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Bayesian Molecular Clock Dating Using Genome-Scale
Datasets

Mario dos Reis and Ziheng Yang

Abstract

Bayesian methods for molecular clock dating of species divergences have been greatly developed during the
past decade. Advantages of the methods include the use of relaxed-clock models to describe evolutionary
rate variation in the branches of a phylogenetic tree and the use of flexible fossil calibration densities to
describe the uncertainty in node ages. The advent of next-generation sequencing technologies has led to a
flood of genome-scale datasets for organisms belonging to all domains in the tree of life. Thus, a new era has
begun where dating the tree of life using genome-scale data is now within reach. In this protocol, we explain
how to use the computer program MCMCTree to perform Bayesian inference of divergence times using
genome-scale datasets. We use a ten-species primate phylogeny, with a molecular alignment of over three
million base pairs, as an exemplar on how to carry out the analysis. We pay particular attention to how to set
up the analysis and the priors and how to diagnose the MCMC algorithm used to obtain the posterior
estimates of divergence times and evolutionary rates.
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1 Introduction

Themolecular clock hypothesis, which states that the rate of molec-
ular evolution is approximately constant with time, provides a
powerful way to estimate the times of divergence of species in a
phylogeny. Since its proposal over 50 years ago [1], the molecular
clock hypothesis has been used countless times to calibrate molec-
ular phylogenies to geological time, with the ultimate aim of dating
the tree of life [2, 3]. Several statistical inference methodologies
have been developed for molecular clock dating analyses; however,
during the past decade, the Bayesian method has emerged as the
method of choice [4, 5], and several Bayesian inference software
packages now exist to carry out this type of analysis [6–10].

In this protocol, we will explain how to use the computer
program MCMCTree to estimate times of species divergences
using genome-scale datasets within the Bayesian inference
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framework. Bayesian inference is well suited for divergence time
estimation because it allows the natural integration of information
from the fossil record (in the form of prior statistical distributions
describing the ages of nodes in a phylogeny) with information from
molecular sequences to estimate node ages, or geological times of
divergence, of a species phylogeny [6, 11]. Another advantage of
the Bayesian clock dating method is that relaxed-clock models,
which allow for violations of the molecular clock, can be easily
implemented as the prior on the evolutionary rates for the branches
in the phylogeny [6]. MCMCTree allows analyses to be carried out
using two popular relaxed-clock models (the autocorrelated and
independent log-normally distributed rates models [12, 13]), as
well as under the strict molecular clock. Furthermore, MCMCTree
allows the user to build flexible fossil calibrations based on various
statistical distributions (such as the uniform, truncated-Cauchy,
and skew-t, and skew-normal distributions [12, 14, 15]). But
perhaps the main advantage of MCMCTree is the implementation
of an approximate algorithm to calculate the likelihood [6, 16],
which allows the computer analysis of genome-scale datasets to be
completed in reasonable amounts of time. The disadvantage of the
algorithm is that it only works on fixed tree topologies. Several
software packages that perform co-estimation of times and tree
topology, but which do not use the approximation, are available
[8, 9, 17, 18].

In this protocol, we focus on how to carry out a clock dating
analysis with MCMCTree, paying particular attention to diagnos-
ing the MCMC algorithm (the workhorse algorithm within the
Bayesian method). Theoretical details of the Bayesian clock dating
methods implemented in the programMCMCTree are described in
[12–16, 19]. For general introductions to Bayesian statistics and
Bayesian molecular clock dating, the reader may consult [20, 21].

2 Software and Data Files

To run the protocol, you will need the MCMCTree and BASEML
programs, which are part of the PAML software package for phylo-
genetic analysis [22]. The source code and compiled versions of the
code are freely available from bit.ly/ziheng-paml. All the data files
necessary to run the protocol can be obtained from github.com/
mariodosreis/divtime. Please create a directory called divtime in
your computer and download all the data files from the GitHub
repository. This protocol was tested with PAML version 4.9e.

You are assumed to have basic knowledge of the command line
in Unix or Windows (also known as command prompt, shell, or
terminal). Simple tutorials for users of Windows, Mac OS, and
Linux are posted at bit.ly/ziheng-software. Install MCMCTree
and BASEML in your computer system, and make sure you have
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the mcmctree and baseml executables in your system’s path (see
bit.ly/ziheng-paml for details on how to do this). Finally, it is
helpful (but not indispensable) to have knowledge of the R statisti-
cal environment (www.r-project.org). R is quite useful to analyze
the output of the program, perform convergence diagnostics, and
create nice-looking plots. File R/analysis.R contains some
examples for this tutorial.

In this protocol, we will estimate the divergence times of nine
primates and one scandentian (an out-group), using a very long
alignment (over three million nucleotides long). This dataset was
chosen because it can be analyzed very quickly with MCMCTree
and it is thus suitable to illustrate the method. We also provide a
dataset of 330 species (276 primates and 4 out-groups) with a
shorter alignment, to illustrate time estimation in a taxon-rich
dataset (see Sect. 5.5 for details).

2.1 Tree and Fossil

Calibrations

The phylogenetic tree of the ten species is shown in Fig. 1. The tree
encompasses members of all the main primate lineages. The ten
species were chosen because they have had their complete genomes
sequenced. They are a subset of the 36 mammal species analyzed in
[23]. File data/10s.tree contains the tree with fossil calibrations
in Newick format, which is the format required by MCMCTree.
The eight fossil calibrations are shown in Table 1. The calibrations
are the same used to estimate primate divergence times in [24]. We
discuss fossil calibrations in detail in the “Sampling from the Prior”
section. The time unit in the analysis is 100 million years (My).
Thus, the calibration B(0.075, 0.10) means the node age is con-
strained to be between 7.5 and 10 million years ago (Ma).

2.2 Molecular

Sequence Data

The molecular data are an alignment of 5614 protein-coding genes
from the ten species. All ambiguous codon sites were removed, and
thus the alignment contains no missing data. The alignment was
separated into two partitions: A partition consisting of all the first
and second codon positions (2,253,316 nucleotides long) and a
partition of third codon positions (1,126,658 nucleotides long).
The alignment is a subset of the larger 36-mammal-species align-
ment in [23]. See also ref. 24. File 10s.phys in the data directory
contains the alignment. The alignment is compressed into site
patterns (a site pattern is a unique combination of character states
in an alignment column) to save disk space.

