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Abstract.—Discrete morphological data have been widely used to study species evolution, but the use of quantitative (or
continuous) morphological characters is less common. Here, we implement a Bayesian method to estimate species divergence
times using quantitative characters. Quantitative character evolution is modeled using Brownian diffusion with character
correlation and character variation within populations. Through simulations, we demonstrate that ignoring the population
variation (or population “noise”) and the correlation among characters leads to biased estimates of divergence times and
rate, especially if the correlation and population noise are high. We apply our new method to the analysis of quantitative
characters (cranium landmarks) and molecular data from carnivoran mammals. Our results show that time estimates are
affected by whether the correlations and population noise are accounted for or ignored in the analysis. The estimates
are also affected by the type of data analyzed, with analyses of morphological characters only, molecular data only, or a
combination of both; showing noticeable differences among the time estimates. Rate variation of morphological characters
among the carnivoran species appears to be very high, with Bayesian model selection indicating that the independent-
rates model fits the morphological data better than the autocorrelated-rates model. We suggest that using morphological
continuous characters, together with molecular data, can bring a new perspective to the study of species evolution. Our new
model is implemented in the MCMCtree computer program for Bayesian inference of divergence times. [Bayesian inference;
continuous morphological characters; divergence times; geometric morphometrics; molecular clock; phylogeny; Procrustes
alignment.]

Molecular sequences are informative about the
relative ages of nodes on a phylogeny, but not about
the geological times of divergence or the absolute
molecular evolutionary rate. The Bayesian method
offers a way to use fossil information to construct
a prior on divergence times, which can then be
integrated with the molecular data to produce posterior
estimates of absolute divergence times (e.g., Thorne
et al. 1998; Drummond et al. 2006; Rannala and Yang
2007). However, modeling clade ages with statistical
distributions based on the fossil evidence is challenging.
Fossils may provide estimates of minimum clade ages,
but maximum clade ages are typically based on the
absence of fossil evidence and are thus hard to justify
(Benton and Donoghue 2007).

The problem is illustrated in Figure 1. Imagine we
wish to estimate the age of the last common ancestor
of species A and B, tAB. The oldest fossil in the A and
B ingroup is F, which has known age tF. If we measure
time toward the past (so that present time is zero), we can
immediately see that tAB> tF, so that the age of the fossil,
tF, imposes a minimum constraint on tAB. However, we
do not know how close F is to the common ancestor, so
tF is a poor indicator of the true age tAB. Current practice
is to construct a prior density on tAB, f (tAB), truncated at
tF on the left, and with a long tail extending to the right
(back in time) to allow for the uncertainty in the time gap
between tF and tAB (Fig. 1). The form of the prior density
and the length of the tail are somewhat subjective as they
are based on absence of older fossils in the A and B clade

(e.g., Tavaré et al. 2002; Drummond et al. 2006; Yang and
Rannala 2006; Benton and Donoghue 2007).

An alternative approach would be to model
morphological character evolution, so that we can
use morphological data to estimate the morphological
distance among extant and fossil species in a phylogeny.
Since fossil ages are known, fossils can then be used as
“dated-tips” in the Bayesian analysis. Divergence time
estimation can then proceed using a morphological
alignment of extant and fossil species, or on a combined
data set of molecular data for extant species and
morphological data for extant and fossil species. This
approach, also known as total-evidence dating (TED),
has been pioneered by Pyron (2011) and Ronquist et al.
(2012) (see also Nylander et al. 2004; Lee et al. 2009; and
Magallón 2010) using discrete morphological characters
under the Mk model of morphological evolution (Lewis
2001). It has been used to date phylogenies for several
groups (e.g., Nylander et al. 2004; Pyron 2011; Ronquist
et al. 2012; Slater 2013; Schrago et al. 2013; Wood et al.
2013; Arcila et al. 2015; Grimm et al. 2015; Reeder
et al. 2015; Winterton and Ware 2015; Larson-Johnson
2016; Ronquist et al. 2016; Gavryushkina et al. 2017),
sometimes producing very old time estimates compared
with node-calibration methods, and it is noted to be
sensitive to the branching process used to specify the
prior on times (O’Reilly et al. 2015; dos Reis et al. 2016).
The TED approach has been improved by extensions
of the fossilized birth–death process to construct more
realistic priors on times (Heath et al. 2014; Gavryushkina
et al. 2014; Zhang et al. 2016).
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FIGURE 1. A phylogeny of two extant species (A and B) and one extinct species (F†). The age of the extinct fossil, tF , provides a minimum
age bound on the divergence of A and B, tAB. The fossil age can be used as a lower limit on a prior probability distribution, f (tAB), in a Bayesian
analysis. Deciding on the shape of the distribution and on how far its tail should stretch back in time is somewhat subjective (Donoghue and
Benton 2007). Here, we show an example of a misspecified prior for tAB, with the probability mass close to the age of the fossil, but too far from
the true age of the node.

Analysis of discrete morphological data under the
Mk model has a few limitations. First, the model
assumes that rates of change among character states
are equal (Lewis 2001), an assumption that appears
unrealistic for the analysis of real data. Although
the equal-rates assumption can be relaxed (Pagel
1994; Wright et al. 2016), this model appears to be
rarely used, perhaps because it is computationally
expensive (Wright et al. 2016). Second, systematists
usually score discrete morphological characters only if
the characters are variable or if they are parsimony-
informative. In this case, a correction is necessary to
account for the ascertainment bias in character scoring
(Lewis 2001; Leaché et al. 2015). Correcting for the
removal of constant characters is straightforward, but
a much more computationally expensive correction is
necessary to account for the removal of parsimony-
uninformative characters, and it appears that this
correction is not properly accommodated in current
dating software (dos Reis et al. 2016). Finally, it
seems difficult to accommodate correlations among
characters in the Mk model. For a morphological
alignment with p characters and with each character
having k states, a kp substitution matrix is constructed
to accommodate correlated character evolution (Pagel
1994). Such matrices become explosively large for even a
moderate number of characters and are computationally
intractable (Felsenstein 2005). Thus, correlation among

characters is ignored in Bayesian inference under the
Mk model. The threshold model, an alternative to
the Mk model for the analysis of ordered categorical
data that may easily accommodate correlations among
characters, has been championed by Felsenstein (2005,
2012). However, this model does not appear to be
currently available for Bayesian inference of topology or
divergence times of phylogenies.

Quantitative (or continuous) morphological
characters offer an interesting alternative to the
analysis of discrete characters (Felsenstein 1988; Slater
et al. 2012; Parins-Fukuchi 2018a,b). Evolution of
quantitative characters on a phylogeny can be modeled
using diffusion processes such as the Brownian or
Ornstein–Uhlenbeck processes (Felsenstein, 1973,
1988). An appealing property of these processes is
that the resulting likelihood of the characters on the
phylogeny is a multivariate normal distribution which
can be extended to accommodate correlations among
characters and can be easily calculated. Furthermore,
because quantitative characters are always variable,
an ascertainment bias correction is not necessary.
Also, non-homogeneity among characters can be easily
accommodated in the normal likelihood: each character
may have its own diffusion rate and its own ancestral
mean, and thus expensive integration over a distribution
of stationary frequencies (as done for the relaxed version
of the Mk model, see Wright et al. 2016) is not necessary.
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Here, we explore the use of quantitative characters
for Bayesian inference of species divergence times under
the Brownian diffusion model of Felsenstein (1973). We
use computer simulations to study the performance of
the model in obtaining divergence time estimates: we
focus on the effect of the sample size (the number of
characters analyzed) and the fossil age (using young
or old fossils in the phylogeny), the strength of the
correlation among the characters, and the level of
“population noise” on the performance of the method.
In the Brownian diffusion model, the means of the
characters in populations evolve according to Brownian
diffusion, but quantitative measurements on a sample
of individuals for a given population of species is
expected to show variation around the population mean.
This population noise must be explicitly accommodated
in the model (Felsenstein 1973). Finally, we study the
performance of the method on the analysis of a real
data set: a set of cranium landmarks on a carnivoran
phylogeny.

THEORY

We assume that the species phylogeny (the tree
topology) is known. The posterior distribution of times
and rates is

f (t,r,� |D)∝ f (�)f (t)f (r | t,�)f (D | t,r,�), (1)

where f (�) is the prior on model parameters, f (t) is
the prior on times, f (r | t,�) is the prior on rates, and
f (D | t,r,�) is the likelihood of the data D. In this article,
the data D may be a molecular sequence alignment S, a
morphological alignment M, or a combination of both.
Evolutionary rates may then include molecular rates
rS and/or morphological rates rM. For combined data,
and assuming independent evolution of molecular and
morphological characters, the posterior is

f (t,rS,rM,� |S,M)∝ f (�)f (t)f (rS,rM | t,�)

f (S | t,rS,�)f (M | t,rM,�), (2)

where f (S | t,rS,�) is the likelihood of the molecular
sequence alignment (e.g., calculated under the HKY+�
substitution model) and f (M | t,rM,�) is the likelihood
of the morphological alignment, calculated under the
Brownian diffusion model of quantitative character
evolution (Felsenstein 1973).

Likelihood Calculation of Quantitative Characters
Calculation of the likelihood is described by

Felsenstein (1973, 1981; see also Freckleton 2012). Let
M={mij} be a matrix of p continuous morphological
characters measured on s species, where mij is the j-th
morphological measurement in species i, with i=1,...,s
and j=1,...,p. Let mi be the vector of p measurements in
species i (the i-th row of M). Let R be the p×p correlation
matrix among the characters. Write ms+1 for the vector
of p (unobserved) ancestral character states at the root

of the phylogeny. Character j evolves from its ancestral
state ms+1,j to a terminal state mi,j along the branches of
the tree by Brownian motion with diffusion rate r=�2

(where � is the diffusion coefficient, Felsenstein 1973).
Then, mi,j is normally distributed with mean ms+1,j and
variance v=rt, where t is the elapsed time between the
root and the tip species. If we assume that the rates
(and thus the variances) are the same across characters
(an assumption that can be relaxed), then mi has a
multivariate normal distribution with mean ms+1 and
covariance matrix vR. The diffusion rates may vary
among lineages (branches) in a phylogeny (Felsenstein
1981). If rk is the rate in branch k, and tk is the elapsed time
along the branch, then vk =rktk is the expected amount
of morphological variance accumulated in the lineage.
Thus vk is the morphological branch length. Felsenstein
(1973) showed that the likelihood of M on a phylogeny
of two or more species can be calculated so that it
only depends on the branch lengths, v= (vk), and the
correlation matrix, R, but not on the ancestral characters
at the root, ms+1. This simplifies the calculations as ms+1
does not need to be estimated.

Now consider a bifurcating, rooted phylogeny of s
species. The external nodes (the tips) are labeled 1,...,s;
the internal nodes are labeled s+1,...,2s−1; and s+1 is
the root node. The length of the branch subtending node
k is vk . If k is an internal node, let k1 and k2 be its two
daughter nodes. Let

v′
k =

{
vk if k is a tip node,
vk + vk1 vk2

vk1+vk2
else.

xk = m′
k1

−m′
k2
, (3)

m′
k =

{
mk if k is a tip node,
vk2 mk1+vk1 mk2

vk1+vk2
else.

