binary trees, in which case each binary tree
converges to the true star tree. We assign uniform prior proba-
bilities for the binary trees ( 1

3
each) and an exponential prior on

branch lengths on each tree. According to our characterization,
this is a type-2 problem of comparing equally right models (Fig.
2, B2), so the posterior probabilities should have a nondegener-
ate distribution. This case was considered in previous studies (12,
14, 15), which generated numerically the limiting distribution of
the posterior probabilities for the binary trees (P1,P2,P3) when
n→∞ and pointed out that they do not converge to ( 1

3
, 1
3
, 1
3
)

(11–13).

n
= 

10
3

n
= 

10
5

A B C

A' B' C'

Fig. 4. The distribution of posterior probabilities (P1, P2, P3) for the three
binary trees T1, T2, and T3 of Fig. 1, when datasets (sequence alignments
of n = 103 or 105 sites) are simulated using the star tree T0 and analyzed
to compare the three binary trees. In A and A′, the true tree is the star
tree T0 for three species of Fig. 1A, with t = 0.2. Both the simulation and
analysis models are JC, and the three binary trees are equally right models.
In B and B′, the true tree is the star tree T0 for three species of Fig. 1A, with
t = 0.2. The simulation model is JC+Γ (with α= 1), and the analysis model
is JC. The three binary trees represent equally wrong and indistinct models.
In C and C′, the true tree is the star tree T0 for four species of Fig. 1B, with
t1 = t2 = t3 = t4 = 0.2. The simulation model is JC+Γ (α= 1) and the analysis
model is JC. The three binary trees represent equally wrong and distinct
models. The three corners in the plots correspond to points (1, 0, 0), (0, 1, 0),
and (0, 0, 1), while the center is ( 1

3 , 1
3 , 1

3 ).

Case B (Fig. 4 B and B′) involves equally wrong models that
are indistinct. This is similar to case A except that the JC+Γ
model (22, 23) is used to generate data, with different sites in the
sequence evolving at variable rates according to the gamma dis-
tribution with shape parameterα= 1. The data are then analyzed
using JC (equivalently to JC+Γ with α=∞). The best-fitting
parameter values (i.e., the MLEs of branch lengths in infinite
data) are t∗0 = 0 and t∗1 = 0.16441 under each of the three binary
trees. The binary trees thus represent equally wrong models (with
D1 =D2 =D3> 0 in Eq. 1) that are indistinct. The posterior
tree probabilities have a nondegenerate distribution. This is the
type-2 volatile behavior for equally wrong and indistinct models
(Fig. 2, B4).

Case C (Fig. 4 C and C′) involves equally wrong and distinct
models. Like case B, the simulation model is JC+Γ with α= 1,
and the analysis model is JC. However, we do not assume the
molecular clock and consider unrooted trees for four species
(Fig. 1B). The true tree is the unrooted star tree T0 of Fig.
1B, with t1 = t2 = t3 = t4 = 0.2. The best-fitting parameter val-
ues (the MLEs of branch lengths in infinite data) are t∗0 =
0.01037, t∗i = 0.16409, i = 1, 2, 3, 4, for each of the three binary
trees (Fig. 1B). As t∗0 > 0, the three binary trees are different
from the star tree and represent equally wrong and distinct mod-
els (with D1 =D2 =D3> 0 in Eq. 1). As this is a type-3 prob-
lem (Fig. 2, C4), our theory predicts that as n→∞, the posterior
probabilities for the three binary trees should degenerate into a
three-point distribution, with probability 1

3
each, for (1, 0, 0), (0,

1, 0), and (0, 0, 1). In other words, one of the binary trees will
have posterior ∼100% while the other two will have ∼0. This is
confirmed by simulation (Table S1).

We note that most phylogenetic analyses involve unrooted
trees as the clock assumption is violated except for closely related
species. Furthermore, because of the violation of the evolution-
ary model, all trees (or the joint tree-process models) represent
wrong statistical models. Thus, among the three cases considered
in Fig. 4, case C is the most relevant to analysis of real data, when
Bayesian model selection exhibits type-3 polarized behavior.
Previous analyses of the star-tree paradox (12, 14, 15) have
deplored the volatile behavior of the Bayesian phylogenetic
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method, but those studies examined case A only, so the real situ-
ation is worse than previously realized.