3 Tutorial

We seek to obtain the posterior distribution (i.e., the estimates) of
the divergence times (t) and the molecular evolutionary rates (r, μ,
σ2) for the species in the phylogeny of Fig. 1. Here t¼ (t11, . . ., t19)
are the nine species divergence times; r ¼ (r1,12, . . ., r1,19, r2,12, . . .,
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r2,19) are the 2 � 8 ¼ 16 molecular rates, one per branch and
partition (i.e., there are eight branches in the tree and two parti-
tions in the molecular data); and μ ¼ (μ1, μ2) and σ2 ¼ (σ21, σ

2
2) are

the mean rates and the log-variance of the rates, for each partition.
The posterior distribution is

f t; r; μ; σ2jD� � / f tð Þf rjt; μ; σ2� �
f μð Þf σ2

� �
f Djr; tð Þ,
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Fig. 1 The tree of ten species. Nodes with fossil calibrations are indicated with
black dots (see Table 1 for calibration densities). Internal nodes are numbered
from 11 to 19 according to the nomenclature used by MCMCTree

Table 1
List of fossil calibrations used in this tutorial

Nodea Crown group MCMCTree calibrationb

19 Chimp-human B(0.075, 0.10, 0.01, 0.20)

18 Gorilla-human B(0.10, 0.132, 0.01, 0.20)

17 Hominidae B(0.112, 0.28, 0.01, 0.10)

16 Catarrhini B(0.25, 0.29, 0.01, 0.10)

15 Anthropoidea ST(0.4754, 0.0632, 0.98, 22.85)

13 Strepsirrhini B(0.38, 0.58, 0.01, 0.10)

12 Primates S2N(0.698, 0.65, 0.0365, �3400, 0.650, 0.138, 11409)

11 Euarchonta G(36, 36.9)

aNode numbers as in Fig. 1
bB(a, b, pL, pU) means the calibration is a uniform distribution between a and b, with probabilities pL and pU that the true

node age is outside the calibration bounds. ST(location, scale, shape, df ) means the calibration is a skew-t distribution.
S2N( p, location1, scale1, shape1, location2, scale2, shape2) means the calibration is a p:1 � p mixture of two skew-

normal distributions. G(α, β) means the calibration is a gamma distribution with shape α and rate β. See MCMCTree’s

manual for the full details on fossil calibration formats. The calibrations are from the primate analysis in [24]
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where f(t) is the prior on times; f(r|t, μ, σ2)f(μ)f(σ2) is the prior on
the branch rates, mean rates, and variances of the log-rates; and
f(D|t, r) is the molecular sequence likelihood. The prior on the
times is constructed by combining the birth-death process with the
fossil calibration densities (see ref. 13 for details). The prior on the
rates is constructed under amodel of rate evolution, assuming, in this
tutorial, that the branch rates are independent draws from a
log-normal distribution with mean μi and log-variance σ2i [13].

Bayesian phylogenetic inference using MCMC is computation-
ally expensive because of the repeated calculation of the likelihood
on a sequence alignment. The time it takes to compute the likeli-
hood is proportional to the number of site patterns in the align-
ment. Thus, longer alignments take longer to compute. For
genome-scale alignments, the computation time is prohibitive.

MCMCTree implements an approximation to the likelihood
that speeds computation time substantially, making analysis of
genome-scale data feasible. The approximate likelihood method
for clock dating was proposed by Thorne et al. [6] and extended
within MCMCTree [16]. The method relies on approximating the
log-likelihood surface on the branch lengths by its Taylor expan-
sion. Write ℓ(bj) ¼ log f(D| bj) for the log-likelihood as a function
of the branch lengths bj¼ (bj,i ¼ rj,iti) for the alignment partition j.
The Taylor approximation is

ℓ b j

� � � ℓ
�
b̂j

�þ �
b j � b̂j

�T
g j þ

1

2

�
b j � b̂j

�T
H j

�
b j � b̂j

�
,

where b̂j are the maximum likelihood estimates (MLEs) of the
branch lengths and gj and Hj are the gradient (vector of first
derivatives) and Hessian (matrix of second derivatives) of the
log-likelihood surface evaluated at the MLEs for the partition.
The approximation can be improved by applying transformations
to the branch lengths (see ref. 16 for details).

To use the approximation, one first fixes the topology of the
phylogeny, and then estimates the branch lengths for each align-
ment partition on the fixed tree by maximum likelihood. The
gradient and Hessian of the log-likelihood are obtained for each
partition at the same time as the MLEs of the branch lengths. Note
that parameters of the substitution model—such as the transition/
transversion ratio, κ, in the HKY model or the α parameter in the
discrete gamma model of rate variation among sites—are estimated
at this step. Thus, different substitution models will generate dif-
ferent approximations, because they will have different MLEs for
the branch lengths, gradient, and Hessian. Note that the time it
takes to compute the approximate likelihood depends only on the
number of species (which determines the size of b and H) and not
on the alignment length, that is, once g and H have been calcu-
lated, MCMC sampling on the approximation takes the same time
regardless of the length of the original alignment.
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3.1 Overview We will use the approximate likelihood method to speed up the
computation of the likelihood on the large genome alignment. The
general strategy for the analysis is as follows:

1. Approximate likelihood calculation: First, we will calculate the
gradient (g) and Hessian (H) matrix of the branch lengths on
the unrooted tree. For this step, we will need to use the
MCMCTree and BASEML programs (BASEML will carry
out the actual computation of g and H). The substitution
model is chosen at this step.

2. MCMC sampling from the posterior: Once g and H have been
calculated and we have decided on our priors, we can use
MCMCTree to perform MCMC sampling from the posterior
distribution of times and rates. We will then look at the sum-
maries of the posterior (such as posterior mean times and rates
and 95% credibility intervals).

3. Convergence diagnostics: The MCMC algorithm is a stochastic
algorithm that visits regions of the parameter space in propor-
tion to the posterior distribution. Due to its very nature, it is
possible that sometimes the MCMC chain is terminated before
it has had a chance to explore the parameter space appropri-
ately. The way to guard against this is to run the analysis two or
more times and compare the summary statistics from the two
(or more) MCMC chains. If the results from different runs are
very similar, then convergence to the posterior distribution can
be reasonably assumed.

4. MCMC sampling from the prior: Finally, we will sample directly
from the prior of times and rates. This is particularly important
in Bayesian molecular clock dating because in most cases the
prior on times may look quite different from the fossil calibra-
tion densities specified by the user. Thus, sampling from the
prior allows the user to check the soundness of the prior
actually used.

Note that in this protocol we assume the user has chosen a
suitable sequence alignment and a phylogenetic tree to carry out
the analysis. For genome-scale alignments, it is important that the
genes chosen among the various species are orthologous and that
the alignment has been checked for accuracy. Several chapters in
this volume can guide the user in this purpose.