The likelihood of M on the phylogeny is the product of
s−1 multivariate normal densities, each corresponding
to one of the s−1 internal nodes. It is given by

L(M |v,R)=
2s−1∏

k=s+1

L(xk |vk,vk1 ,vk2 ,R) (4)

where

L(xk |vk,vk1 ,vk2 ,R)= (2�)−p/2(v′
k1

+v′
k2

)−p/2|R|−1/2

exp

(
− 1

2(v′
k1

+v′
k2

)
xT

k R−1xk

)
. (5)

Equation (4) can be calculated efficiently in a computer
program using the postorder tree traversal algorithm.
When an internal node k is visited by the algorithm,
we calculate v′

k1
, v′

k2
, xk , and L(xk |vk,vk1 ,vk2 ,R) after its

daughter nodes have been visited. The m′
k are maximum

likelihood estimates of the ancestral character states at
node k conditioned on the values of vk,vk1 ,vk2 , and R.
They are obtained for free during MCMC computation,
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and they may be collected and used as ancestral
reconstructions.

Correlation Among Characters and Matrix Shrinkage

It is useful to find a matrix A such that R−1 =ATA.
Then, the exponential in the likelihood of Eq. (5) can be
written as

exp

(
− 1

2(v′
k1

+v′
k2

)
xT

k ATAxk

)
=exp

(
− 1

2(v′
k1

+v′
k2

)
zTz

)
,

(6)
where z=Axk is a vector. In other words, we can obtain
a transformation of the original data Z=MAT, so that
the transformed characters in Z are independent. This
simplifies the calculation of the likelihood because R
only needs to be inverted/decomposed once. Choices
for A include the Cholesky decomposition, R=LLT, then
A=L−1, or the Eigen decomposition AT =VD, where V

is the matrix of eigenvectors of R−1, and D=diag
{√
�
}

is a diagonal matrix of the square root of the eigenvalues
(see Ripley, 1987, p. 98).

The correlation matrix R can be estimated during
Bayesian inference. However, this would make
computation prohibitively expensive as we would
need to estimate (p2 −p)/2 correlations, which is a large
number for even a moderate p. Thus, here we assume
that R is given. For example, if we assume R is constant
throughout the phylogeny, then we can estimate R
from a sample of individuals from a given species.
The individuals may be assumed to be independent
samples from the population, and R could then be
estimated using the traditional unbiased estimate of
the covariance. However, a common problem occurs
when the number of characters, p, is larger than the
number of individuals sampled, s. In this case, the
unbiased estimate of R, R̂, tends to become singular
(i.e., its determinant is zero) and cannot be inverted
(e.g., Schäfer and Strimmer 2005; Goolsby 2016), in
which case the likelihood of Eq. (5) cannot be calculated.
Here, we overcome this problem by using the linear
shrinkage estimate of the correlation matrix (Schäfer
and Strimmer 2005):

R∗ =�I+(1−�)R̂, (7)

where I is the identity matrix, and � (0≤�≤1) is
the shrinkage parameter, which controls the level of
shrinkage. If �=0, the shrinkage estimate, R∗, is the same
as R̂, while if �=1, R∗ is the identity matrix.

Note that R∗ can always be inverted as long as � �=0,
thus allowing calculation of the likelihood of Eq. (5).
The value of � can be chosen by the user or estimated
automatically. Schäfer and Strimmer (2005) give an
approximate method for automatically estimating �
from the data. Their procedure is implemented in
their corpcor R package (see their article for details

of the algorithm). Clavel et al. (2019) discuss further
approaches to regularize the estimate of R.

Within Population Character Variance
Quantitative characters are expected to vary among

individuals within a species (Felsenstein 1973; Ives et al.
2007). Divergence times may be biased if this population
level variation (or “population noise”) is large and not
accounted for in the Bayesian inference, because the
amount of morphological evolution in the phylogeny
would be overestimated (Landis and Schraiber 2017).
Write cj for the within population variance of character
j. Then mi,j is normally distributed with mean ms+1,j
and variance cj +v. In this case, ms+1,j is then the
population mean of the character in the ancestral
population (Felsenstein 1973). If all characters have
the same variance c, then we can accommodate the
population noise in the analysis by setting

v′
k =c+vk (8)

when k is a tip node (Equations 3 and 5).
In real data, different characters may have different

variances. In this case, we may obtain estimates of the
variances of the characters, ĉ= (ĉj), from a population
sample at the same time as we estimate R. We
can then divide the columns of M by the estimated
standard deviations to obtain the scaled matrix M(s) =
M×diag

{
1/

√
ĉ
}

. The new scaled matrix has thus been
standardized so that all characters have the same
variance and so that the population noise has unit
variance. Inference then proceeds on M(s) by setting c=1
in Eq. (8). Note that to correct for the correlations among
characters, the transformed data matrix used during
Bayesian inference is then Z(s) =M(s)AT.

Within-Lineage and Among-Lineage Covariances
We note that R here is the within-lineage correlation

among the characters, and thus vkR is the within-lineage
covariance for the k-th branch. For example, if selective
pressure acts to elongate a limb in a species, one would
expect the length of the corresponding limb bones to
increase. In other words, the bone lengths would co-
vary (or co-drift in Brownian parlance) and this would be
represented by a positive correlation in the entry of R for
the given characters. If the within-lineage variances are
different among characters, then the exponent of Eq. (5)
must be written as

exp

(
− 1

2(v′
k1

+v′
k2

)
xT

k C−1xk

)
, (9)

where C is then the within-lineage character covariance
matrix (this is the same C as in Freckleton 2012).
However, if we can normalize the characters to have
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equal variances by using estimates of the within-
population variances (as we do here and as shown in
Felsenstein 1973), then it is not necessary to work with
the more complex Eq. (9).

The shared ancestry among the species in a phylogeny
means that there is also character covariation among
lineages. The among-lineage covariance matrix is rT
when r is constant (e.g., when we have a strict
morphological clock), and where T is an s×s matrix
whose elements are the shared ancestry time-paths for
each pair of species (Felsenstein 1973). For a Brownian
model with unequal diffusion rates among branches
(Felsenstein 1981), we must multiply the shared time-
paths in T by the branch-specific diffusion rates, rk ,
resulting in the s×s among-lineage covariance matrix
V (see Felsenstein 1981; Freckleton 2012). Matrix V
only appears explicitly when we write down the
joint likelihood for the characters for all species (e.g.,
Eqs. 1 and 8 in Freckleton 2012). Equation (5) here is the
node likelihood after the pruning algorithm has been
applied, and thus matrix V is not apparent. However,
note the v′

k terms are functions of the entries in V. See
Felsenstein (1973, 1981) and Freckleton (2012) for full
details.

SOFTWARE

Bayesian inference of divergence times with
continuous characters under the model of Eq. (4)
is implemented in the computer program MCMCtree
v4.9h, part of the PAML package (Yang 2007). We
have extended the mcmc3r R package (dos Reis et al.
2018; https://github.com/dosreislab/mcmc3r) to help
the user in preparing morphological alignments for
analysis with MCMCtree, and in simulating continuous
morphological data using different functions from the
ape package (Paradis et al. 2004).

SIMULATION ANALYSIS

We conduct a simulation study to examine the impact
of (i) the number of characters analyzed, (ii) the fossil
ages, (iii) the population noise, and (iv) the correlation
among characters on the estimation of divergence times
using morphological data. In particular, we expect that
time estimates will deteriorate (i.e., will have large
variances or be biased) when analyzing small numbers
of characters, when the fossils are too young, when
the population noise is high, and when the correlation
among characters is strong. To reduce the computational
cost, our simulations are carried out using a small
number of species under a constant morphological
evolutionary rate.

Simulation Overview
The phylogeny in Figure 2, with s=8 species (5 extant

and 3 fossils), is used to simulate the quantitative

morphological data sets. The morphological
evolutionary rate is r=1 and constant along all the
branches of the phylogeny. The simulated data matrices,
M, are generated under the Brownian diffusion model
using our mcmc3r R package. For simulations with
population noise and/or correlations, a population
sample of individuals is simulated, which is then used
to estimate the vector of character variances, ĉ, and the
shrinkage estimate of the correlation, R∗.

Replicates under each simulation setup (see below)
are analyzed with MCMCtree to estimate the divergence
times (t9 to t15) and the morphological rate (r) by MCMC
sampling. We use a diffuse gamma prior on the rate, r∼
�(2,2), with mean 1 and variance 0.5. The prior on the age
of the root is assigned a uniform density with soft bounds
between 0.8 and 1.2 (corresponding to a calibration of
80 to 120 Ma given our 100 myr time unit). The birth–
death sequential sampling (BDSS) process (Stadler and
Yang 2013), is used to generate the prior density for the
ages of the internal nodes. The BDSS parameters are
set as: �BDSS =1 (the birth-rate), �BDSS =1 (the death-
rate), 	BDSS =0 (the sampling fraction for extant species),
and 
BDSS =0.001 (the rate of fossil sampling). We
chose these parameter values to generate a uniform
density on the ages (Supplementary Fig. S1 available
on Dryad at http://dx.doi.org/10.5061/dryad.q7rf263).
We summarize the results by calculating the mean times
across the replicates, the mean 95% credibility intervals
(CIs), the mean CI-width w (and relative CI-width wr =
w/ti), the coverage (the number of times the true node
age falls within the 95% CI), the mean bias, and the mean
squared error (MSE). Let t̃i,j be the mean posterior age of
node i for replicate j. The mean bias is b=∑R

j=1(t̃i,j −ti)/R

and the MSE is ε=∑R
j=1(t̃i,j −ti)2/R, where R=1000 is the

number of replicates per simulation setup and ti is the
true node age. We also calculate the relative bias br =b/ti
and the relative error εr =ε/ti. Note the bias is a measure
of accuracy of the estimate, while the MSE is a measure
of both precision and accuracy. The simulation workflow
is summarized in Supplementary Figure S2 available on
Dryad.

(i) Effect of the number of characters.— We simulate data
sets with p=100, 1000, and 10,000 characters, assuming
independence among characters and no population
noise (c=0).

(ii) Effect of fossil age.— We vary the age of the fossil
H, with tH =0.7, 0.5, 0.3, and 0.1. The ages of the other
fossils remain unchanged. Characters are assumed to
evolve independently and with c=0. The data are then
simulated using the phylogeny with the new fossil age
with p=100, 1000, and 10,000 characters, respectively,
giving 3×3=9 additional simulation setups.

