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Abstract

We use computer simulation to examine the information content in multilocus data sets for inference under the
multispecies coalescent model. Inference problems considered include estimation of evolutionary parameters (such as
species divergence times, population sizes, and cross-species introgression probabilities), species tree estimation, and
species delimitation based on Bayesian comparison of delimitation models. We found that the number of loci is the most
influential factor for almost all inference problems examined. Although the number of sequences per species does not
appear to be important to species tree estimation, it is very influential to species delimitation. Increasing the number of
sites and the per-site mutation rate both increase the mutation rate for the whole locus and these have the same effect on
estimation of parameters, but the sequence length has a greater effect than the per-site mutation rate for species tree
estimation. We discuss the computational costs when the data size increases and provide guidelines concerning the
subsampling of genomic data to enable the application of full-likelihood methods of inference.
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Introduction
The multispecies coalescent (MSC) model (Rannala and Yang
2003) is a simple extension of the standard single-population
coalescent (Kingman 1982) to multiple species and accounts
for both the history of species divergences and the coalescent
process in the extant and extinct species on the species phy-
logeny. The MSC lies at the interface between population
genetics and phylogenetics and naturally accommodates
the heterogeneity in the genealogical history of sequences
across the genome. In the past decade, the MSC has emerged
as the natural framework for a number of inference problems
using genomic sequence data from multiple species and mul-
tiple individuals, including estimation of parameters charac-
terizing the evolutionary process such as species divergence
times, population sizes (Rannala and Yang 2003; Burgess and
Yang 2008), and cross-species introgression probability (Wen
and Nakhleh 2018; Zhang et al. 2018; Flouri et al. 2020); esti-
mation of species phylogeny despite conflicting gene trees
(Liu and Pearl 2007; Heled and Drummond 2010; Yang and
Rannala 2014; Rannala and Yang 2017); and identification and
delimitation of species (Yang and Rannala 2010, 2017). The
last decade has seen exciting advancements in statistical and
computational methods implemented under the MSC. In the
field of phylogenomics, the incorporation of MSC has been
described as a paradigm shift (Edwards 2009; Edwards et al.

2016). The MSC has also been extended to accommodate
cross-species gene flow, in the form of either continuous-time
migration (the MSC-with-migration, or the isolation-with-
migration or IM model, Hey 2010; Zhu and Yang 2012;
Dalquen et al. 2017; Hey et al. 2018) or episodic introgres-
sion/hybridization (the MSC-with-introgression or MSci
model, Wen and Nakhleh 2018; Zhang et al. 2018; Flouri
et al. 2020). See Xu and Yang (2016), Degnan (2018),
Kubatko (2019), and Rannala et al. (2020) for recent reviews
of the MSC and its many applications.

As sequence data are accumulating at accelerating rates
(Rannala and Yang 2008; Weisrock et al. 2012; Lemmon and
Lemmon 2013), an interesting question is how the informa-
tion content in the data set grows with the increase in the
number of sequences, the number of sites per sequence, and
the number of loci. Finding answers to such questions will
improve our understanding of inference under the MSC and
may be useful for designing the best sequencing strategies. For
example, is it necessary to sequence whole genomes or is it
sufficient to generate transcriptome data (Figuet et al. 2014)?
Among the reduced-representation data sets developed re-
cently, such as ultraconserved elements (Faircloth et al. 2012),
anchored hybrid enrichment (Lemmon et al. 2012), con-
served nonexonic elements (Edwards et al. 2017), or rapidly
evolving long exon capture (Karin et al. 2020), which are most
informative for a particular inference problem and a
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particular species group? A second use of such knowledge of
information content is to provide advice on sampling strat-
egies for sequencing projects: Do we gain more power by
sampling many individuals per species for a fixed set of loci
or by sequencing many loci (or the whole genome) for a few
individuals? A third use of such information is to advise on
data subsampling, which may be necessary because analysis
using full-likelihood methods involves a heavy computational
burden.