3.2 Calculation of the

Gradient and Hessian

to Approximate the

Likelihood

Go into the gH directory, and open the mcmctree-outBV.ctl file
using your favorite text editor. This control file contains the set of
parameters necessary for MCMCTree to carry out the calculations
of the gradient and Hessian needed for the approximate likelihood
method. Figure 2 shows the contents of the mcmctree-outBV.
ctl file.
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The first two items, seqfile and treefile, indicate the
alignment and tree files to be used. The third item, ndata, indi-
cates the number of partitions in the sequence file, in this case, two
partitions. The fifth item, usedata, is very important, as it tells
MCMCTree the type of analysis being carried out. The options are

seqfile = ../data/10s.phys 
treefile = ../data/10s.tree

ndata = 2
seqtype = 0    * 0: nucleotides; 1:codons; 2:AAs
usedata = 3    * 0: no data (prior); 1:exact likelihood; 

* 2: approximate likelihood; 3:out.BV (in.BV)
clock = 2    * 1: global clock; 2: independent rates; 3: correlated rates

model = 4    * 0:JC69, 1:K80, 2:F81, 3:F84, 4:HKY85
alpha = 0.5   * alpha for gamma rates at sites
ncatG = 5    * No. categories in discrete gamma

cleandata = 0    * remove sites with ambiguity data (1:yes, 0:no)?

Fig. 2 The gH/mcmctree-outBV.ctl file, with appropriate options to set up calculation of the gradient
and Hessian matrix for the approximate likelihood method

10

((Bushbaby: 0.029523, Mouse_lemur: 0.019653): 0.006547, (Tarsier: 0.030897, (Marmoset: 0.0

0.006547  0.029523  0.019653  0.002123  0.030897  0.011754  0.015183  0.003426  0.008716

-2.114230 -2.618861 21.299836 31.765175 20.801006 -3.019251 -14.909946  8.188538 -3.70464

Hessian

-2.033e+08  -2.59e+06 -9.717e+06 -4.363e+07  1.799e+06 -5.457e+06  2.055e+06  -1.29e+04  
-2.59e+06  -5.71e+07  2.235e+06  1.475e+06  3.315e+06  1.651e+06  3.436e+06  2.134e+06  

-9.717e+06  2.235e+06 -8.733e+07 -2.954e+06   2.79e+06  7.275e+05  3.371e+06  1.512e+06  
-4.363e+07  1.475e+06 -2.954e+06 -4.622e+08 -5.059e+06 -2.658e+07  3.701e+06 -5.157e+06 -
1.799e+06  3.315e+06   2.79e+06 -5.059e+06 -5.473e+07  7.951e+05  3.437e+06   2.28e+06  

-5.457e+06  1.651e+06  7.275e+05 -2.658e+07  7.951e+05 -1.403e+08  3.724e+06 -1.163e+07  
2.055e+06  3.436e+06  3.371e+06  3.701e+06  3.437e+06  3.724e+06  -1.25e+08  -1.69e+07  
-1.29e+04  2.134e+06  1.512e+06 -5.157e+06   2.28e+06 -1.163e+07  -1.69e+07 -4.756e+08  
3.483e+06  4.548e+06  4.413e+06 -1.406e+05  4.463e+06  2.246e+06  1.979e+06  1.698e+06  
8.344e+05  2.861e+06  2.023e+06  1.605e+06  2.021e+06 -5.676e+05 -8.424e+05 -1.722e+07 -
3.625e+06  4.671e+06  4.894e+06  8.939e+05  4.775e+06  2.595e+06  1.699e+06  5.407e+05  
2.701e+06  3.036e+06  2.394e+06  1.777e+06  3.175e+06  6.217e+05 -5.952e+05 -4.592e+06 –

Fig. 3 The gH/out.BV file produced by BASEML. The first line has the number of species (10), the second
line has the tree topology with MLEs of branch lengths, and the MLEs of branch lengths are given again in the
third line. The fourth line contains the gradient, g, followed by the Hessian, H, for partition 1. This file will be
renamed in.BV and placed into the mcmc/ directory to carry out MCMC sampling using the approximate
likelihood method
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0, to sample from the prior; 1, to sample from the posterior using
exact likelihood; 2, to sample from the posterior using approximate
likelihood; and 3, to prepare the data for calculation of g and H.
The last is the option we will be using in this step. The next three
items, model, alpha, and ncatG, set up the nucleotide substitu-
tion model, in this case the HKY + Gamma model [25]. Finally, the
cleandata option tells MCMCTree whether to remove ambigu-
ous data. Our alignment has no ambiguous sites, so this option has
no effect in this case.

Using a terminal, go to the gH directory and type

$ mcmctree mcmctree-outBV.ctl

(Don’t type in the $ as this represents the command prompt!)
This will start the MCMCTree program. MCMCTree will prepare
several tmp????.* files and will then call the BASEML program to
estimate g and H. For this step to work correctly, the baseml
executable must be in your system’s path. Once BASEML and
MCMCTree have finished, you will notice a file called out.BV
has been created. Figure 3 shows part of the contents of this file.
The first line indicates the number of species (10), followed by the
tree with branch lengths estimated under maximum likelihood for
the first partition (first and second codon sites). Next, we have the
MLEs of the 17 branch lengths (these are the same as in the tree but
printed in a different order). Then we have the gradient, g1, the
vector of 17 first derivatives of the likelihood at the branch length
MLEs for partition 1. For small datasets, the gradient is usually
zero. For large datasets, the likelihood surface is too sharp (i.e.,
bends downward sharply and it is very narrow at the MLEs), and
the gradient is not zero for numerical issues. But this is fine. Next,
we have the 17 � 17 Hessian matrix, H1, the matrix of second
derivatives of the likelihood at the branch length MLEs for parti-
tion 1. If you scroll down the file, you will find the second block,
with the tree, branch length MLEs, g2, and H2 for partition
2 (third codon positions).

3.3 Calculation of the

Posterior of Times and

Rates

3.3.1 Control File and

Priors

Now that we have calculated g and H, we can proceed to MCMC
sampling of the posterior distribution using the approximate likeli-
hood method. Copy the gH/out.BV file into the mcmc directory,
and rename it as in.BV. Now go into the mcmc directory. There
you will find mcmctree.ctl, the necessary MCMCTree control
file to carry out MCMC sampling from the posterior. Figure 4
shows the contents of the file. The first item, seed, is the seed for
the random number generator used by the MCMC algorithm.
Here it is set to �1, which tells MCMCTree to use the system’s
clock time as the seed. This is useful, as running the program
multiple times will generate different outputs.
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The mcmcfile option tells MCMCTree where to save the
parameters sampled (divergence times and rates) during the
MCMC iterations. Here we will save them to a file named mcmc.
txt. Once the MCMC sampling has completed, MCMCTree will
read the sample from the mcmc.txt file and generate a summary of
the MCMC output. This summary will be saved to a file called
out.txt (outfile option).