A practically important scenario is where all binary trees are
wrong because of violation of the evolutionary model but the
true tree is less wrong than the other trees. We present such a
case in Table S2, in which the data are simulated under JC+Γ
(with α= 1) using a binary tree with a short internal branch
(t0 = 0.002) and then analyzed under JC. When the amount of
data approaches infinity, the true tree will eventually win, but
there exists a twilight zone in which high posterior probabili-
ties for wrong trees occur too frequently; according to Table S2,
this zone is wider than 103<n < 105. For example, at sequence
length n = 104 and at the 1% nominal level, the error rate of
rejecting the true tree is 25.0% and the error rate of accepting a
wrong tree is 16.6% (Table S2).

Discussion
High Posterior Probabilities for Phylogenetic Trees. This work has
been motivated by the phylogeny problem and in particular by
the empirical observation of spuriously high posterior probabil-
ities for phylogenetic trees (9–14). We note that certain biolog-
ical processes such as deep coalescence (24, 25), gene duplica-
tion followed by gene loss (26), and horizontal gene transfer
(24, 26) may cause different genes or genomic regions to have
different histories. However, as discussed in the Introduction,
posterior probabilities for many trees or clades observed in real
data analyses are decidedly spurious even if the true tree is
unknown.

One explanation for the spuriously high posterior probabil-
ities for phylogenetic trees is the failure of current evolution-
ary models to accommodate interdependence among sites in the
sequence, leading to an exaggeration of the amount of informa-
tion in the data. Interacting sites may carry much less information
than independent sites. This explanation predicts the problem to
be more serious in coding genes than in noncoding regions of
the genome as noncoding sites may be evolving largely indepen-
dently due to lack of functional constraints. However, empirical
evidence points to the opposite, with noncoding regions having
higher substitution rates and higher information content (if they
are not saturated with substitutions), generating more extreme
posteriors for trees.

Our results suggest that the problem may lie deeper and may
be a consequence of the polarized nature of Bayesian model
selection when all models under comparison are misspecified.
As the assumptions about the process of sequence evolution
are unrealistic, the likelihood model is wrong whatever the tree,
although the true tree may be expected to be less wrong than
the other trees. As the different trees constitute opposing mod-
els that are nearly equally wrong, the inference problem is one
of type 3 (Fig. 2, C4). Bayesian tree estimation may then be
expected to produce extreme posterior probabilities in large
datasets.

Bayesian Selection of Opposing Misspecified Models. We have pro-
vided a characterization of model selection problems according
to the asymptotic behavior of the Bayesian method as the data
size n→∞ [Fig. 2 and General Theory for Equally Wrong Models
with No Free Parameters (d = 0) and General Theory for Equally
Right or Equally Wrong Models with Free Parameters (d > 0)].
While all of the problems considered here involve comparison of
two equally right or equally wrong models, three different asymp-
totic behaviors are identified, which we label as type 1, type 2, and
type 3. The type-1 behavior is for the posterior model probability
P1 to converge to a sensible point value, such as 1

2
. We consider

this to be a good balanced behavior, following phylogeneticists
(10–12). The rationale is that one would like a sure answer given
an infinite amount of data and the only reasonable sure answer

should be 1
2

for each model, since the data contain no informa-
tion for or against either model. This behavior occurs only when
the two models are identical or overlapping, a situation that does
not appear relevant to scientific inference. With type-2 behavior,
P1 fluctuates among datasets (each of infinite size) like a ran-
dom number, so that strong support may be attached to a par-
ticular model in some datasets. Biologists were surprised at this
erratic behavior (10–12), which we label as volatile. This occurs
when the models are equally right or equally wrong but indis-
tinct. In theory, type-2 behavior may not pose a serious problem,
because the parameter posteriors under the models, if examined
carefully, should make it clear that the competing models essen-
tially gave the same interpretation of the data and should lead to
the same scientific conclusion. In data simulated in ref. 12 or in
Fig. 4 A and A′, the estimates of t0 should be very close to 0, and
all binary trees are similar to the same star tree. Nevertheless this
escaped our attention at the time.