(iii) Effect of population noise.— We simulate data
sets with c=0.25 (low population noise) and c=0.5
(high population noise) for p=100, 1000, and 10,000.
Characters are assumed to evolve independently. In
order to simulate the population noise, we sample
s×p random numbers from a normal distribution with
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FIGURE 2. A phylogeny of eight species used to simulate morphological data. The time unit is 100 myr and the divergence times are: t9 =1.0
(root), t10 =0.8, t11 =0.3, t12 =0.1, t13 =0.2, t14 =0.7, and t15 =0.5; meaning 100 Ma, 80 Ma, 30 Ma, and so on. The ages of the fossils are tF =0.1,
tG =0.3, and tH =0.7. Fossil species are indicated with a dagger (†).

mean 0 and variance c, to obtain the s×p noise matrix
N. The resulting noise is added to the simulated
morphological matrix, M, to generate the noisy matrix
M(n) =M+N.

We also simulate a population sample of n=20
individuals to obtain a n×p population matrix, P, by
sampling from the normal distribution with mean 0
and variance c. Before performing Bayesian inference,
we obtain estimates of the population noise for each
character, ĉ= (ĉj), using the simulated population sample
P, and obtain the scaled matrix M(s) =M(n)diag{1/√ĉ}.
As we are scaling M(n) using an estimate of the
population variances, ĉ, we expect to observe some
discrepancy between the true parameters (rate and
divergence times) and their corresponding estimates.
Therefore, we also scale the noisy matrix by c= (cj), the

vector of true variances. Thus M(s)
true =M(n)diag{1/√c},

which is used as a control test. Bayesian inference then
proceeds either on M(s) or M(s)

true, with the likelihood
corrected by setting c=1 (Eq. 8). The data are also
analyzed by setting c=0 (Eq. 8) to assess the impact
of ignoring the population noise on the time estimates.
Note that the gamma prior on the morphological rate
may be changed to account for scaling of the data sets.
When c=0.25, the morphological rate for the scaled
data is r/0.25=1/0.25=4. Thus, the new gamma prior
for the rate is r∼�(2,0.5). Similarly, when c=0.5, the
morphological rate for the scaled data is r/0.5=1/0.5=2,
thus the rate prior is set to r∼�(2,1). We expect the

posterior means of times and rates to be very biased

when the population noise is ignored, to have some bias
when using M(s), and to have little or no bias when using
M(s)

true.
(iv) Effect of correlation among characters.— We simulate

data sets using the constant correlation model, that is,
with all the within-lineage correlations in R equal to
	. We use the correlations 	=0.5 and 0.9, and p=100,
1000, and 10,000. To simulate correlated data, a matrix
M is first simulated assuming independent character
evolution. Note that M is simulated on the tree, thus it
already contains the among-lineage covariance induced
by the shared ancestry. Then, we add the within-lineage
correlation to M by computing M(R) =MLT, where L
is the lower triangular Cholesky decomposition of R.
Then, we simulate the s×p noise matrix, N, sampled
from a normal distribution with mean 0 and variance
c=0.25, to which within-lineage correlation is added as
N(R) =NLT. The noise is then added to M(R) to obtain
the noisy matrix, M(n) =M(R) +N(R).

We also simulate a within-population sample of n=
20 individuals to obtain a n×p population matrix, P,
by sampling from a normal distribution with mean 0
and variance c=0.25, to which correlation is added as
P(R) =PLT. We use P(R) to estimate ĉ= (ĉj), the vector
of estimated variances used to obtain M(s). The vector
of true variances, c= (cj), is used to obtain M(s)

true. The
shrinkage correlation matrix, R∗, is also estimated using
P(R). However, note that the shrinkage value, �, has a
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strong impact on R∗. Therefore, we test two approaches
to generate R∗: (i) we use the automatic approach of
Schäfer and Strimmer (2005) to find the optimum value
of �, and (ii) we fix �=0.01, to obtain R∗ close to the
unbiased estimate R̂. The Cholesky decomposition of
R∗ is then used to obtain the transformed data matrix
Z(s) =M(s)AT. M(s) is also analyzed directly to assess the
effect of ignoring the character correlation. As a control
data set, we also obtain A from the true correlation
matrix, R, and use it to calculate Z(s)

true =M(s)
trueAT. The

estimates obtained using Z(s)
true are expected to be very

close to the true rate and divergence times. On the other
hand, we expect estimates using Z(s) to have some bias,
and estimates using the uncorrected matrix, M(s) (which
ignores the correlation), to be very biased.

ANALYSIS OF THE CARNIVORA DATA SET

Morphological Data
We analyze the 29 cranium landmarks from 10 extant

and 9 extinct carnivoran species (Fig. 3 and Table 1).
The landmark data is complete (i.e., there are no missing
landmarks in any specimens). The landmarks are three
dimensional, resulting in p=3×29=87 characters. A
population sample of 21 common foxes (Vulpes vulpes)
is used to estimate the correlations and the population
noise for the 29 landmarks. The correlation matrix
estimated using the foxes is then used to transform the
whole data set (Eq. 6). This assumes the within-lineage
correlations are the same (or at least similar) among the
carnivorans analyzed.

Landmark data are aligned using Procrustes
superimposition (Gower 1975; Rohlf and Slice 1990),
a technique in which the landmark coordinates for
each individual are translated, rotated, and scaled
to unit centroid size so the square of the distance
between the individual’s landmarks and the mean
landmark coordinates among all the individuals is
minimized (see cited literature for details). We perform
the Procrustes alignment in two steps. First, we align
the 19 carnivoran species (excluding all but one of
the foxes) using the Morpho ::procSym function in
R (Schlager 2017), resulting in a 19×87 geometric
morphometric alignment M. Then, the remaining 20
foxes are aligned to the mean shape of M using the
Morpho ::align2procSym function. This is done so
that the alignment is not biased due to the large number
of foxes. The resulting Procrustes alignment for the
foxes, P (of size 21×87), is used to obtain the estimates
of the population variances, ĉ, and the shrinkage
correlation matrix, R∗, for the landmark coordinates.
The correlation matrix R∗ depends on the orientation
of the landmarks, that is, different rotations of P may
lead to different estimates of R∗. Therefore, R∗ must be
estimated on a population matrix that has been aligned
to the species matrix. Divergence times are estimated on
Z(s), the transformed alignment obtained after scaling

M by the population variances, and multiplying by
the Cholesky decomposition of R∗. A summary of the
methodology to generate the morphological alignment
is given in Figure 4.

Molecular Data
We use the sequences of the 12 mitochondrial genes

(mt-genes) for the 10 extant carnivoran species that
are available at the NCBI: cytochrome c oxidase (COX)
subunits 1, 2, and 3; cytochrome b (CYTB); NADH
dehydrogenase (ND) subunits 1, 2, 3, 4, 4L, and 5; and
ATP synthase F0 (ATP) subunits 6 and 8. We do not
include ND6 in our analysis because it is not encoded
on the same strand of the mitochondrial DNA (mt-DNA)
like the other 12 mt-genes, and thus has very different
nucleotide compositions. Note that not all the 12 mt-
genes are available at the NCBI for the 10 extant species
analyzed. Thus, gaps are introduced in the molecular
alignment when a gene is not available for a species.
Prank v.150803 (Löytynoja and Goldman 2005, 2008) is
used to align the molecular sequences. The concatenated
gene alignment is divided into two partitions: (i) first
and second codon positions (12CP) and (ii) third codon
positions (3CP).

Divergence Times Estimation
We estimate the divergence times with MCMCtree on

the fixed carnivoran topology of Finarelli and Goswami
(2009) and Martín-Serra et al. (2014). We use three
data sets: (i) morphological alignment, (ii) molecular
alignment in two partitions (12CP + 3CP), and (iii)
morphological and molecular alignments (12CP + 3CP)
analyzed together as three partitions. The molecular data
are analyzed using the HKY+� (Hasegawa et al. 1984,
1985) substitution model, while the Brownian diffusion
model of quantitative character evolution (Felsenstein
1973) is used for the morphological data.

The prior on the ages of the nodes is constructed
using the birth–death (BD) process (Yang and Rannala
2006), if only extant species are analyzed, or the BDSS
model (Stadler and Yang 2013), if fossil species are
included in the analysis. For the BDSS prior we use
�BDSS =�BDSS =1, 	BDSS =0, and 
BDSS =0.001; and for
the BD prior we use �BD =�BD =1 and 	BD =0.1. We
chose both set of parameters to obtain approximately
uniform prior distributions on node ages. Both the BDSS
and BD processes are conditioned on the age of the
root. Thus, we set a uniform fossil calibration with soft
bounds on the root age between 37.3 Ma and 66 Ma,
following Benton et al. (2015). The time unit is set to
1 myr.

We use a gamma-Dirichlet prior (dos Reis et al. 2014)
on the (molecular and/or morphological) rate with
shape �=2 and with the scale parameter 
 chosen
so that the mean of the prior rate (given by �/
) is
close to empirical estimates based on the morphological
or molecular branch lengths on the phylogeny. In the
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FIGURE 3. Procrustes alignment of 29 cranium landmarks for 19 carnivoran species. The alignment was obtained with the Morpho package in
R. Landmark coordinates for 21 foxes (Vulpes vulpes) and 18 other carnivoran species are shown as dark gray crosses and black dots, respectively.
The mean of the landmark coordinates are shown as diamonds and are numbered: 1, 2, Basioccipital-Basisphenoid-Bulla suture (left, right); 3,
Palatine–Maxilla–ventral suture; 4, 5, Jugal–Squamosal ventral suture (left, right); 6, 7, Bulla–anterior extreme (left, right); 8, 9, Bulla–posterior
lateral extreme (left, right); 10, 11, Premaxilla–anterior extreme (left, right); 12, 13, Jugal–Maxilla (Orbit crest) suture (left, right); 14, 15, Jugal–
Maxilla (base of zygomatic arch) suture (left, right); 16, Nasals–Frontal suture; 17, 19, Anterior lateral M1 (left, right); 18, 20, Posterior lateral M2
(left, right); 21, 22, Canine–mesial extreme (left, right); 23, 24, Postorbital process tip (left, right); 25, 26, Paraoccipital process tip (left, right); 27,
Parietals–Occipital suture; and 28, 29, Occipital condyle–extreme (left, right).

gamma-Dirichlet prior, one specifies the prior mean
on the overall (average) rate for all partitions, then
a Dirichlet distribution is used to partition the total
rate among the partitions (see dos Reis et al. 2014
for details). To specify the prior, we first estimated,
by maximum likelihood, branch lengths with RAxML
v8.2.10 (Stamatakis 2014) for the molecular alignment,
and with CONTML (PHYLIP package, Felsenstein 1993)
for the morphological alignment. The resulting unrooted
trees where midpoint rooted, and then we calculated a
rough approximation to the number of substitutions, or
units of morphological drift, from the tips of the root,
and divided these by 52 Ma, the (rounded) midpoint
value of the root calibration. This gives a rough idea
of the value of the mean rates for the molecular and
morphological partitions. These empirical rate estimates
are then used to calculate the mean rate for the gamma-
Dirichlet prior. Note that the use of �=2 leads to a very
diffuse (large variance) prior on the rate. The chosen
values of 
 for all the data sets are given in Table 2.
The data are analyzed under the strict clock (STR),
the geometric Brownian diffusion (GBM, also known

as autocorrelated-rates, Thorne et al. 1998; Yang and
Rannala 2006), and independent log-normal rate (ILN,
Rannala and Yang 2007; Lemey et al. 2010) models. The
gamma-Dirichlet prior on �2

i for the GBM and ILN
models is �2

i ∼�(2,2) for both the molecular and the
morphological data sets.