The option usedata is set to 2 here, which tells MCMCTree
to calculate the likelihood approximately by using the g and
H values saved in the in.BV file. Option clock sets the clock
model. Here we use clock ¼ 2, which assumes rates are identical,
independent realizations from a log-normal distribution
[7, 26]. Option RootAge sets the calibration on the root node of
the phylogeny, if none are present in the tree file. In our case, we
already have a calibration on the root, so this option has no effect.
The next three options, model, alpha, and ncatG, have no effect
as the substitution model was chosen during estimation of g andH.

The following options are very important as they determine the
prior used in the analysis. BDparams sets the prior on node ages for
those nodes without fossil calibrations by using the birth-death
process [12]. Here we use 1 1 0, which means node ages are

seed = -1
seqfile = ../data/10s.phys 

treefile = ../data/10s.tree
mcmcfile = mcmc.txt
outfile = out.txt

ndata = 2
seqtype = 0    * 0: nucleotides; 1:codons; 2:AAs
usedata = 2    * 0: no data (prior); 1:exact likelihood; 

* 2:approximate likelihood; 3:out.BV (in.BV)
clock = 2    * 1: global clock; 2: independent rates; 3: correlated rates

RootAge = '<1.0'  * safe constraint on root age, used if no fossil for root.

model = 4    * 0:JC69, 1:K80, 2:F81, 3:F84, 4:HKY85
alpha = 0.5  * alpha for gamma rates at sites
ncatG = 5    * No. categories in discrete gamma

cleandata = 0    * remove sites with ambiguity data (1:yes, 0:no)?

BDparas = 1 1 0   * birth, death, sampling
kappa_gamma = 6 2     * gamma prior for kappa
alpha_gamma = 1 1     * gamma prior for alpha

rgene_gamma = 2 40 1   * gammaDir prior for rate for genes
sigma2_gamma = 1 10 1   * gammaDir prior for sigma^2     (for clock=2 or 3)

print = 1   * 0: no mcmc sample; 1: everything except branch rates 2: everything
burnin = 20000

sampfreq = 100
nsample = 20000

Fig. 4 The mcmc/mcmctree.ctl file necessary to sample from the posterior distribution using the
approximate likelihood method
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uniformly distributed between present time and the age of the root.
Options kappa_gamma and alpha_gamma set gamma priors for
the κ and α parameters in the substitution model. These have no
effect as we are using the likelihood approximation. Options rge-
ne_gamma and sigma2_gamma set the gamma-Dirichlet prior on
the mean substitution rate for partitions and for the rate variance
parameter, σ2 [19]. The prior on the mean rate is Gamma(2, 40),
which has mean 0.05 substitutions per time 100 My. A symmetric
Dirichlet distribution with concentration parameter equal to 1 is
used to spread the rate prior across partitions (thus rgene_gamma
¼ 2 40 1). See ref. 19 for details. The prior on σ2 is Gamma(1, 10)
which has mean 0.1. A Dirichlet is also used to spread the prior
across partitions.

The final block of options, print, burnin, sampfreq, and
nsample, control the length and sampling frequency of the
MCMC. We will discard the first 20,000 iterations as the burn-in
and then print parameter values to the mcmc.txt file every
100 iterations, to a maximum of 20,000 + 1 samples. Thus, our
MCMC chain will run for a total of 20,000 + 20,000 � 100 ¼
2,020,000 iterations.

3.3.2 Running and

Summarizing the MCMC

Go into the mcmc directory and type

$ mcmctree mcmctree.ctl

This will start the MCMC sampling. First, MCMCTree will
iterate the chain for a set number of iterations, known as the burn-
in. During this period, the program will fine-tune the step sizes for
proposing parameters in the chain. Once the burn-in is finished,
sampling from the posterior will start. Figure 5 shows a screenshot
of MCMCTree in action. The leftmost column indicates the prog-
ress of the sampling as a percentage of the total (5%, 10% of total
iterations, and so on). The next numbers represent the acceptance
proportions, which are close to 30% (this is the result of fine-tuning
by the program). After the five acceptance proportions, the pro-
grams prints a few parameters to the screen and in the last columns
the log-likelihood and the time taken.

The above analysis takes about 2 min and 30 s to complete on a
2.2 GHz Intel Core i7 Processor. Once the analysis has finished,
you will see that MCMCTree has created several new files in the
mcmc directory. Rename mcmc.txt to mcmc1.txt and out.txt
to out1.txt. Now, on the command line, type again

$ mcmctree mcmctree.ctl

This will run the analysis a second time. The results should be
slightly different to the previous run due to the stochastic nature of
the algorithm. Once the second run has finished, rename mcmc.

318 Mario dos Reis and Ziheng Yang



txt to mcmc2.txt and out.txt to out2.txt. If you want to
conduct two runs simultaneously, you can create two directories
(say r1/ and r2/) and copy the necessary files into them. Then
open two terminal windows to start the runs from within each
directory.

Using your favorite text editor, open file out1.txt, which
contains the summary of the first MCMC run. Scroll to the end
of the file (see screenshot, Fig. 6). You will see the time used by the
program (in my case 2:32), the posterior means of the parameters
sampled, and three phylogenetic trees in Newick format. The first
tree simply has internal nodes labelled with a number. This is useful
to compare the tree with the posterior means of times at the end of
the file. The second tree is the tree with branch lengths in absolute
time units. The third tree is like the second by including the 95%
credibility intervals (CIs) of the node ages. At the bottom of the
file, you have a table with all the divergence times (from t_n11 to
t_n19), the mean substitution rates for the two partitions (mu1
and mu2), the rate variation coefficients (sigma2_1 and
sigma2_2), and finally the log-likelihood (lnL). The table gives
the posterior means, equal-tail CIs, and high-posterior-density CIs.
For example, the posterior age of the root (node 11, Fig. 1) is
116.8 Ma (95% CI, 144.2–92.4 Ma) while for the divergence

0% 0.26 0.39 0.23 0.39 0.28  1.285 1.243 0.588 1.158 0.541 0.321 - 0.192 0.197 -16.9  0:02