With type-3 behavior, P1 is ∼0 in half of the datasets and
∼1 in the other half. We describe this behavior as polarized.
This occurs when the two models are equally wrong and distinct.
Type-3 problems may be the most relevant to practical data anal-
ysis given that all models are simplified representations of reality
and are thus wrong. A variation to type-3 problems is when one
model is only slightly less wrong than another (Fig. 3 A, ii and C, ii
and Table S2). While the less wrong model eventually wins in the
limit of infinite data, Bayesian model selection is overconfident in
large but finite datasets, supporting the more wrong model with
high posterior too often.

Note that the question of how the posterior model probabil-
ity should behave when large datasets are used to compare two
equally wrong models is somewhat philosophical and may not
have a simple answer. One position is to accept whatever behav-
ior the Bayesian method exhibits. This may be legitimate given
that Bayesian theory is the correct probability framework for
summarizing evidence in the prior and likelihood. The polar-
ized behavior in type-3 problems may then be seen as a conse-
quence of “user error” (for not including the true model in the
comparison), exacerbated by the large data size. In this regard
we note that the posterior predictive distribution (27, 28) can
be used to assess the general adequacy of any model or the
compatibility between the prior and the likelihood, and indeed
this has been widely used to assess the goodness of fit of
models in phylogenetics (29, 30). Nevertheless, a number of
sophisticated and parameter-rich models have been developed
for Bayesian phylogenetic analysis, due to three decades of
active research (31), and furthermore extreme sensitivity to the
assumed model is not a desirable property of an inference
method. Seven decades ago, Egon S. Pearson (ref. 32, p.142)
wrote that “Hitherto the user has been accustomed to accept the
function of probability theory laid down by the mathematicians;
but it would be good if he could take a larger share in formulat-
ing himself what are the practical requirements that the theory
should satisfy in application.” This stipulation may be relevant
even today.

Two heuristic approaches have been suggested to remedy the
high posterior model probabilities in the context of phylogenies.
The first one is to assign nonzero probabilities to multifurcating
trees (such as the star tree of Fig. 1) in the prior (11). This is
equivalent to assigning some prior probability to the model p =
0.5 in the fair-coin example of problem 1. While this resolves the
star-tree paradox, it suffers from the conceptual difficulty that
the multifurcating trees may not be plausible biologically. The
second approach is to let the internal branch lengths in the binary
trees become increasingly smaller in the prior when the data size
increases (12, 14). This is non-Bayesian in that the prior depends
on the size of the data. With both approaches, the posterior is
extremely sensitive to the prior (9).
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Non-Bayesian Methods. The phylogeny problem was described
by Jerzy Neyman (ref. 33, p. 1) as “a source of novel statisti-
cal problems.” In the frequentist framework, the test of phy-
logeny, or test of nonnested models in general, offers challeng-
ing inference problems. Note that in many model selection prob-
lems, the model itself is not the focus of interest. For exam-
ple, when an experiment is conducted to evaluate the effect of
a new fertilizer, the sensitivity of the inference to the assumed
normal distribution with homogeneous variance may be of con-
cern, but the focus is not on the normal distribution itself. In
phylogenetics, the phylogeny (which is a model) is of primary
interest, far more important than the branch lengths (which are
parameters in the model). The test of phylogeny is thus more
akin to significance/hypothesis testing than to model selection.
Model-selection criteria such as Akaike information criteria (34)
or Bayesian information criteria (35) simply rank the trees by
their likelihood (maximized over branch lengths) and will not
be useful for attaching a measure of significance or confidence
in the estimated tree. The phylogeny problem (or the problem
of comparing nonnested models in general) falls outside the
Fisher–Neyman–Pearson framework of hypothesis testing, which
involves two nested models, one of which is true (36, 37).

In principle Cox’s likelihood-ratio test (38), which conducts
multiple tests with each model used as the null, can be used to
compare nonnested models. For type-3 problems (Fig. 2, C1–
C4), this test should lead to rejection of all models. Cox’s test
has not been used widely in phylogenetics, apparently because of
the existence of a great many possible trees and the heavy com-
putation needed to generate the null distribution by simulation.