Bayesian Selection of Clock and Correlation Models
We use Bayes factors (BFs) to select among the three

clock models for the morphological and molecular data
sets. Marginal likelihoods for each model are calculated
using the stepping-stone approach (Xie et al. 2011) as
implemented in the mcmc3r R package (dos Reis et al.
2018). The estimated marginal likelihoods are then used
to calculate the BFs and posterior probabilities for each
clock model. Note that when molecular data only were
analyzed, the age of the root is fixed to 1 (as there are
no fossil tip species to calibrate the tree). In MCMCtree,
this is done by using a narrow uniform distribution with
soft bounds on the age of the root, U(0.999,1.001). In this
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TABLE 1. Summary of the 19 carnivoran species studied in this analysis

Taxona Voucher specimen Specimen ageb, Ma Referencesc

Hesperocyon sp.† NMNH 459576 35.55 (37.2–33.9) National Museum of Natural History collection
Enhydrocyon pahinsintewakpa† AMNH 27579 28.55 (30.8–26.3) Wang (1994, pp. 89–90)
Paraenhydrocyon josephi† YPM 12702 25.615 (30.8–20.43) Wang (1994, p. 135 and 141)
Tomarctus hippophaga† AMNH 61156 14.785 (15.97–13.6) Wang et al. (1999, pp. 157–158)
Aelurodon ferox† AMNH 61757 13.135 (15.97–10.3) Wang et al. (1999, pp. 182–183)
Epicyon haydeni† LACM 131855 11.95 (13.6–10.3) Wang et al. (1999, pp. 252–254)
Smilodon fatalis† LACMHC 1360 0.0285 (0.044–0.013) La Brea Tar Pits collection
Hyaenictitherium wongii† China G L-49 6.65 (8.0–5.3) Werdelin (1988, p. 259), Werdelin (1991, p. 33),

Tseng and Wang (20007, p. 708) (Table 2)
Canis dirus† LACMHC 2300-4 0.0285 (0.044–0.013) La Brea Tar Pits collection
Ursus americanus americanus (O) FMNH 106356 0 —
Ailurus fulgens (O) FMNH 60762 0 —
Nandinia binotata (O) FMNH 149362 0 —
Paradoxurus hermaphroditus

phillipinensis (O)
FMNH 33548 0 —

Cuon alpinus primaevus FMNH 38515 0 —
Speothos venaticus FMNH 87861 0 —
Canis lupus lycaon FMNH 153800 0 —
Cerdocyon thous aquilis FMNH 68889 0 —
Otocyon megalotis AMNH 179143 0 —
Vulpes vulpes pusilla FMNH 112415 0 —

Note: This table includes the voucher specimen, the specimen age and age ranges, and the reference for the specimen age and the age ranges.
Note that, for the extant species, the specimen age is set to 0 as it refers to the present time.
aThe first nine species are extinct species (indicated by †) and the next ten are extant species. Those with the label “(O)” are outgroups.
bMid-point age calculated from the maximum and minimum ages of the voucher specimen according to the formation from which it was
retrieved. See column with header “References” for the literature where the corresponding specimen and the formation from where it was
collected are described.
cAge reference corresponding only to the fossil specimens (extinct species). This can refer to either a paper, book chapter, or the database for the
museum collection.

case, the mean of the rate prior needs to be modified to
accommodate the different age of the root. Table 2 gives
the modified priors.

Bayes factors can also be used to select for the
correlation model in the morphological data. The
marginal likelihood can be calculated by using R=
I in Eq. (5), that is, by assuming characters evolve
independently, or calculated on Z(s) which has been
transformed to account for the correlation among
characters. Please note that, when using Z(s), the
likelihood of Eq. (5) must be scaled by the determinant
|R∗| so that the marginal likelihood is calculated
correctly. The marginal likelihoods can then be used
to calculate the BF and posterior probability for the
independent and correlated models.

RESULTS

Analysis of Simulated Data
In general, the simulation results met our expectations.

We found that estimates of divergence times and rates
for large number of characters and with older fossils
were close to the true values. On the other hand, when
the data sets were simulated with population noise
and/or with correlated characters, but these were not
corrected for, the estimated parameters were far from the
true values. This bias was particularly large when the
population variance was large or when the correlation

among characters was very strong. We describe the
results in detail below.

Effect of the number of characters and fossil age.—Figure 5
shows the effect of sample size and fossil age on
posterior estimates of the root age, t9, and morphological
rate, r. Posterior means and 95% quantiles of t9 and r
are averaged across all 1000 simulation replicates and
plotted. As expected, uncertainty (as measured by the
CI width) in the estimates decreases for larger data sets
and when fossil H is older. For example, when tH =0.1
and p=100 characters are analyzed, the average CI of t9
is 0.8–1.2, which is 0.4 time units wide, or 40% of the root
age (Fig. 5a). However, this uncertainty is reduced to only
13% of the root age when analyzing p=10,000 characters
(Fig. 5c). The uncertainty is reduced even further when
tH =0.7 (when the fossil is the oldest), giving a CI width
which is about 5% of the root age estimate (Fig. 5c).
Note that the younger the fossil is, the larger the distance
from the fossil to the root of the tree is, which makes the
fossil less informative. The same pattern is observed for
the estimates of the morphological rate (Fig. 5a’–c’) and
for the rest of the node ages (Supplementary Tables S1
and S2 available on Dryad). Note that, in all cases, the
estimates appear unbiased and converging to the true
values as the data become more informative.

Effect of population noise.—Figure 6 shows the effect of
the population noise on the estimates of the root age, t9,
and morphological rate, r, when p=1000 characters are
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FIGURE 4. Summary of Bayesian inference with continuous landmark data. Step 1: Collect landmarks from the bones of the extinct and
extant species and obtain matrix X. Step 2: Collect landmarks from the bones of a population sample of one of the species sampled in Step 1 and
obtain matrix Y. Step 3: Align the landmarks in X using the Procrustes method (e.g., using Morpho ::procSym in R) to obtain aligned matrix
M. Step 4: Align landmarks from population sample in matrix Y to mean shape of alignment M (e.g., with Morpho ::align2procSym) and
obtain aligned population matrix P. Step 5: Use P to estimate population variance, ĉ, and shrinkage correlation matrix R∗. Step 6: Use ĉ to correct
M for population noise and R∗ to correct for within-lineage correlation among characters. This gives the corrected alignment Z. Step 8: Use Z
in CONTML to estimate the morphological branches using a fixed tree topology (species tree). They are used to estimate the morphological
rate and decide on the prior on rates. Step 8: Use the program MCMCtree to estimate divergence times and morphological rates of evolution.
The mcmc3r package in R can be used to prepare the morphological alignment (i.e., to correct for within-lineage correlation and noise) and to
generate the appropriate control files for MCMCtree.

TABLE 2. Priors on evolutionary rates and root age for the Carnivora analysis

Analysis Dataa Prior on rates Prior on root ageb

Divergence times mit-3CP r∼�(2,100) t∼U(37.30,66.00)
mit-12CP r∼�(2,1040) t∼U(37.30,66.00)
mit-(12+3)CP r∼�(2,100) t∼U(37.30,66.00)
morpho r∼�(2,5) t∼U(37.30,66.00)
morpho+mit-(12+3)CP r∼�(2,10) t∼U(37.30,66.00)

Bayes factors mit-3CP r∼�(2,2) t∼U(0.999,1.001)
mit-12CP r∼�(2,20) t∼U(0.999,1.001)
mit-(12+3)CP r∼�(2,2) t∼U(0.999,1.001)
morpho r∼�(2,5) t∼U(37.30,66.00)

amit-3CP: mitochondrial third codon positions; mit-12CP: mitochondrial first and second codon positions; mit-(12+3)CP: mitochondrial data
with first and second codon positions in one partiton and third codon positions in another partition; morpho: morphological data; morpho+mit-
(12+3)CP: morphological and molecular data in three partitions.
bNote that in MCMCtree, uniform fossil calibrations have soft bounds, that is, there is a small probability (p=2.5% by default) that the time may
lay outside each of the calibration bounds.

analyzed. As above, estimates are averaged across the
1000 replicates and plotted. When the population noise
is ignored in the analysis (Fig. 6a and a’), the parameters
are overestimated and the overestimation is largest for
the largest population noise. For example, when c=0.5
and when c is ignored in the analysis, the average of
the posterior mean of t9 is 1.2 (Fig. 6a), which has a

mean bias of b=0.2 or a relative bias of 20%. This is a
large bias that cannot be corrected by sampling more
characters because the model is misspecified. On the
other hand, when c=0.5 and when ĉ is used to correct
for the population noise in the analysis, the relative bias
in the estimate of t9 is only about 4% (Fig. 6b). Note that
we expect some bias to remain in the estimates because
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FIGURE 5. Effect of the number of characters and fossil age on posterior estimates of the root age and morphological rate for simulated
morphological characters. The posterior mean and 95% quantile estimates of t9 and r are averaged over R=1000 replicates. Quantitative characters
were simulated under the phylogeny of Figure 2, and the age of fossil H, tH , was varied to study the effect of the fossil age on the estimates. The
true root age, t9 =1.0 and the true morphological rate, r=1.0, are represented as horizontal dotted lines. The dashed lines give the corresponding
upper and lower 95% CI limits.

FIGURE 6. Effect of population noise on estimates of the age of the root and the morphological rate for simulated morphological characters.
The posterior mean and 95% quantile estimates of t9 and r are averaged over the R=1000 replicates. The p=1000 quantitative characters were
simulated under the phylogeny of Figure 2. (a, a’): the population noise is ignored during Bayesian inference, (b, b’): the population noise is
corrected using the vector of estimated population variances, ĉ; (c, c’): the population noise is corrected using the vector of true population
variances, c. The true root age, t9 =1.0 and the true morphological rate, r=1.0, are represented as horizontal dotted lines. The dashed lines give
the corresponding upper and lower 95% CI limits.