(nsteps = 50)
Current Pjump:      0.26200  0.39475  0.23175  0.38650  0.28000  0.27550  0.39200  0.43750 
0.40100  0.29725  0.33725  0.27525  0.32275  0.23475  0.23150  0.29875  0.31600  0.27800  
0.25300  0.29975  0.29650  0.32575  0.27500  0.61150  0.29850  0.31225  0.35400  0.23200  
0.30800  0.28250  0.33050  0.21325  0.22700  0.25900  0.26725  0.26900  0.33150  0.23725  
0.31000  0.20700  0.24225  0.61625  0.30675  0.30150  0.32000  0.21975  0.27650  0.22500  
0.36650  0.00000
Current finetune:   0.00365  0.00166  0.00586  0.00182  0.00503  0.00697  0.00486  0.00500  
0.00835  0.24230  0.21346  0.71942  0.65595  0.01093  0.01230  0.01256  0.00960  0.01492  
0.02008  0.02466  0.03547  0.03942  0.04624  0.17077  0.02425  0.04971  0.01513  0.03626  
0.03661  0.04475  0.08082  0.00867  0.00949  0.01146  0.00861  0.01133  0.01263  0.02252  
0.02728  0.03996  0.03790  0.14736  0.02025  0.04584  0.01209  0.02975  0.02776  0.03389  
0.05173  0.00000
New     finetune:   0.00313  0.00232  0.00438  0.00248  0.00465  0.00632  0.00675  0.00806  
0.01194  0.23972  0.24532  0.65158  0.71499  0.00829  0.00918  0.01250  0.01020  0.01367  
0.01654  0.02463  0.03499  0.04345  0.04183  0.47928  0.02411  0.05210  0.01846  0.02714  
0.03776  0.04175  0.09064  0.00592  0.00694  0.00969  0.00755  0.01000  0.01422  0.01728  
0.02835  0.02644  0.02976  0.42023  0.02079  0.04611  0.01305  0.02100  0.02527  0.02454  
0.06589  0.00000

5% 0.34 0.30 0.31 0.32 0.28  1.163 0.981 0.622 0.893 0.464 0.295 - 0.129 0.154 -17.0  0:08
10% 0.35 0.30 0.31 0.32 0.27  1.189 0.943 0.607 0.859 0.457 0.293 - 0.128 0.153 -17.0  0:15
15% 0.36 0.30 0.30 0.31 0.27  1.156 0.920 0.604 0.837 0.457 0.290 - 0.133 0.160 -17.0  0:22
20% 0.35 0.30 0.30 0.32 0.26  1.126 0.908 0.600 0.825 0.453 0.290 - 0.137 0.165 -17.0  0:29
25% 0.36 0.30 0.30 0.31 0.26  1.139 0.912 0.605 0.829 0.458 0.293 - 0.138 0.165 -17.0  0:37
30% 0.36 0.30 0.30 0.31 0.26  1.153 0.918 0.609 0.834 0.460 0.293 - 0.136 0.163 -17.0  0:43

Fig. 5 Screenshot of MCMCTree’s output during MCMC sampling of the posterior. Different runs of the
program will give slightly different output values

Molecular Clock Dating 319



between human and chimp (node 19, Fig. 1) is 8.52 Ma (95% CI,
7.58–9.81 Ma).

You will also notice that MCMCTree created a file called Fig-
Tree.tre. This contains the posterior tree in Nexus format, suit-
able for plotting in the program FigTree (tree.bio.ed.ac.uk/
software/figtree/). Figure 7 shows the posterior tree plotted in
FigTree, with the time unit set to 1 My.

3.4 Convergence

Diagnostics of

the MCMC

Diagnosing convergence of the MCMC chains is extremely impor-
tant. Several software tools have been written for this purpose. For
example, the user-friendly Tracer program (beast.bio.ed.ac.uk/
tracer) can be used to read in the mcmc1.txt and mcmc2.txt
files and calculate several convergence statistics. Here we will
use R to perform basic convergence tests (check out file R/analy-
sis.R).

The first step to assess convergence is to compare the posterior
means among the different runs. You can visually inspect the pos-
terior means reported in the out1.txt and out2.txt files
(Fig. 8), although this may be cumbersome. Figure 8a shows a
plot, made with R, of posterior times for run 1 vs. those from run
2. You can see that the points fall almost perfectly on the y ¼ x line,
indicating that both runs have converged to the same distribution
(hopefully the posterior!).

ln Lmax (unconstrained) = -4636133.236961

Time used:  2:26

mean of parameters using all iterations
1.16785   0.91766   0.60797   0.83447   0.46464   0.29132   0.17725   0.10441   0.08519   0.

Species tree for FigTree.  Branch lengths = posterior mean times; 95% CIs = labels
(1_Tree_shrew, ((2_Bushbaby, 3_Mouse_lemur) 13 , (4_Tarsier, (5_Marmoset, (6_Rhesus, (7_Orangut

(Tree_shrew: 1.167850, ((Bushbaby: 0.607966, Mouse_lemur: 0.607966): 0.309693, (Tarsier: 0.8344

(Tree_shrew: 1.167850, ((Bushbaby: 0.607966, Mouse_lemur: 0.607966) [&95%={0.50317, 0.735468}]:

Posterior mean (95% Equal-tail CI) (95% HPD CI) HPD-CI-width

t_n11          1.1679 (0.9235, 1.4423) (0.9021, 1.4056) 0.5035 (Jnode 18)
t_n12          0.9176 (0.8015, 1.0484) (0.7965, 1.0423) 0.2458 (Jnode 17)
t_n13          0.6080 (0.5032, 0.7355) (0.5019, 0.7337) 0.2318 (Jnode 16)
t_n14          0.8345 (0.7236, 0.9602) (0.7192, 0.9538) 0.2346 (Jnode 15)
t_n15          0.4646 (0.3966, 0.5340) (0.3964, 0.5335) 0.1371 (Jnode 14)
t_n16          0.2913 (0.2526, 0.3380) (0.2499, 0.3333) 0.0833 (Jnode 13)
t_n17          0.1773 (0.1466, 0.2174) (0.1439, 0.2132) 0.0692 (Jnode 12)
t_n18          0.1044 (0.0995, 0.1164) (0.0988, 0.1139) 0.0152 (Jnode 11)
t_n19          0.0852 (0.0758, 0.0981) (0.0746, 0.0958) 0.0212 (Jnode 10)
mu1            0.0269 (0.0221, 0.0334) (0.0217, 0.0328) 0.0111
mu2            0.1110 (0.0898, 0.1396) (0.0877, 0.1364) 0.0488
sigma2_1       0.1370 (0.0607, 0.2833) (0.0484, 0.2511) 0.2027
sigma2_2       0.1634 (0.0755, 0.3201) (0.0625, 0.2883) 0.2258
lnL          -17.0026 (-25.9750, -9.8710) (-24.9110, -9.1170) 15.7940