The most commonly used method for attaching a measure
of confidence in the maximum-likelihood tree is the bootstrap

(39), which samples sites (alignment columns) to generate boot-
strap pseudodatasets and calculates the bootstrap support value
for a clade (a node on the species tree) as the proportion of
the pseudodatasets in which that node is found in the inferred
ML tree. This application of bootstrap for model comparison
appears to have important differences from the conventional
bootstrap for calculating the standard errors and confidence
intervals for a parameter estimate (40); a straightforward inter-
pretation of the bootstrap support values for trees remains elu-
sive (31, 41–43). At any rate, the asymptotic behavior of boot-
strap support values under the different scenarios of Fig. 2
merits further research. For the fair-coin example of problem 1
(Fig. 2, C1), the bootstrap support converges to U (0, 1), different
from the posterior probability, although other cases are yet to be
explored.

Materials and Methods
Star-Tree Simulations. For Fig. 4 A, A′, B, and B′, the true tree is T0 of Fig.
1A. The data of counts of five site patterns (xxx, xxy, yxx, xyx, and xyz) were
simulated by multinomial sampling (21) and analyzed using a C program,
which calculates the 2D integrals in the marginal likelihood by Gaussian-
Legendre quadrature with 128 points (14). For Fig. 4 C and C′, the true tree
is T0 of Fig. 1B. Sequence alignments were simulated using EVOLVER and
analyzed using MrBayes (4).
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SI Text
General Theory for Equally Wrong Models with No Free Parameters
(d = 0). The data, x = {xi}, consist of an i.i.d. sample from the
true model g(·); that is, xi ∼ g(xi), i = 1, 2, · · · ,n . We consider
two models H1 and H2, with densities f1(x ) and f2(x ), respec-
tively. The models are equally wrong, with D1 =D2 > 0 in Eq. 1
in the main text, and also identifiable. We assign a uniform prior
(πk = 1

2
each) on the two models. With no parameters in either

model, the marginal likelihood (M ) is the same as the likelihood
(L), so that the logarithm of the marginal-likelihood ratio is

∆n = log
M1

M2
= log

L1

L2
=

n∑
i

log
f1(xi)

f2(xi)
=

n∑
i

ri . [S1]

Thus, ∆n is a sum of n i.i.d. random variables (ri).
For large n , ∆n has approximately a normal distribution by

the central-limit theorem, with mean

Eg(∆n) = Eg

{
n∑
i

ri

}

= n

∫
g(x ) log

f1(x )

f2(x )
dx = n(D1 −D2) = 0 [S2]

and variance

Vg(∆n) = Eg

{
n∑
i

r2
i

}
= n

∫
g(x )

[
log

f1(x )

f2(x )

]2

dx = nC ,

[S3]

with C > 0, since the two models are distinct. Note that P1 =
1

1+1/e∆n
. For P1 to be not extreme, ∆n should be close to 0. P1

is in the interval (α, 1−α) for small α, if and only if |∆n | < A =
log 1−α

α
. With large n , this occurs with probability

P{|∆n | < A} ≈ 1− 2Φ

(
− A√

nC

)
≈ 2A√

2πnC
. [S4]

In problem 1 (fair-coin paradox), ri has a two-point distribu-
tion taking values ± log 0.4

0.6
, each with probability 1

2
, so that ∆n

(n = 0, 1, · · · ) constitutes a discrete-step random walk. We have
Eg(∆n) = 0 and Vg(∆n) =nC =n

[
log 0.4

0.6

]2, and Eq. S4 agrees
with Eq. 3 in the main text.

We are interested in the Frequentist properties of Bayesian
model selection. If we generate many replicate datasets under
the true model g(x ) and analyze each to calculate P1, the pro-
portion of datasets in which P1 lies in the interval (α, 1 − α)

goes to 0 at the rate of n−
1
2 . In the limit when n→∞, P1→ 0

in half of the datasets and→ 1 in the other half. Previously Berk
(1) discussed the case of two equally wrong models represented
by θ = 0 and 1, noting that asymptotically the posterior model
probability does not converge to a point value.