ĉ itself has sampling errors: we need to estimate one
variance for each character, and these variance estimates
are obtained from a small population sample of 20
individuals. Asymptotically, as the population sample

increases to infinity, the sampling errors go to zero and
ĉ would converge to the true population variances, c. In
this case, we expect to see no bias in the posterior means
of t and r. This is exemplified in Figure 6c, where the data
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FIGURE 7. Effect of within-lineage correlation among characters on estimates of the root age and the morphological rate for simulated
morphological characters. The posterior mean and 95% quantile estimates of t9 and r are averaged over the R=1000 replicates. The p=1000
quantitative characters were simulated under the phylogeny of Figure 2 with population noise c=0.25. (a, a’): both population noise and within-
lineage character correlation were ignored during Bayesian inference, (b, b’): within-lineage character correlation was not corrected for in the
data sets, but population noise was accounted for, (c, c’): both population noise and within-lineage character correlation were corrected for in
the data sets, (d,d’): both population noise and within-lineage character correlation were corrected for the true values in the data sets. The true
root age, t9 =1.0 and the true morphological rate, r=1.0, are represented as horizontal dotted lines. The dashed lines give the corresponding
upper and lower 95% CI limits. Note that due to the strange pattern in c’, we extended the simulation analysis to include additional correlation
values: 	=0.25,0.35,0.7, and 0.8.

has been scaled by the true variances, c, and thus there is
almost no bias in the posterior mean of the root age. The
pattern of bias in the estimates of t9 when the population
noise is ignored in the analysis is also seen for estimates
of the morphological rate, r, (Fig. 6a’–c’) and for the rest
of the node ages in the phylogeny (Supplementary Tables
S3 and S4 available on Dryad).

Effect of correlation among characters.—Figure 7 shows the
effect of character correlation on estimates of the root
age, t9, and the morphological rate, r, when p=1000
characters are analyzed and when the population noise is
c=0.25. As above, estimates are averaged across the 1000
replicates and plotted. When both the population noise
and the character correlation are ignored in the analysis,
the time estimates tend to be more overestimated as the
character correlation increases (Fig. 7a). For example,
when 	=0.9 and when both correlation and noise are
ignored, the average estimate of t9 =1.42, with a bias
b=0.42 or relative bias of 42% (Fig. 7a). This is a very
high bias in the estimate. Note that when 	=0.9 and
the data are corrected for the population noise but not
for the correlation, the large bias in the estimate of t9
remains (Fig. 7b). On the other hand, when 	=0.9 and
both the noise and correlation are taken into account
in the analysis, the bias in the estimate of t9 is very
small (about 4%, Fig. 7c). This trend, in which t9 is

overestimated when the character correlation is ignored,
is also observed for the estimates of the other node
ages (Supplementary Tables S5 and S6 available on
Dryad).

Strangely, a different pattern is observed for the
estimate of the rate. When the population noise and
the character correlation are ignored in the analysis, or
when the noise alone is corrected for, the bias in the
estimate of r are moderate or small (Fig. 7a’ and b’).
Surprisingly, when 	=0.5 and when both the noise and
character correlation are corrected for in the analysis,
we find that the bias in the estimate of r is very high,
an overestimation (relative bias) of about 175% (Fig. 7c’).
The bias then decays to about 27% when 	=0.9 (Fig. 7c’).
We note that these estimates are obtained when using
the shrinkage estimate, R∗, to correct for the correlation.
When using the unbiased estimate, R̂, to correct for
the correlation, the errors in the estimates of the rate
are so large that they cannot be included in Figure 7
(but see Supplementary Tables S5 and S6 available on
Dryad). We note that both the estimates R∗ and R̂ are
expected to contain large errors as we are estimating too
many correlations from a small population sample. For
example, when p=1000 characters we have to estimate
499,500 correlations. It appears that estimates of the
morphological rate may be sensitive to errors in these
estimates.
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Analysis of the Carnivora Data
Morphological tree and Smilodon landmarks.—The
morphological tree estimated with CONTML (PHYLIP
package, Felsenstein 1993) is shown in Supplementary
Figure S5 available on Dryad. Because the branch length
from the root of the tree to the extinct saber-tooth
tiger, Smilodon fatalis, is very long, we examined the
landmarks of this specimen for possible problems
before Bayesian inference of divergence times. We used
the function geomorph ::plotOutliers (Adams and
Otárola-Castillo 2013) in R to calculate the Procrustes
distance from each specimen to the mean shape. The
resulting plot (Supplementary Fig. S3A available on
Dryad) shows Smilodon as an outlier. In order to
elucidate which landmarks place Smilodon as an outlier,
we carried out a principal components analyses (PCA)
of shape variation, with the first two components shown
in Supplementary Figure S4 available on Dryad. Convex
hull polygons were added to cluster the specimens:
(i) Caniformia or Feliformia suborder, (ii) extant or
extinct specimens, and (iii) outgroup or non-outgroup
specimens. Moving along PC1 correlates with shrinking
of the length of the cranium from the occipital to the
maxillar, while PC2 correlates with an increase in the
width of the cranium (Supplementary Fig. S4 available
on Dryad). Smilodon is located at the extremes of both
PCs, that is, it has an unusually short snout and a
wide cranium. In other words, while all our specimens
except Smilodon have dog- or bear-like skulls, Smilodon
has a markedly different, emphatically cat-like shape.
This explains the long branch for Smilodon in the
morphological tree. Furthermore, Smilodon species
have been found to be outliers in larger data sets
too (Goswami et al. 2011). We keep Smilodon in the
Bayesian analysis to illustrate the large variations in
morphological rate in this phylogeny.

Bayesian selection of clock and correlation models.—Table 3
shows the results of the Bayesian model selection. For
the molecular data, the ILN rates model is best (P=
0.75) when the two molecular partitions are analyzed
jointly. However, when they are analyzed separately, the
GBM rates model is best for the third codon positions
(P=0.74), while the ILN is marginaly better for the
first and second codon positions (P=0.53). For the
morphological data, the ILN rates model with character
correlation is best (P=1.00). It is worth noting that
including character correlation in the model improves
the marginal likelihood by over 100 likelihood units
compared with the no-correlation model (i.e., all clock
models are over 100 likelihood units higher when
including the correlation). In contrast, when accounting
for correlation, the ILN model is only 12.38 and 73.55
likelihood units better than the GBM and STR rate
models, respectively. This large likelihood increase for
the correlation model emphasizes that correlation is an
important feature of morphological data that should be
taken into account in the analysis.

Divergence time estimation.—All divergence time
estimates are obtained under the ILN rates model.
Figure 8 shows the time calibrated Carnivora phylogeny.
Posterior estimates using molecule-only (Fig. 8e),
morphology-only (Fig. 8a,c,d), and joint (molecule and
morphology, Fig. 8b) data sets are consistent with each
other as the 95% HPDs of all analyses overlap. However,
for some nodes in the phylogeny (e.g., the Canis-Vulpes
extant clade), estimated dates are younger for the
molecular data. Interestingly, the most precise estimates
(i.e., with the narrowest HPDs) are obtained from the
joint analysis of morphological and molecular data.
Table 4 gives a summary of posterior estimates for the
age of the root and extant clade Canis-Vulpes as well as
the morphological and molecular rates. Our estimates
for the Canis-Vulpes divergence time, which roughly
vary between 13 and 37 Ma (depending on analysis),
overlap with the estimates (23–38 Ma) of dos Reis
et al. (2012). However, our results are in general older
than those of Matzke and Wright (2016), who report
several analyses of discrete morphological characters
for various canids. They gave their best estimates for
Caninae divergence to be around 10 Ma (but as old as
40 Ma for unrealistic analyses settings).

An interesting finding is that there is much more
rate variation in the morphological rates than in
molecular rates. In other words, molecular rates are
more clock-like than morphological ones. For example,

the coefficient of variation, CV=
√

exp(�2)−1, where

�2 is the shape parameter (or log-variance) for the
log-normal distribution, ranges between 1.3 and 1.8
for morphological characters and between 0.3 and 0.4
for the molecular data (Table 4). This indicates that
morphological rates are three to four times more variable
than molecular data.

Note that for the scaled landmark data, the within-
population variances are set to c=1. Under the ILN
model, the estimated mean amount of morphological
evolution from the root of the phylogeny to the tip
is r̄morpho ×troot =0.49×52=25.5. Thus, the population
variance represents 1/25.5 = 3.9% of the total expected
morphological branch length from the root to the tip.
That is the amount by which the external branches are
extended due to the population noise. The estimated
ĉ and R∗ for the Carnivora data are given as
Supplementary material available on Dryad, and also
given as example data in our mcmc3r package (which
the user can use to reproduce the full Carnivora analysis
presented here).

DISCUSSION

Character Correlation

Our simulations highlight the importance of
accounting for character correlation and population
noise when continuous morphological data are used
for divergence time estimation. However, when both
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TABLE 3. Bayesian selection of clock and correlation model for the Carnivora data

Dataa Modelb logL ±S.E Pr

mit-3CP GBM −22,011.37±0.05 0.74
ILN −22,012.41±0.05 0.26
STR −22,019.57±0.04 0.00

mit-12CP GBM −25,651.40±0.04 0.47
ILN −25,651.28±0.04 0.53
STR −25,657.82±0.03 0.00

mit-(12+3)CP GBM −47,658.83±0.05 0.24
ILN −47,657.71±0.05 0.75
STR −47,694.37±0.03 0.00

Morpho GBM - (R=R∗) −4097.41±0.04 0.00
GBM - (R=I) −4221.13±0.04 0.00
ILN - (R=R∗) −4085.03±0.02 1.00
ILN - (R=I) −4207.59±0.02 0.00
STR - (R=R∗) −4158.38±0.01 0.00
STR - (R=I) −4280.18±0.01 0.00

amit-12CP: 1 partition with the first and second codon positions (12CP) of the 12 concatenated mitochondrial genes (12-mit genes); mit-3CP: one
partition with the third codon positions (3CP) of the 12-mit genes; mit-(12+3)CP: the two mitochondrial partitions analyzed jointly; Morpho:
one partition with the morphological alignment of 87 characters for the carnivoran data set.
bSTR: strict clock model; GBM: autocorrelated-rates model; ILN: independent-rates model; R=I: no correlation model (i.e., R=I in Eq. 5); R=R∗:
correlation model (i.e., R=R∗ in Eq. 5). Note that, in all cases, c=1, that is, population noise is explicitly accounted for in the models. Note:
bold-type face is used to indicate the model with the highest posterior probability.

factors are accounted for, we observed an unexpected
result in our simulation study: the larger the correlation,
the smaller the error to estimate both divergence
times and evolutionary rate. Furthermore, the largest
error occurred when 	=0.50, and the error was more
dramatic on the rate estimates (see Fig. 7c and c’). The
reasons for this are not clear to us, but we speculate that
this may be due to the use of the shrinkage correlation
matrix, R∗. Estimating the character correlations is a
notoriously difficult task (e.g., Goolsby 2016) as usually
the number of characters is much larger than the
number of samples, and thus the traditional estimate
of the covariance matrix cannot be inverted. Therefore,
it may be a worthwhile effort to assess the effects of
different approaches to estimate the correlation matrix
(e.g., Clavel et al. 2019). Other such approaches include
matrix bending (e.g., Meyer and Kirkpatrick 2010)
or Bayesian estimation of the correlation matrix. The
latter approach offers good prospects as the Bayesian
estimate of the matrix would be regularized by the
use of a prior, leading to well behaved estimates. The
Wishart distribution (a multivariate generalization of
the gamma distribution) is the conjugate prior of the
precision matrix (the inverse of the covariance matrix)
and can thus be used to obtain the posterior of the
precision matrix analytically from a population sample.
From this posterior we could then obtain samples of
the precision matrix during MCMC, and use them to
obtain the data transformation (Eq. 6). This approach,
although computationally expensive, has the advantage
of incorporating the uncertainty about the correlation
estimates into the analysis.