Fig. 6 The end of the mcmc/out.txt file produced by MCMCTree at the end of the MCMC sampling of the
posterior
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Another useful statistic to be calculated is the effective sample
size (ESS). This gives the user an idea about whether an MCMC
chain has been run long enough. Tracer calculates ESS automati-
cally for all parameters. Function coda::effectiveSize in R
will do the same. Figure 9 shows the posterior mean, ESS, posterior
variance, and standard error of posterior means calculated with R
for run 1 of theMCMC. The longer the ESS, the better. As a rule of
thumb, one should seek ESS larger than 1000, although this may
not always be practical in phylogenetic analysis. Note in Fig. 9 that
some estimates have very low ESSs, while others have substantially
higher ESSs. For example, t_n11 has ESS¼ 76.1, while t_n19 has
ESS ¼ 1261. Running the analysis again and increasing the total
number of iterations (e.g., by increasing samplefreq or nsam-
ple) will lead to higher ESS values for all parameters.

Let v be the posterior variance of a parameter. The standard
error of the posterior mean of the parameter is S.E. ¼ √(v/ESS).
This is why having large ESS is important: Large ESS leads to small
S.E. and better estimates of the posterior mean. For example, for
t_n11, the posterior mean is 116.8 Ma, with standard error

Fig. 7 The dated primate phylogeny with error bars (representing 95% CIs of node ages), drawn with FigTree.
The time unit is 1 My
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Fig. 8 Convergence diagnostic plots of the MCMC drawn with R (see R/analysis.R)

mean.mcmc    ess.mcmc     var.mcmc      se.mcmc
t_n11      1.16785568    76.14030 1.779905e-02 0.0152894256
t_n12      0.91763459    66.38219 4.085525e-03 0.0078450940
t_n13      0.60801488   151.00623 3.123330e-03 0.0045479066
t_n14      0.83448247    71.93763 3.708967e-03 0.0071803969
t_n15      0.46464686   231.92350 1.211178e-03 0.0022852393
t_n16      0.29131271   353.25425 5.294412e-04 0.0012242361
t_n17      0.17726011   347.03816 3.245757e-04 0.0009670955
t_n18      0.10441651  1035.75332 2.080275e-05 0.0001417203
t_n19      0.08518922  1261.15128 3.363295e-05 0.0001633048
mu1        0.02691074   530.31981 8.464981e-06 0.0001263409
mu2        0.11103179   637.44606 1.577065e-04 0.0004973969
sigma2_1   0.13698819   710.07293 3.298175e-03 0.0021551891
sigma2_2   0.16337732   893.70775 4.046102e-03 0.0021277504
lnL      -17.00256482 20001.00000 1.696800e+01 0.0291265757

Fig. 9 Calculations of posterior mean, ESS, posterior variance, and standard error of the posterior mean in R
(see R/analysis.R)
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1.53My (Fig. 9). That is, we have estimated the mean accurately to
within 2 � 1.53 My ¼ 3.06 My. To reduce the S.E. by half, you
need to increase the ESS four times. Note that independent
MCMC runs can be combined into a single run. Thus, you may
save time by running several MCMC chains in parallel for compu-
tationally expensive analyses, although care must be taken to ensure
each chain has run long enough to exit the burn-in phase and
explore the posterior appropriately.

Trace plots and histograms are useful to spot problems and
check convergence. Figure 8b, c shows trace plots for t_n19 and
t_n11, respectively. The trace of t_n19, which has high ESS, looks
like a “hairy caterpillar.” Compare it to the trace of t_n11, which
has low ESS. Visual inspection of a trace plot usually gives a sense of
whether the parameter has an adequate ESS without calculating
it. Note that both traces are trendless, that is, the traces oscillate
around a mean value (the posterior mean). If you see a persistent
trend in the trace (such as an increase or a decrease), that most likely
means the MCMC did not converge to the posterior and needs a
longer burn-in period.

Figure 8d shows the smoothed histograms (calculated using
density in R) for t_n11 for the two runs. Notice that the two
histograms are slightly different. As the ESS becomes larger, histo-
grams for different runs will converge in shape until becoming
indistinguishable. If you see large discrepancies between histo-
grams, that may indicate serious problems with the MCMC, such
as lack of convergence due to short burn-in or the MCMC getting
stuck in different modes of a multimodal posterior.

3.5 MCMC Sampling

from the Prior

Note that fossil calibrations (such as those of Table 1) are repre-
sented as statistical distributions of node ages. MCMCTree uses
these distributions to construct the prior on times. However, the
resulting time prior used by the program may be substantially
different from the original fossil calibrations, because the program
applies a truncation so that daughter nodes are younger than their
ancestors [14, 27]. Thus, it is advisable to calculate the time prior
explicitly by running the MCMC with no data so that it can be
examined and compared with the fossil calibrations and the
posterior.

Go to the prior directory and type

$ mcmctree mcmctree-pr.ctl

This will start the MCMC sampling from the prior. File
mcmctree-pr.ctl is identical to mcmc/mcmctree.ctl except
that option usedata has been set to 0. Sampling from the prior is
much quicker because the likelihood does not need to be calcu-
lated. It takes about 1 min on the Intel Core i7 for MCMCTree to
complete the analysis. Rename files mcmc.txt and out.txt to
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mcmc1.txt and out1.txt, and run the analysis again. Rename
the new files as appropriate. Check for convergence by calculating
the ESS and plotting the traces and histograms.

Figure 10 shows the prior densities of node ages obtained by
MCMC sampling (shown in gray) vs. the posterior densities
(shown in black). Notice that for four nodes t_n19, t_n18,
t_n17, and t_n16, the posterior times “agree” with the prior,
that is, the posterior density is contained within the prior density.
For nodes t_n15, t_n13, and t_n11, there is some conflict
between the prior and posterior densities. However, for nodes
t_n14 and t_n12, there is substantial conflict between the prior
and the posterior. In both cases the molecular data (together with
the clock model) suggest the node age is much older than that
implied by the calibrations. This highlights the problems in con-
struction of fossil calibrations.