We say that ∆n is of order n
1
2 , or ∆n = Θp(n

1
2 ). Formally

Yn = Θp(an) if, for any given probability ε> 0, there exist N ,
A1(N , ε)> 0, and A2(N , ε)> 0, such that when n > N , we have

P {A1 < |Yn/an | < A2} > 1− ε. [S5]

Effectively Yn increases with n no faster than an and no
more slowly than an . Using Eqs. S2 and S3, with Yn = ∆n

and an =
√
n , it is easy to confirm that Eq. S5 is satisfied if

A1 =C
1
2 Φ−1( 1

2
+ ε

4
) and A2 =C

1
2 Φ−1(1 − ε

4
). Thus, when n

increases, |∆n | increases no faster than
√
n and no more slowly

than
√
n .

The above argument applies to any pair of models in the case
of comparing K equally wrong models. With probability 1/K
(i.e., in 1/K of the datasets), the posterior model probability for
one of the models→ 1 while all others→ 0, when n→∞.

Note the assumption that the two models are equally
wrong, with Eg(∆n) = 0 or D1 =D2 > 0. Otherwise if D1 6=D2,
∆n =n(D1 − D2) is Θp(n) and the less wrong model will
dominate.

General Theory for Equally Right or Equally Wrong Models with Free
Parameters (d > 0). The data (x ) are generated from the density
g(·), and we compare two models H1 and H2. Model H1 specifies
the density f1(x |θ1) with d1 parameters (θ1), while H2 has den-
sity f2(x |θ2) with d2 parameters (θ2). We assign a uniform prior
(πk = 1

2
each) on the two models, and the prior fk (θk ) for param-

eter θk under model Hk . For any dataset, x = {x1, · · · , xn}, the
MLE θ̂k maximizes the likelihood function fk (x |θk ) under model
Hk . When n → ∞, θ̂k → θ∗k . Thus, θ̂k may be considered a nat-
ural estimate of θ∗k (2). As usual, we assume that both θ̂k and
θ∗k are inner points in the parameter space of Hk . Whether θ∗k is
inside the parameter space or at its boundary should affect the
precise distribution of P1 but not its dynamics (i.e., whether or
not P1 has a degenerate distribution).

As in ref. 2, we define two matrices,

Ik (θk ) = Eg{∇ log fk (x |θk ) · ∇ log fk (x |θk )T},
Jk (θk ) = Eg{−∇2 log fk (x |θk )},

[S6]

where the expectation is over the true distribution x ∼ g(·) and
where∇ and∇2 are the first and second derivatives with respect
to θk .

Following ref. 3, we decompose the marginal likelihood Mk =
fk (x ), k = 1, 2, as a product of three terms, so that

log
Mk

g(x )
= log

fk (x )

fk (x |θ̂k )
+ log

fk (x |θ̂k )

fk (x |θ∗k )
+ log

fk (x |θ∗k )

g(x )

:= Ak + Bk + Ck . [S7]

We define the corresponding differences between the two
models as ∆A = A1 −A2,∆B = B1 −B2, and ∆C = C1 −C2,
with

∆ := log
M1

M2
= ∆A + ∆B + ∆C . [S8]

From equation 6 of ref. 3, the first term in Eq. S8 is

∆A = −d1 − d2

2
log

n

2π
+ log

f1(θ∗1)

f2(θ∗2)
+ log

(
det J ∗2
det J ∗1

)1
2

+ Θp(n−
1
2 ), [S9]

where J ∗k = Jk (θ∗k ) is Jk (θk ) evaluated at θ∗k , and detZ is the
determinant of matrix Z .

For the second term in Eq. S8, ∆B , we have

Bk ≈
1

2

{√
n(θ̂k − θ∗k )

}T

J ∗k

{√
n(θ̂k − θ∗k )

}
[S10]

(equation A.8 in ref. 3). As
√
n(θ̂k−θ∗k ) converges in distribution

to N
(

0, [(J ∗k )−1]
T
I ∗k (J ∗k )−1

)
(ref. 2, theorem 3.2), Bk and thus

∆B are Θp(1). Here I ∗k = Ik (θ∗k ) is Ik (θk ) evaluated at θ∗k . In
the special case that model Hk is correct, I ∗k = J ∗k and Bk con-
verges to 1