In this article, we assumed the correlations among
characters are the same throughout the phylogeny.
The model follows Felsenstein (1973), who suggested

estimating the covariances among characters from
population samples (from one or more species), and then
using these to calculate the Mahalanobis distance among
the populations. This distance can then be used in the
likelihood calculation. Let x=mi −mj be the vector of
differences among the characters in populations i and
j. Then D2 =xTx is the square of the Euclidean distance
between mi and mj. If population samples are available,
we may obtain the covariance estimate, Ĉ. The square of
the Mahalanobis distance is then defined as M2 =xTĈx.
Note that the exponent of the node likelihood (Eq. 9)
is proportional to the Mahalanobis distance, thus by
plugging the Mahalanobis distances into the likelihood
calculation we can accommodate the covariance among
characters (Felsenstein 1973). Our approach here, using

the transform Z(s) =M×diag
{

1/
√

ĉ
}
×AT, is equivalent

to the Malahanobis method proposed by Felsenstein
(1973), because M2 =z(s)Tz(s).

The assumption of constant correlations among
lineages appears reasonable for closely related species,
but may need to be relaxed when analyzing more
distantly related clades. For example, different
covariance matrices can be estimated for different
populations. Then the population-specific covariances
could be used to calculate the likelihood for the terminal
branches corresponding to the given populations. We
could then use a stochastic process to model the changes
in correlations across branches in the phylogeny and use
this to sample the ancestral correlations using MCMC.
However, this approach would be computationally very
expensive. Revell and Harmon (2008) and Caetano and
Harmon (2017) discuss further approaches to deal with
variation of the correlation matrix along the phylogeny.
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FIGURE 8. Divergence times for the 19 carnivoran species estimated with MCMCtree using morphological-only, molecular-only, and
joint (morphological and molecular) data sets: (a) morphological-only data set accounting for population noise and within-lineage character
correlation, (b) joint data set with the morphological data set in (a), (c) morphology-only data set without correcting for within-lineage character
correlation but correcting for the population noise (d) morphology-only data set without correcting for within-lineage character correlation
nor population noise, and (e) molecule-only data set. Horizontal bars are the HPD of node ages. Calibration for the root: U(37.3,66.0). Cr. =
Cretaceous; Up. = Upper/Late; Pli. = Pliocene; Plei. = Pleistocene; Hol. = Holocene; Qu. = Quaternary. The posterior estimates for the root age
(troot) and the corresponding 95% CIs are highlighted for each data set, the former connected through a bold dashed line and the latter through
two corresponding dotted lines.
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In any case, assuming a constant correlation among
lineages appears to be much better than assuming
within-lineage independence among the characters.
Here, for our Carnivora analysis, the best model with
correlations is over 120 log-likelihood units better
than the best independent model, and the posterior
probability for the independent model is essentially
zero (Table 3).

Rate Variation Among Characters and Measurement Error
Felsenstein (1973) has shown that for a quantitative

polygenic character with no dominance and under no
selection, the rate of change for the character within a
lineage is rk ∝c/Ne,k , where c is the within-population
variance of the character and Ne,k is the effective
population size within the lineage. The population
variance is c=2

∑n
i=1pi(1−pi)a2

i , where n is the number
of loci controlling the character, pi and 1−pi are the
allele frequencies at the (two-allele) i-th locus, and
ai is the contribution of each allele to the character
value. Such a character will, asymptotically, be normally
distributed as the number of loci increases (Fisher 1919).
Thus, different characters will have different within-
population variances depending on the number of loci
involved and the contribution of each loci to the value of
the given character.

This among-character variation can be modeled.
However, this does not appear to be a worthwhile effort
if character variances can be estimated from population
samples. Let the relative rate of evolution for the j-th
character be gj. Then, the length of the k-th branch in
the phylogeny for the j-th character is gjvk if the branch
is an internal branch, and gj(vk +c) if it is an external
branch, where gjc is then the population variance for
the character (which, as shown above, is proportional to
the evolutionary rate). If we assume that the rates, gj,
follow a discretized gamma distribution (or any other
suitable distribution, e.g., Schraiber et al. 2013), then
it is possible to integrate the among character rates
out during calculation of the character likelihood as
described in Yang (1994). However, because gjc (the
character variance) can be estimated directly from a
population sample and used to re-scale the characters, it
turns out that the expectation of the re-scaled branch
lengths is gj(vk +c)/(gjc)=vk/c+1 if the branch is an
external branch, and vk/c if it is an internal branch. That
is, the character rate, gj, drops out and the re-scaled
branches are the same for all characters. Therefore, there
is no need for a model of rate variation among characters.
In practice, the estimates of the character variances
contain sampling errors that will affect the asymptotic
behavior of the estimates (Fig. 6). Note that there is an
important relationship between the among character rate
variation and the within-lineage covariances of Eq. (9),
thus we can always write C=vkdiag(√g1,...,

√gp)×R×
diag(√g1,...,

√gp).

The population variance of a trait will be similar
across lineages if the number of loci is large or if the
allele frequencies are similar across the populations
(Felsenstein 1973). However, if the number of alleles
controlling the trait is small and if the allele frequencies
are very different across populations, then c may vary
among populations (Felsenstein 1973). Let c(i) be the
population variance in species i. We can set c(i) to be
proportional to the morphological rate of the external
branch for the given species (because ri ∝c(i)/Ne,i). In
this way, variation in c among species would become
incorporated within the relaxed-clock model of rate
variation among lineages. If a population sample for the
i-th species is used to scale the characters to have unit
variance, then we fix c(i) =1 and set c(j) to be proportional
to the ratio 1/ri.

Quantitative characters may be subject to
measurement errors (Ives et al. 2007). For example,
landmark measurements may be subject to errors by the
way a user identifies a landmark point, and landmark
measurements may vary even when measured by
the same user. In our carnivoran data, all specimens
were measured by one of the co-authors. Thus, in
our case, the measurement error is confounded with
the population variance. This is unimportant as
the confounded parameter is then used to correctly
rescale the alignment for all characters. The effect of
measurement error when measurements are obtained
by different operators is a matter that will require
further study and perhaps explicit modeling within our
Bayesian framework (see Ives et al. 2007 for discussions).

Limitations of the Brownian Diffusion Model
The Brownian diffusion model has a few undesirable

features: the displacement (change) of a character is
independent of its current state, there is no stationary
distribution, and the variance in character change tends
to infinity with time. These may be unrealistic for
analysis of real data. For example, cranium landmarks
are not expected to drift to arbitrarily large values for
distantly related species. Alternative models include the
Ornstein–Uhlenbeck model (OU, Lande 1976; Hansen
1997; Butler and King 2004) or the Lévy processes
(Landis et al. 2013). The former is an extension of
the Brownian diffusion that stabilizes the displacement
towards an optimum value (and thus has a stationary
distribution and finite variance), while the latter is
the sum of a directional drift, a Brownian diffusion,
and a saltational jump in the character space. Parins-
Fukuchi (2018a,b) has studied inference of phylogeny
under the Brownian diffusion model for simulated and
real data (including morphometric data for extant and
extinct fossils) and found that the Brownian model
performed well. Implementation of the OU model for
Bayesian inference of topology and divergence times in
a phylogeny appears worthwhile and a matter for future
work.
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TABLE 4. Posterior estimates of times (root and canid nodes) and rates for the Carnivora data under the ILN rates model

Time estimates Rate estimates Log-normal shape parameter Coefficient of rate
Modela (95% HPD interval)b (95% HPD interval)c (95% HPD interval) variationd

Morphological data troot =54.6 (42.7, 65.8) r̄morpho =0.488 (0.284, 0.838) �2
morpho =1.15 (0.540, 2.10) CVmorpho =1.47

(R=R∗,c=1) tcanid =23.8 (13.2, 36.2)

Morphological data troot =52.4 (41.2, 65.3) r̄morpho =0.492 (0.287, 0.844) �2
morpho =1.10 (0.485, 2.10) CVmorpho =1.42

(R=I,c=1) tcanid =25.4 (14.6,37.4)

Morphological data troot =52.1 (41.5, 64.9) r̄morpho =0.491 (0.288, 0.849) �2
morpho =1.10 (0.482, 2.08) CVmorpho =1.42

(R=I,c=0) tcanid =26.3 (15.5, 38.1)

Molecular data troot =45.5 (36.4, 63.5) r̄mit12 =0.0044 (0.0028, 0.0065) �2
mit12 =0.1673 (0.0353, 0.483) CVmit12 =0.43

tcanid =21.7 (15.3, 31.7) r̄mit3 =0.0319 (0.0207, 0.0451) �2
mit3 =0.1131 (0.0262, 0.321) CVmit3 =0.35

Joint (Molecular and troot =52.0 (41.7, 64.6) r̄morpho =0.452 (0.268, 0.766) �2
morpho =1.017 (0.468, 1.94) CVmorpho =1.33

Morphological, tcanid =25.1 (18.7, 32.7) r̄mit12 =0.0037 (0.0026, 0.0052) �2
mit12 =0.159 (0.0326, 0.456) CVmit12 =0.42

R=R∗,c=1) r̄mit3 =0.0273 (0.0193, 0.0382) �2
mit3 =0.147 (0.0320, 0.425) CVmit3 =0.40

aR=R∗: means the shrinkage estimate of the correlation matrix is used. R=I: means the correlations are ignored, that is, the data are assumed
to be independent and the correlation matrix is the identity matrix. c=1 and c=0: means the population noise is corrected for or ignored,
respectively, in the analysis.
btcanid refers to the age of the divergence of the extant Canis-Vulpes group.
cHere, r̄ refers to the posterior estimate of the mean of the rate among branches.
dThe coefficient of variation of the log-normal distribution of rates is CV=√exp(�2)−1.

Partitioning the Morphological Alignment
The geometric morphometrics analyses carried

out with the Carnivora data suggest that different
partitioning schemes with morphological data sets
should be explored. For instance, the results from
the PCA (Supplementary Fig. S4 available on Dryad)
indicate two regions within the carnivoran skulls
that might follow different patterns of evolution: (i)
from the maxillar to the lateral and (ii) from the
lateral to the occipital. Previous research has shown
different modules of correlated continuous characters
are expected to evolve at different rates (Goswami
et al. 2014; Felice and Goswami 2018), suggesting
the use of an appropriate partitioning scheme could
improve the estimation of divergence times (Lee 2016).
Therefore, it would be interesting to explore the
evolution of the cranium shape in this phylogeny
when partitioning the data set into these two modules.
Although this was not the aim of this study, we believe
that partitioning morphological alignments according
to modules identified using geometric morphometrics
could improve estimates of rates and divergence times.
This is particularly important for the morphological data
because the evolutionary clock appears to be seriously
violated, with some species showing very large rate
variation (e.g., Smilodon).