Each fossil calibration represents the paleontologist’s best guess
about the age of a node. For example, the calibration for the
human-chimp ancestor is B(0.075, 0.10, 0.01, 0.20); thus, the
calibration is a uniform distribution between 7.5 and 10 million
years ago (Ma). The bounds of the calibration are soft, that is, there

Fig. 10 Prior (gray) and posterior (black) density plots of node ages plotted with R (see R/analysis.R)
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is a set probability that the bound is violated. In this case the
probabilities are 1% for the minimum bound and 20% for the
maximum bound. The bound probabilities are asymmetrical
because they reflect the nature of the fossil information. Minimum
bounds are usually set with confidence because they are based on
the age of the oldest fossil member of a clade. For example, the
minimum of 7.5 Ma is based on the age of {Sahelanthropus tcha-
densis, recognized as the oldest fossil within the human lineage
[28]. On the other hand, establishing maximum bounds is difficult,
as absence of fossils for certain clades cannot be interpreted as
evidence that the clade in question did not exist during a particular
geological time [29]. Our maximum here of 10 Ma represents the
paleontologist’s informed guess about the likely oldest age of the
clade; however, a large probability of 20% is given to allow for the
fact that the node age could be older. The conflict between the
prior and posterior seen in Fig. 10 evidences this.

Note that when constructing the time prior, the Bayesian dat-
ing software must respect the constraints whereby daughter nodes
must be younger than their parents. This means that calibration
densities are truncated to accommodate the constraint, with the
result that the actual prior used on node ages can be substantially
different to the calibration density used (see Sect. 5.4). Detailed
analyses of the interactions between fossil calibrations and the time
prior and the effect of truncation are given in [14, 27].

4 General Recommendations for Bayesian Clock Dating

Extensive reviews of best practice in Bayesian clock dating are given
elsewhere [4, 20, 21, 30, 31]. Here we give a few brief
recommendations.

4.1 Taxon Sampling,

Data Partitioning, and

Estimation of Tree

Topology

In this tutorial we used a small phylogeny to illustrate Bayesian time
estimation using approximate likelihood calculation. In practical
data analysis, it may be desirable to analyze much larger phylogenies
(see Sect. 5.5). In large phylogenies, there may be uncertainties in
the relationships of some groups. The approximate method dis-
cussed here can only be applied to a fixed (known) tree topology. If
the uncertainties in the tree are few so that just a handful of tree
topologies appear reasonable, the approximate method can be used
by analyzing each topology separately [23, 32]. This involves esti-
mating g and H for each topology and then running separate
MCMC chains on each topology to estimate the times. Several
methods to co-estimate divergence times and tree topology are
available [8, 9, 17, 18], although they do not implement the
approximate likelihood method and are thus unsuitable for the
analysis of genome-scale datasets.
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We note that partitioning of sites in genomic datasets may have
important effects on divergence time estimation. The infinite-sites
theory [13, 33] studies the asymptotic behavior of the posterior
distribution of times when the amount of molecular data (measured
by the number of partitions and the number of sites per partition)
increases in a relaxed-clock dating analysis. This theory shows that
increasing the number of sites per partition will have minimal
effects on time estimation when the sequences per partition are
moderately long (>1000 sites, say), but the precision improves
when the number of partitions increases, eventually approximating
a limit when the number of partitions is infinite. The theory also
predicts that very different time estimates may be obtained if the
same genomic sequence alignment is analyzed as one partition or as
multiple partitions [34]. Furthermore, while more partitions tend
to produce more precise time estimates, with narrow CIs, they may
not necessarily be more reliable, depending on the correctness of
the fossil calibrations and the appropriateness of the partitioning
strategies. Unfortunately it is hard to decide on a good partitioning
strategy given the genome-scale sequence data, despite efforts to
design automatic partitioning strategies for phylogenetic analysis
and divergence time estimation [34–36]. Commonly used
approaches partition sites in the alignment by codon position or
by protein-coding genes of different relative rates [23]. We recom-
mend the use of the infinite-sites plot [14], in which uncertainty in
divergence time estimates (measured as the CI width) is plotted
against the posterior mean of times. If the scatter points fall on a
straight line, information due to the molecular sequence data has
reached saturation, and uncertainty in time estimate is predomi-
nantly due to uncertainties in fossil calibrations.

4.2 Selection of

Fossil Calibrations

Fossil calibrations are one of the most important pieces of informa-
tion needed to perform divergence time estimation and thus should
be chosen after careful consideration of the fossil record, although
this may involve some subjectivity [29]. Parham et al. [30] discuss
best practice for construction of fossil calibrations. For example,
minimum bounds on node ages are normally set to be the age of the
oldest fossil member of the crown group. A small probability (say
2.5%) should be set for the probability that the node age violates
the minimum bound (e.g., to guard against misidentified or incor-
rectly dated fossils). Specifying maximum bounds is more difficult,
as absence of fossils for a given geological period is not evidence
that the clade in question was absent during the period [31]. Cur-
rent practice is to set the maximum bound to a reasonable value
according to the expertise of the paleontologist (see ref. 29 for
examples), although a large probability (say 10% or even 20%)
may be required to guard against badly specified maximum bounds.
Calibration densities based on statistical modeling of species diver-
sification, fossil preservation, and discovery are also possible
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[15]. In so-called tip-dating approaches, fossil species are included
as taxa in the analysis (which may or may not include morphological
information for the fossil and extant taxa) [37–39]. Thus, in
tip-dating, explicit specification of a fossil calibration density for a
node age is not necessary.

4.3 Construction of

the Time Prior

The birth-death process with species sampling was used here to
construct the time prior for nodes in the phylogeny for which fossil
calibrations are not available. Varying the birth (μ), death (λ), and
sampling (ρ), parameters can result in substantially different time
priors. For example, using μ ¼ λ ¼ 1 and ρ ¼ 0 leads to a uniform
distribution prior on node ages. This diffuse prior appears appro-
priate for most analyses. Varying the values of μ, λ, and ρ is useful to
assess whether the time estimates are robust to the time prior.
Parameter configurations can be set up to generate time densities
that result in young node ages or in very old node ages (see p. 381 in
[20] for examples).

4.4 Selection of the

Clock Model

In analysis of closely related species (such as the apes), the clock
assumption appears to be appropriate for time estimation. A likeli-
hood ratio test can be used to determine whether the strict clock is
appropriate for a given dataset [40]. If the clock is rejected, then
Bayesian molecular clock dating should proceed using one of the
various relaxed-clock models available [7, 13]. In this case, Bayesian
model selection may be used to choose the most appropriate
relaxed-clock model [41], although the method is computationally
expensive and thus only applicable to small datasets. The use of
different relaxed-clock models (such as the autocorrelated vs. the
independent log-normally distributed rates) may result in substan-
tially different time estimates (see ref. 32 for an example). In such
cases, repeating the analysis under the different clock models may
be desirable.