2
χ2
dk

in distribution. ∆B is then the difference of two
(correlated) 1

2
χ2
dk

variables.
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Finally, the third term in Eq. S8, ∆C = log
f1(x |θ∗1 )

f2(x |θ∗2 )
is iden-

tically 0 if the two models are indistinct, that is, if f1(x |θ∗1) =
f2(x |θ∗2) almost everywhere, as in the type-1 and type-2 problems
of Fig. 2. Otherwise ∆C is of Θp(n

1
2 ), given by the random walk

(Eq. S1). As in the case of no parameters discussed above, we
assume that the two models are equally wrong, with D1 = D2 or
Eg(∆C ) = 0. Otherwise ∆C is Θp(n) and dominates ∆A and
∆B : The less wrong model will dominate with posterior proba-
bility approaching 1.

The order of the three terms in Eq. S8 is summarized in
Table S3. First is the case where the two models are indis-
tinct. We have ∆C = 0 and ∆B = Θp(1), while ∆A= Θp(1) if
d1 = d2 and ∆A= Θ(log(n)) if d1 6= d2. If the two models have
the same dimension (d1 = d2), ∆ is of order Θp(1) and con-
verges to a nondegenerate distribution, which is determined by
both ∆A and ∆B . This is the type-2 behavior of Fig. 2. If
d1 6= d2, the log n term in Eq. S9 dominates, so that the model
with fewer parameters wins. It is noteworthy that as long as
the two models are indistinct (and no matter whether they are
equally right or equally wrong), the model with fewer para-
meters wins.

Next is the case where the two models are distinct. We have
that ∆A is Θ(1) if d1 = d2 or Θ(log(n)) if d1 6= d2, ∆B is Θp(1),
and ∆C is Θp(

√
n), so that ∆C dominates. Whether or not the

two models have the same dimension, ∆ behaves like a random
walk with mean 0 and variance of order n . In this case, P1→ 1
in half of the datasets and→ 0 in the other half. The case with
d1 = d2 is illustrated as the type-3 behavior of Fig. 2. Note that
when the two models are equally wrong and distinct, the size of
the model does not matter and the model with fewer parameters
does not dominate.

Analysis of Problem 2 (Two Equally Right Models or Equally Wrong
but Indistinct Models). The true model is N(0, 1), and we compare
two models, H1 : N(µ, 1/τ), µ < 0 and H2 : N(µ, 1/τ), µ > 0,
with τ given. The MLEs in infinite data are µ∗ = 0 in each model,
and the two models are indistinct. The data (x ) are summarized
as the sample mean x̄ . We assign a uniform prior (with 1/2 each)
for the two models, and µ ∼ N(0, 1/ξ), with ξ given, truncated
to the appropriate range under each model. The posterior model
probability P1 can be derived by considering the posterior of µ
under the model N(µ, 1/τ) with −∞<µ<∞. As the prior pre-
cision is ξ and the data (likelihood) precision is nτ , the posterior
of µ is µ|x ∼ N

(
nτ x̄
nτ+ξ

, 1
nτ+ξ

)
. Thus,

P1 = P{H1|x} = P{µ < 0|x} = Φ

(
− nτ x̄√

nτ + ξ

)
. [S11]

As x̄ varies among datasets according to N(0, 1/n), we have
P1≈Φ (z

√
τ) if n is large, where z =−

√
nx̄ ∼ N(0, 1). The den-

sity of P1 is given by a variable transform. Note that
∣∣∣ dP1

dx̄

∣∣∣ =

φ
(
− nτ x̄√

nτ+ξ

)
× nτ√

nτ+ξ
, where φ(x ) is the probability density

function (PDF) for N(0, 1), and x̄ = −Φ−1(P1)
√
nτ+ξ
nτ

.

f (P1) = φ(x̄ ; 0,
1

n
)

/∣∣∣∣dP1

dx̄

∣∣∣∣
=

1√
2π/n

e−
1
2
nx̄2

×
√

2π · e
1
2

(nτ x̄)2

nτ+ξ ×
√
nτ + ξ

nτ

=

√
τ + ξ/n

τ
· exp

{
n

2
x̄2

[
nτ2

nτ + ξ
− 1

]}
=

√
τ + ξ/n

τ
· exp

{
n

2
[Φ−1(P1)]

2 · nτ + ξ

(nτ)2

×
[

nτ2

nτ + ξ
− 1

]}
=

√
τ + ξ/n

τ
· exp

{
1

2
[Φ−1(P1)]

2
[
1− 1

τ
− ξ

nτ2

]}
,

[S12]

where φ(x ;µ, σ2) is the PDF for x ∼ N(µ, σ2). This is Eq. 4 in
the main text.