For example, Ho (2014) discusses how patterns of
molecular rate variation may change for different regions
of the genome. If these patterns of molecular rate
variation are reflected on the morphological rates, then
it may be worthwhile exploring whether partitioning
morphological data would allow us to estimate these
patterns. Methods for partitioning molecular data

according to rate variation have been developed
(Duchêne et al. 2014; Foster and Ho 2017; Angelis et al.
2018), and these could in principle be combined with
methods to detect morphological modules (partitions)
based on morphological and/or developmental rates
(e.g., Felice and Goswami 2018). Note that if characters
are scaled to have the same variance, then the overall
rate for different character partitions will be the same.
However, the pattern of rate variation among lineages
(branches) and between partitions will be different. By
incorporating morphological partitions with different
patterns of rate variation among lineages, it should be
possible to improve the precision of time estimates.

CONCLUSIONS

The development of the TED approach using
discrete characters (Pyron 2011; Ronquist et al. 2012)
has allowed us to incorporate fossil data within
an explicit modeling framework. Incorporation of
continuous characters in the analysis is the natural
extension of this framework. Recently, Parins-Fukuchi
(2018a,b) used Felsenstein (1973) implementation of
the Brownian model of character evolution to study
in detail the performance of phylogenetic inference
under the model on simulated and real data, assuming
character independence and with emphasis on the
ability of the model to place fossil taxa on the
phylogeny. Our work here extends the Bayesian analysis
of continuous characters by explicitly accounting for
character correlation and population variance among
the characters, and by the use of Bayesian selection
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of morphological rate model. Our results and those
by Parins-Fukuchi (2018a,b) indicate the analysis of
continuous characters is promising for the estimation of
topology and divergence times in phylogenies. Perhaps
the main advantage of using continuous characters is
the easiness with which correlations can be incorporated
in the analysis. In the Mk model, character correlation
can be incorporated by expanding the model’s transition
matrix to accommodate all the possible combinations
of character transitions given the correlations (Pagel
1994), with the resulting transition matrices becoming
very large (Felsenstein 2005). For example, to analyze
p=100 correlated binary characters, we would require a
2100 ×2100 transition matrix. The number of parameters
to be estimated in this case, between 1.3×1030 and
8×1059 (depending on model complexity), may be larger
than the number of atoms in the sun. In contrast, in the
continuous case we would only need to estimate (p2 −
p)/2=4950 correlations. Given that correlated character
evolution is the rule rather than the exception, it appears
that models that explicitly incorporate correlations are
urgently required. The way forward appears to be
the use of continuous characters, or the use of the
threshold model for discrete characters, which explicitly
incorporates a continuous process in the background
(Felsenstein 2005, 2012). If the discrete characters are
ordered and can be assumed to have a continuous basis,
then correlation can be introduced in the continuous
variable (called liability), before it is discretized, as in
the implementation of the auto-discrete-gamma model
(Yang 1995).

SUPPLEMENTARY MATERIAL

Data available from the Dryad Digital Repository:
http://dx.doi.org/10.5061/dryad.q7rf263.

FUNDING

This work was supported by a Queen Mary
University of London studentship to S.A.C and by
Biotechnology and Biological Sciences Research Council
(BBSRC) grants BB/N000609/1 and BB/J009709/1
awarded to Z.Y. M.d.R. wishes to thank the National
Evolutionary Synthesis Center (NESCent, National
Science Foundation #EF-0905606) for its support during
his research on morphological evolution.

ACKNOWLEDGMENTS

We would like to thank Jeff Thorne, Michael
Landis, Simon Ho, Adam Leaché, Andrew Knapp,
and an anonymous reviewer for constructive
comments and ideas. This study used Queen
Mary’s Apocrita high-performance computer cluster.
http://doi.org./10.5281/zenodo.438045

REFERENCES

Adams D.C., Otárola-Castillo E. 2013. geomorph: an R package for
the collection and analysis of geometric morphometric shape data.
Methods Ecol. Evol. 4:393–399.

Angelis K., Álvarez-Carretero S., Dos Reis M., Yang Z. 2018.
An evaluation of different partitioning strategies for Bayesian
estimation of species divergence times. Syst. Biol. 67:61–77.

Arcila D., Pyron R.A., Tyler J.C., Ortí G., Betancur-R R. 2015.
An evaluation of fossil tip-dating versus node-age calibrations
in tetraodontiform fishes (Teleostei: Percomorphaceae). Mol.
Phylogenet. Evol. 82:131–145.

Benton M.J., Donoghue P.C.J. 2007. Paleontological evidence to date the
tree of life. Mol. Biol. Evol. 24:889–891.

Benton M.J., Donoghue P.C.J., Asher R.J., Friedman M., Near T.J.,
Vinther J. 2015. Constraints on the timescale of animal evolutionary
history. Palaeontol. Electron. 18.1.1FC:1–106.

Butler M.A., King A.A. 2004. Phylogenetic comparative analysis: a
modeling approach for adaptive evolution. Am. Nat. 164:683–695.

Caetano D.S., Harmon L.J. 2017. ratematrix: an R package for studying
evolutionary integration among several traits on phylogenetic trees.
Methods Ecol. Evol. 8:1920–1927.

Clavel J., Aristide L., Morlon H. 2019. A penalized likelihood
framework for high-dimensional phylogenetic comparative
methods and an application to New-World monkeys brain
evolution. Syst. Biol. 68:93–116. https://doi.org/10.1093/
sysbio/syy045

Donoghue P.C.J., Benton M.J. 2007. Rocks and clocks: calibrating the
Tree of Life using fossils and molecules. Trends Ecol. Evol. 22:424–
431.

dos Reis M., Donoghue P.C.J., Yang Z. 2016. Bayesian molecular clock
dating of species divergences in the genomics era. Nat. Rev. Genet.
17:71–80.

dos Reis M., Gunnell G.F., Barba-Montoya J., Wilkins A., Yang Z., Yoder
A.D. 2018. Using phylogenomic data to explore the effects of relaxed
clocks and calibration strategies on divergence time estimation:
primates as a test case. Syst. Biol. 67:594–615.

dos Reis M., Inoue J., Hasegawa M., Asher R.J., Donoghue P.C.J., Yang
Z. 2012. Phylogenomic datasets provide both precision and accuracy
in estimating the timescale of placental mammal phylogeny. Proc.
Biol. Sci. 279:3491–3500.

dos Reis M., Zhu T., Yang Z. 2014. The impact of the rate prior on
Bayesian estimation of divergence times with multiple Loci. Syst.
Biol. 63:555–565.

Drummond A.J., Ho S.Y.W., Phillips M.J., Rambaut A. 2006. Relaxed
phylogenetics and dating with confidence. PLoS Biol. 4:e88.

Duchêne S., Molak M., Ho S.Y.W. 2014. ClockstaR: choosing the
number of relaxed-clock models in molecular phylogenetic analysis.
Bioinformatics. 30:1017–1019.

Felice R.N., Goswami A. 2018. Developmental origins of mosaic
evolution in the avian cranium. Proc. Natl. Acad. Sci. U.S.A.
115:555–560.

Felsenstein J. 1973. Maximum-likelihood estimation of evolutionary
trees from continuous characters. Am. J. Hum. Genet. 25:471–492.

Felsenstein J. 1981. Evolutionary trees from gene frequencies and
quantitative characters: finding maximum likelihood estimates.
Evolution. 35:1229–1242.

Felsenstein J. 1988. Phylogenies and quantitative characters. Ann. Rev.
Ecol. Syst. 19:445–471.

Felsenstein J. 1993. PHYLIP (Phylogeny Inference Package). Version
3.5c. Distributed by the author. Seattle (WA): Department of
Genetics, University of Washington.

Felsenstein J. 2005. Using the quantitative genetic threshold model for
inferences between and within species. Philos. Trans. R. Soc. Lond.
B. Biol. Sci. 360:1427–1434.

Felsenstein J. 2012. A comparative method for both discrete and
continuous characters using the threshold model. Am. Nat. 179:145–
156.

Finarelli J.A., Goswami A. 2009. The evolution of orbit orientation and
encephalization in the Carnivora (Mammalia). J. Anat. 214:671–678.

Fisher R.A. 1919. XV. The correlation between relatives on the
supposition of Mendelian inheritance. Trans. R. Soc. Edinburgh.
52:399–433.

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article-abstract/68/6/967/5366706 by C

atherine Sharp user on 26 O
ctober 2019

https://doi.org/10.1093/sysbio/syy045
https://doi.org/10.1093/sysbio/syy045


Copyedited by: YS MANUSCRIPT CATEGORY: Systematic Biology

[20:02 23/9/2019 Sysbio-OP-SYSB190014.tex] Page: 985 967–986

2019 ÁLVAREZ-CARRETERO ET AL.—BAYESIAN INFERENCE WITH QUANTITATIVE CHARACTERS 985

Foster C.S., Ho S.Y. 2017. Strategies for partitioning clock models in
phylogenomic dating: application to the angiosperm evolutionary
timescale. Genome Biol. Evol. 9:2752–2763.

Freckleton R.P. 2012. Fast likelihood calculations for comparative
analyses. Methods Ecol. Evol. 3:940–947.

Gavryushkina A., Heath T.A., Ksepka D.T., Stadler T., Welch D.,
Drummond A.J. 2017. Bayesian total-evidence dating reveals the
recent crown radiation of penguins. Syst. Biol. 66:57–73.

Gavryushkina A., Welch D., Stadler T., Drummond A.J. 2014. Bayesian
inference of sampled ancestor trees for epidemiology and fossil
calibration. PLoS Comput. Biol. 10:e1003919.

Goolsby E.W. 2016. Likelihood-based parameter estimation for high-
dimensional phylogenetic comparative models: overcoming the
limitations of “distance-based” methods. Syst. Biol. 65:852–870.

Goswami A., Milne N., Wroe S. 2011. Biting through constraints: cranial
morphology, disparity and convergence across living and fossil
carnivorous mammals. Proc. Biol. Sci. 278:1831–1839.

Goswami A., Smaers J.B., Soligo C., Polly P.D. 2014. The
macroevolutionary consequences of phenotypic integration: from
development to deep time. Philos. Trans. R. Soc. Lond. B. Biol. Sci.
369:20130254.

Gower J.C. 1975. Generalized procrustes analysis. Psychometrika.
40:33–51.

Grimm G.W., Kapli P., Bomfleur B., McLoughlin S., Renner S.S. 2015.
Using more than the oldest fossils: dating osmundaceae with three
Bayesian clock approaches. Syst. Biol. 64:396–405.

Hansen T.F. 1997. Stabilizing selection and the comparative analysis of
adaptation. Evolution. 51:1341–1351.

Hasegawa M., Kishino H., Yano T. 1985. Dating of the human-ape
splitting by a molecular clock of mitochondrial DNA. J .Mol. Evol.
22:160–174.

Hasegawa M., Yano T., Kishino H. 1984. A new molecular clock of
mitochondrial DNA and the evolution of hominoids. Proc. Japan
Acad. Ser. B. 60:95–98.