5 Exercises

5.1 Autocorrelated

Rate Model

Modify file mcmc/mcmctree.ctl and set clock¼3. This activates
the autocorrelated log-normal rates model, also known as the
geometric Brownian motion rates model [6, 13]. Run the
MCMC twice and check for convergence. Compare the posterior
times obtained with those obtained under the independent
log-normal model (clock¼2). Are there any systematic differences
in node age estimates between the two analyses? Which clock model
produces the most precise (i.e., narrower CIs) divergence time
estimates?
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5.2 MCMC Sampling

with Exact Likelihood

Calculation

Modify file mcmc/mcmctree.ctl and set clock¼2 (independent
rates), usedata¼1 (exact likelihood), burnin¼200, sampfreq¼
2, and nsample¼500. These last three options will lead to a much
shorter MCMC chain, with a total of 1200 iterations. Run the
MCMC sampling twice, and check for convergence using the
ESS, histograms, and trace plots. How long does it take for the
sampling to complete? Can you estimate how long it would take to
run the analysis using 2,020,000 iterations, as long as for the
approximate method of Sect. 3.3.2? Did the two chains converge
despite the low number of iterations?

5.3 Change of Fossil

Calibrations

There is some controversy over whether {Sahelanthropus, used to
set the minimum bound for the human-chimp divergence, is
indeed part of the human lineage. The next (younger) fossil in
the human lineage is {Orrorin which dates to around 6Ma. Modify
file data/10s.tree and change the calibration in the human-
chimp node to B(0.057, 0.10, 0.01, 0.2). Also change the calibra-
tion on the root node to B(0.615, 1.315, 0.01, 0.05). Run the
MCMC analysis with the approximate method and again sampling
from the prior. Are there any substantial differences in the posterior
distributions of times under the new fossil calibrations? Which
nodes are affected? How bad is the truncation effect among the
calibration densities and the prior?

5.4 Comparing

Calibration Densities

and Prior Densities

This is a difficult exercise. Use R to plot the prior densities of times
sampled using MCMC (the same as in Fig. 10). Now try to work
out how to overlay the calibration densities onto the plots. For
example, see Fig. 3 in [23] for an idea. First, write functions that
calculate the calibration densities. The dunif function in R is useful
to plot uniform calibrations. Functions sn::dsn and sn::dst
(in the SN package) are useful to plot the skew-t (ST) and skew-
normal (SN) distributions. Calibration type S2N (Table 1) is a
mixture of two skew-normal distributions [15]. How do the sam-
pled priors compare to the calibration densities? Are there any
substantial truncation effects?

5.5 Time Estimation

in a Supermatrix of

330 Species

Good taxon sampling is critical to obtaining robust estimates of
divergence times for clades. In the data/ directory, an alignment
of the first and second codon positions from mitochondrial
protein-coding genes from 330 species (326 primate and
4 out-group species) is provided, 330s.phys, with corresponding
tree topology, 330s.tree. First, place the fossil calibrations of
Table 1 on the appropriate nodes of the species tree. Then obtain
the gradient and Hessian matrix for the 330-species alignment
using the HKY + G model. Finally, estimate the divergence times
on the 330-species phylogeny by using the approximate likelihood
method. How does taxon sampling affect node age estimates when
comparing the 10-species and 330-species trees? How does
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uncertainty in node ages in the large tree, which was estimated on a
short alignment, compare with the estimates on the small tree, but
with a large alignment?
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18. Höhna S, Landis MJ, Heath TA et al (2016)
RevBayes: Bayesian phylogenetic inference
using graphical models and an interactive
model-specification language. Syst Biol
65:726–736

19. Dos Reis M, Zhu T, Yang Z (2014) The impact
of the rate prior on Bayesian estimation of
divergence times with multiple loci. Syst Biol
63:555–565

20. Yang Z (2014) Molecular Evolution: A Statis-
tical Approach. Oxford University Press,
Oxford

21. Heath TA, Moore BR (2014) Bayesian infer-
ence of species divergence times. In: Chen
M-H, Kuo L, Lewis PO (eds) Bayesian Phylo-
genetics: Methods, Algorithms, and Applica-
tions. CRC Press, Boca Raton, pp 277–318

22. Yang Z (2007) PAML 4: phylogenetic analysis
by maximum likelihood. Mol Biol Evol
24:1586–1591

23. dos Reis M, Inoue J, Hasegawa M et al (2012)
Phylogenomic datasets provide both precision
and accuracy in estimating the timescale of pla-
cental mammal phylogeny. Proc Biol Sci
279:3491–3500

24. dos Reis M, Gunnell G, Barba-Montoya J et al
(2018) Using phylogenomic data to explore
the effects of relaxed clocks and calibration
strategies on divergence time estimation: pri-
mates as a test case. Syst Biol 67(4):594–615

25. Yang Z (1996) Among-site rate variation and
its impact on phylogenetic analyses. Trends
Ecol Evol 11(9):367–372

26. Gillespie JH (1984) The molecular clock may
be an episodic clock. Proc Natl Acad Sci U S A
81:8009–8013

Molecular Clock Dating 329



27. Warnock RCM, Yang Z, Donoghue PCJ
(2012) Exploring uncertainty in the calibration
of the molecular clock. Biol Lett 8:156–159

28. Zollikofer CPE, Ponce de León MS, Lieber-
man DE et al (2005) Virtual cranial reconstruc-
tion of Sahelanthropus tchadensis. Nature
434:755–759

29. Benton MJ, Donoghue PCJ (2007) Paleonto-
logical evidence to date the tree of life. Mol
Biol Evol 24(1):26–53

30. Parham JF, Donoghue PCJ, Bell CJ et al
(2012) Best practices for justifying fossil cali-
brations. Syst Biol 61(2):346–359

31. Ho SYW, Phillips MJ (2009) Accounting for
calibration uncertainty in phylogenetic estima-
tion of evolutionary divergence times. Syst Biol
58:367–380

32. Dos Reis M, Thawornwattana Y, Angelis K et al
(2015) Uncertainty in the timing of origin of
animals and the limits of precision in molecular
timescales. Curr Biol 25:2939–2950

33. Zhu T, Reis MD, Yang Z (2014) Characteriza-
tion of the uncertainty of divergence time esti-
mation under relaxed molecular clock models
using multiple loci. Syst Biol 64(2):267–280

34. Angelis K, Alvarez-Carretero S, dos Reis M
et al (2018) An evaluation of different parti-
tioning strategies for Bayesian estimation of

species divergence times. Syst Biol 67
(1):61–77

35. Lanfear R, Calcott B, Ho SYW et al (2012)
PartitionFinder: combined selection of parti-
tioning schemes and substitution models for
phylogenetic analyses. Mol Biol Evol
29:1695–1701
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