Analysis of Problem 3 (Two Equally Wrong and Distinct Models,
Gaussian with Incorrect Variances). Suppose the true model is
N(0, 1), and two compared models are H1: N (µ, 1/τ1) and H2 :
N(µ, 1/τ2), with τ1 < 1<τ2 given, while µ is a free parameter.
The K-L divergence from model H1 with parameter µ to the true
model is

D1(µ) =

∫
φ(x ) log

φ(x )

φ(x ;µ, 1/τ1)
dx . [S13]

D1(µ) is minimized at µ∗= 0. Similarly for model H2, D2(µ) is
minimized at µ∗ = 0. Letting D1(µ∗) = D2(µ∗) so that the two
models are equally wrong leads to log τ1

τ2
= (τ1− τ2). In general,

if the true model is N(µ, 1/τ0), then H1 and H2 are equally wrong
if τ0 = (τ1 − τ2)

/
log τ1

τ2
.

We assign a uniform prior (1/2 each) for the two models,
and µ∼N(0, 1/ξ) under each model, with ξ given. The data are
summarized as the sample mean x̄ and sample variance s2 =
1
n

∑
i (xi − x̄ )2. The marginal likelihood under H1 is

M1 =

∫ ∞
−∞

1√
2π/ξ

e−
ξ
2
µ2

·

(
1√

2π/τ1

)n

× exp

{
−1

2
τ1
∑
i

(xi − µ)2

}
dµ

=

√
ξ

2π

( τ1
2π

)n
2

∫ ∞
−∞

exp

{
−1

2
(ξ + nτ1)µ2

+nτ1x̄µ−
1

2
τ1
∑

x2
i

}
dµ

=

√
ξ

2π

( τ1
2π

)n
2 ×

√
2π

ξ + nτ1
exp

{
−1

2
nτ1

×
(
x̄2 + s2 − nτ1x̄

2

ξ + nτ1

)}

=

√
ξ

ξ + nτ1

( τ1
2π

)n
2 × exp

{
− nτ1

2(ξ + nτ1)

×[ξx̄2 + ξs2 + nτ1s
2]

}
. [S14]

With the marginal likelihood M2 under H2 similarly given, the
posterior odds are

P1

P2
=

√
ξ + nτ2
ξ + nτ1

[
τ1
τ2

]n
2

exp

{
n

2(ξ + nτ1)(ξ + nτ2)

×
[
(τ2 − τ1)(ξ2x̄2 + ξ2s2 + n2τ1τ2s

2) + (τ2
2 − τ2

1 )nξs2]}.
[S15]

The distribution of P1 is given as a transform of x̄ and s2, but
the derivation is tedious. Instead we generate a sample of P1 by
simulating random variables x̄ ∼ N(0, 1/n) and ns2 ∼ χ2

n−1.
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When n →∞, we obtain, using Eq. 5 in the main text,

P1

P2
=

M1

M2
→ e

1
2

(τ2−τ1)(ns2−(n−1)) → e
1
2

(τ2−τ1)Z , [S16]

where Z = ns2 − (n − 1) ∼ N(0, 2n − 2) because for large n ,
χ2
n−1 is approximately N(n−1, 2n−2). Thus, when n is large, Z

will have a vanishingly small probability of lying in a fixed interval
around 0, and P1 will be either ∼ 0 or ∼ 1, each in half of the
datasets.

Star-Tree Simulation. We consider three cases, involving trees of
three or four species only.