Heath T.A., Huelsenbeck J.P., Stadler T. 2014. The fossilized birth-death
process for coherent calibration of divergence-time estimates. Proc.
Natl. Acad. Sci. U.S.A. 111:E2957–E2966.

Ho S.Y. 2014. The changing face of the molecular evolutionary clock.
Trends. Ecol. Evol. 29:496–503.

Ives A.R., Midford P.E., Garland T. 2007. Within-species variation and
measurement error in phylogenetic comparative methods. Syst.
Biol. 56:252–270.

Lande R. 1976. Natural selection and random genetic drift in
phenotypic evolution. Evolution. 30:314–334.

Landis M.J., Schraiber J.G. 2017. Pulsed evolution shaped modern
vertebrate body sizes. Proc. Natl. Acad. Sci. U.S.A. 114:13224–
13229.

Landis M.J., Schraiber J.G., Liang M. 2013. Phylogenetic analysis using
Lévy processes: finding jumps in the evolution of continuous traits.
Syst. Biol. 62:193–204.

Larson-Johnson K. 2016. Phylogenetic investigation of the complex
evolutionary history of dispersal mode and diversification rates
across living and fossil Fagales. New Phytol. 209:418–435.

Leaché A.D., Banbury B.L., Felsenstein J., de Oca A.N.M., Stamatakis
A. 2015. Short tree, long tree, right tree, wrong tree: new
acquisition bias corrections for inferring SNP phylogenies. Syst. Biol.
64:1032–1047.

Lee M.S.Y. 2016. Multiple morphological clocks and total-evidence tip-
dating in mammals. Biol. Lett. 12:20160033.

Lee M.S.Y., Oliver P.M., Hutchinson M.N. 2009. Phylogenetic
uncertainty and molecular clock calibrations: A case study of legless
lizards (Pygopodidae, Gekkota). Mol. Phylogenet. Evol. 50:661–666.

Lemey P., Rambaut A., Welch J.J., Suchard M.A. 2010. Phylogeography
takes a relaxed random walk in continuous space and time. Mol.
Biol. Evol. 27:1877–1885.

Lewis P.O. 2001. A likelihood approach to estimating phylogeny from
discrete morphological character data. Syst. Biol. 50:913–925.

Löytynoja A., Goldman N. 2005. An algorithm for progressive multiple
alignment of sequences with insertions. Proc. Natl. Acad. Sci. U.S.A.
102:10557–10562.

Löytynoja A., Goldman N. 2008. Phylogeny-aware gap placement
prevents errors in sequence alignment and evolutionary analysis.
Science. 320:1632–1635.

Magallón S. 2010. Using fossils to break long branches in molecular
dating: a comparison of relaxed clocks applied to the origin of
angiosperms. Syst. Biol. 59:384–399.

Martín-Serra A., Figueirido B., Palmqvist P. 2014. A three-
dimensional analysis of the morphological evolution and locomotor
behaviour of the carnivoran hind limb. BMC Evol. Biol.
14:129.

Matzke N.J., Wright A. 2016. Inferring node dates from tip dates in fossil
Canidae: the importance of tree priors. Biol. Lett. 12:20160328.

Meyer K., Kirkpatrick M. 2010. Better estimates of genetic covariance
matrices by “bending” using penalized maximum likelihood.
Genetics. 185:1097–1110.

Nylander J.A.A., Ronquist F., Huelsenbeck J.P., Nieves-Aldrey J.L. 2004.
Bayesian phylogenetic analysis of combined data. Syst. Biol. 53:47–
67.

O’Reilly J.E., dos Reis M., Donoghue P.C.J. 2015. Dating tips for
divergence-time estimation. Trends. Genet. 31:637–650.

Pagel M. 1994. Detecting correlated evolution on phylogenies: a general
method for the comparative analysis of discrete characters. Proc. R.
Soc. Lond. B. 255:37–45.

Paradis E., Claude J., Strimmer K. 2004. APE: analyses of phylogenetics
and evolution in R language. Bioinformatics. 20:289–90.

Parins-Fukuchi C. 2018a. Bayesian placement of fossils on
phylogenies using quantitative morphometric data. Evolution.
72:1801–1814.

Parins-Fukuchi C. 2018b. Use of continuous traits can improve
morphological phylogenetics. Syst. Biol. 67:328–339.

Pyron R.A. 2011. Divergence time estimation using fossils as
terminal taxa and the origins of Lissamphibia. Syst. Biol. 60:466–
481.

Rannala B., Yang Z. 2007. Inferring speciation times under an episodic
molecular clock. Syst. Biol. 56:453–466.

Reeder T.W., Townsend T.M., Mulcahy, D.G., Noonan B.P., Wood P.L.J.,
Sites J.W.J., Wiens J.J. 2015. Integrated analyses resolve conflicts over
squamate reptile phylogeny and reveal unexpected placements for
fossil taxa. PLoS One. 10:e0118199.

Revell L.J., Harmon L.J. 2008. Testing quantitative genetic hypotheses
about the evolutionary rate matrix for continuous characters. Evol.
Ecol. Res. 10:311–331.

Ripley B.D. 1987. Stochastic simulation. Wiley Series in Probability and
Statistics. New York: John Wiley & Sons, Inc.

Rohlf F.J., Slice D. 1990. Extensions of the Procrustes method
for the optimal superimposition of landmarks. Syst. Zool.
39:40–59.

Ronquist F., Klopfstein S., Vilhelmsen L., Schulmeister S., Murray
D.L., Rasnitsyn A.P. 2012. A total-evidence approach to dating with
fossils, applied to the early radiation of the Hymenoptera. Syst. Biol.
61:973–999.

Ronquist F., Lartillot N., Phillips M.J. 2016. Closing the gap between
rocks and clocks using total-evidence dating. Philos. Trans. R. Soc.
Lond. B. Biol. Sci. 371:20150136.

Schäfer J., Strimmer K. 2005. A shrinkage approach to large-scale
covariance matrix estimation and implications for functional
genomics. Stat. Appl. Genet. Mol. Biol. 4:Article32.

Schlager S. 2017. Morpho and Rvcg–shape analysis in R: R-
packages for geometric morphometrics, shape analysis and surface
manipulations. In: Zheng G., Li S., Szekely G., editors. Statistical
shape and deformation analysis. San Diego: Elsevier. p. 217–
256.

Schrago C.G., Mello B., Soares A.E.R. 2013. Combining fossil and
molecular data to date the diversification of New World Primates.
J. Evol. Biol. 26:2438–2446.

Schraiber J.G., Mostovoy Y., Hsu T.Y. and Brem R.B. 2013. Inferring
evolutionary histories of pathway regulation from transcriptional
profiling data. PLoS Comput. Biol. 9:e1003255.

Slater G.J. 2013. Phylogenetic evidence for a shift in the mode of
mammalian body size evolution at the Cretaceous-Palaeogene
boundary. Methods Ecol. Evol. 4:734–744.

Slater G.J., Harmon L.J., Alfaro M.E. 2012. Integrating fossils with
molecular phylogenies improves inference of trait evolution.
Evolution. 66:3931–3944.

Stadler T., Yang Z. 2013. Dating phylogenies with sequentially sampled
tips. Syst. Biol. 62:674–688.

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article-abstract/68/6/967/5366706 by C

atherine Sharp user on 26 O
ctober 2019



Copyedited by: YS MANUSCRIPT CATEGORY: Systematic Biology

[20:02 23/9/2019 Sysbio-OP-SYSB190014.tex] Page: 986 967–986

986 SYSTEMATIC BIOLOGY VOL. 68

Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis
and post-analysis of large phylogenies. Bioinformatics. 30:1312–
1313.

Tavaré S., Marshall C.R., Will O., Soligo C., Martin R.D. 2002. Using
the fossil record to estimate the age of the last common ancestor of
extant primates. Nature. 416:726–729.

Thorne J.L., Kishino H., Painter I.S. 1998. Estimating the rate of
evolution of the rate of molecular evolution. Mol. Biol. Evol.
15:1647–1657.

Tseng, Z. J., Wang, X. 2007. The first record of the Late Miocene
Hyaenictitherium hyaenoides Zdansky (Carnivora: Hyaenidae) in
Inner Mongolia and evaluation of the genus. J. Vert. Paleontol.
27(3):699–708.

Wang, X. 1994. Phylogenetic systematics of the Hesperocyoninae
(Carnivora: Canidae). Bull. Am. Mus. Nat. Hist. 221:1–207.

Wang, X., Tedford, R. H., Taylor, B. E. 1999. Phylogenetic systematics
of the Borophaginae (Carnivora: Canidae). Bull. Am. Mus. Nat. Hist.
243:1–391.

Werdelin, L. 1988. Studies of fossil hyaenas: the genera Thalassictis
Gervais ex Nordmann, Palhyaena Gervais, Hyaenictitherium
Kretzoi, Lycyaena Hensel, and Palinhyaena Qiu, Huang and Guo.
Zool J Linnean Soc, 92:211–265.

Werdelin, L. 1991. The Hyaenidae: taxonomy, systematics and
evolution. Fossils and Strata. 30:1–104.

Winterton S.L., Ware J.L. 2015. Phylogeny, divergence times
and biogeography of window flies (Scenopinidae) and the

therevoid clade (Diptera: Asiloidea). Syst. Entomol. 40:491–
519.

Wood H.M., Matzke N.J., Gillespie R.G., Griswold C.E. 2013. Treating
fossils as terminal taxa in divergence time estimation reveals ancient
vicariance patterns in the palpimanoid spiders. Syst. Biol. 62:264–
284.

Wright A.M., Lloyd G.T., Hillis D.M. 2016. Modeling character change
heterogeneity in phylogenetic analyses of morphology through the
use of priors. Syst. Biol. 65:602–611.

Xie W., Lewis P.O., Fan Y., Kuo L., Chen M.-H. 2011. Improving marginal
likelihood estimation for Bayesian phylogenetic model selection.
Syst. Biol. 60:150–60.

Yang Z. 1994. Maximum likelihood phylogenetic estimation from DNA
sequences with variable rates over sites: approximate methods. J.
Mol. Evol. 39:306–14.

Yang Z. 1995. A space-time process model for the evolution of DNA
sequences. Genetics. 139:993–1005.

Yang Z. 2007. PAML 4: Phylogenetic analysis by maximum likelihood.
Mol. Biol. Evol. 24:1586–1591.

Yang Z., Rannala B. 2006. Bayesian estimation of species divergence
times under a molecular clock using multiple fossil calibrations with
soft bounds. Mol. Biol. Evol. 23:212–226.

Zhang C., Stadler, T., Klopfstein, S., Heath, T.A., Ronquist F. 2016. Total-
evidence dating under the fossilized birth-death process. Syst. Biol.
65:228–249.

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article-abstract/68/6/967/5366706 by C

atherine Sharp user on 26 O
ctober 2019


	Bayesian Estimation of Species Divergence Times Using Correlated Quantitative Characters