In case 1 (Fig. 4 A and A’), the molecular clock (rate con-
stancy over time) is assumed, and the true tree is the star tree for
three species of Fig. 1A, with the branch length t = 0.2 (changes
per site on average). The JC substitution model (4) is used both
to generate and to analyze the data. The three binary trees
(T1,T2,T3) represent three equally right models. We assign a
uniform prior ( 1

3
each) on the binary trees and, given each binary

tree, exponential priors with means 0.1 for t0 and 0.2 for t1. The
marginal likelihoods or the 2D integrals over t0 and t1 are calcu-
lated numerically using Gaussian quadrature (5).

Case 2 (Fig. 4 B and B’) is similar to case 1, except that the
substitution model used in the simulation is JC+Γ (4, 6), with

different sites in the sequence evolving at variable rates accord-
ing to the gamma distribution with shape parameter α= 1. The
analysis model is still JC (equivalently to JC+Γ with α=∞). The
MLEs at the limit of infinite data are t∗0 = 0 in each binary tree,
so that the three models under comparison are equally wrong
and indistinct.

In case 3 (Fig. 4 C and C’) the true model is JC+Γ with
α= 1 and the analysis model is JC, as in case 2, but we simu-
late data using an unrooted star tree for four species. The true
branch lengths are t1 = t2 = t3 = t4 = 0.2 in T0 (Fig. 1B). The
data are analyzed to evaluate the three binary unrooted trees
for four species (Fig. 1B), each with five branch lengths, with-
out assuming the molecular clock. Because the MLEs t∗0 > 0
in the binary trees in the limit of infinite data, this case is a
comparison of equally wrong and distinct models. The three
binary trees are assigned equal prior probabilities ( 1

3
each), and

the five branch lengths in each tree are assigned the exponen-
tial prior with mean 0.1. The program MrBayes (7) is used to
calculate the posterior probabilities for the three binary trees
(P1,P2,P3) by MCMC. The program is tricked into collapsing
the n sites into 15 (instead of 256) site patterns to speed up the
likelihood calculation. Each MCMC run, for 2 × 106 iterations,
takes ∼10 s.
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Table S1. Proportions of datasets with extreme posterior probabilities for the three binary trees
in the star-tree simulation
n P{Pmin < 1%} P{Pmin < 5%} P{Pmax > 95%} P{Pmax > 99%} E(Pmin) E(Pmax)

103 0.234 0.550 0.205 0.079 0.067 0.754
104 0.812 0.931 0.606 0.450 0.011 0.897
105 0.979 0.992 0.853 0.773 0.001 0.964
106 1.000 1.000 0.953 0.919 0 0.988
107 0.999 1.000 0.982 0.970 0 0.995

Pmax = max(P1, P2, P3) and Pmin = min(P1, P2, P3). Data are generated under JC+Γ with α = 1, using the star
tree for four species (a : 0.2, b : 0.2, c : 0.2, d : 0.2), and analyzed under JC. The number of replicates is 103.
The probability densities of (P1, P2, P3) for the case of n = 103 and 105 are shown in Fig. 4 C and C’.

Table S2. Proportions of datasets with strong support for wrong trees in simulated datasets for
four species

n P{P1 < 1%} P{P1 < 5%} P{P23 > 0.95%} P{P23 > 99%}

103 0.083 0.225 0.113 0.038
104 0.250 0.337 0.266 0.166
105 0.102 0.120 0.115 0.097
106 0 0 0 0
107 0 0 0 0

P23 = max(P2, P3). Data are generated under JC+Γ (with α = 1) and analyzed under JC. The true tree is T1

of Fig. 1B ((a : 0.2, b : 0.2) : 0.002, c : 0.2, d : 0.2), so that T2 and T3 are the two wrong trees in the analysis.
The number of replicates is 103.
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Table S3. The order of the three terms (∆A, ∆B, and ∆C) in Eq. S8 and the
asymptotic behavior of Bayesian model selection

Models ∆A ∆B ∆C Behavior of Bayesian model selection

Indistinct
d1 = d2 Θp(1) Θp(1) 0 Converges to a nondegenerate distribution
d1 6= d2 Θ(log(n)) Θp(1) 0 Model with fewer parameters dominates

Distinct
d1 = d2 Θp(1) Θp(1) Θp(n

1
2 ) Random walk

d1 6= d2 Θp(log n) Θp(1) Θp(n
1
2 ) Random walk
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