For estimation of statistical parameters, information con-
tent in the data set is typically measured by the Fisher infor-
mation, which is given by the expectation of the second
derivatives of the log likelihood with respect to model param-
eters, and is asymptotically equivalent to the inverse of the
variance–covariance matrix of maximum-likelihood esti-
mates (MLEs) (Stuart et al. 1999, pp. 10–11). Fisher informa-
tion was previously used to characterize information content
for phylogenetic reconstruction (Goldman 1998; Townsend
2007; Klopfstein et al. 2017) and for inference of population
demography (Johndrow and Palacios 2019; Parag and Pybus
2019). The species trees are akin to different statistical models,
and the variance of the estimated species tree is not well
defined (Yang 2014, p. 142). One can instead use the proba-
bility of recovering the correct tree as a measure of method
performance or information content in the data (Yang 1998;
Klopfstein et al. 2017). In this article, we take the approach of
computer simulation, which can be used to estimate the
variance and related measures for parameter estimates as
well as the probability of recovering the correct model or
species tree.

Analysis of information content in the data is closely re-
lated to comparison of different inference methods. The for-
mer takes the perspective of experimental design, considering
data sets of different sizes when the inference method is fixed
(and optimal), whereas in the latter the same data sets are
analyzed using different methods to evaluate their perfor-
mance. Simulation is in particular powerful in studying the
robustness of inference methods when the underlying
assumptions are violated, because analytical results typically
hold only under the assumption that the assumed model is
true. For example, Felsenstein (2006; see also Fu and Li 1993;
Pluzhnikov and Donnelly 1996) studied the variance and ef-
ficiency of different estimators of the population size param-
eter h (¼4Nl with N to be the effective population size and l
the mutation rate per site per generation) under the single-
population coalescent from a sample of DNA sequences. He
demonstrated that the full-likelihood method is more effi-
cient than methods based on the average pairwise distance
(p) or the number of segregating sites (S) and that adding loci
is more effective than adding sequences in improving estima-
tion accuracy. The coalescent rate when there are n sequen-

ces in the sample is proportional to n
2

� �
so that given several

sequences in the sample, newly added sequences tend to be
very similar to those already in the sample and add little
information. The relative importance of the various factors
may nevertheless depend on the inference problem. For ex-
ample, Zhang et al. (2011) found that including more

sequences from the same species considerably improved
the accuracy of species delimitation using the BPP program
(Yang and Rannala 2010).

Estimation of the species tree topology in presence of deep
coalescence has received much attention (Liu et al. 2015; Xu
and Yang 2016; Kubatko 2019), and a number of simulation
studies have been conducted to examine the performance of
various methods, including concatenation, coalescent-based
heuristic methods, as well as full-likelihood methods (Liu et al.
2015; Mirarab et al. 2016; Xu and Yang 2016). A number of
studies have demonstrated the superiority of full-likelihood
methods for species tree estimation over heuristic methods
based on summaries of the data (Leach�e and Rannala 2011;
Ogilvie et al. 2016; Xu and Yang 2016; Shi and Yang 2018). In
the case of parameter estimation under the MSC, Ogilvie et al.
(2016) found that concatenation produced biased estimates
of parameters such as species divergence times, whereas MSC
methods using *BEAST behaved as expected. Wen and
Nakhleh (2018) found that estimation of divergence times
is seriously biased if gene flow exists and is ignored in the
analysis (see also Dalquen et al. 2017). Flouri et al. (2020)
evaluated the estimation of cross-species introgression prob-
abilities using BPP and two heuristic methods.

In this study, we use computer simulation to examine
systematically the information content in the data set as af-
fected by a number of factors such as the number of loci (L),
the number of sequences per species per locus (S), the num-
ber of sites per sequence (N), and the per-site mutation rate
(h). We focus on full-likelihood methods of inference and use
the Bayesian Markov chain Monte Carlo (MCMC) program
BPP (Yang 2015; Flouri et al. 2018). It is well known that MLEs
(and Bayesian point estimates) are asymptotically most effi-
cient and have the smallest variance in large data sets (Stuart
et al. 1999, pp. 56–60; O’Hagan and Forster 2004, pp. 72–74).
In the case of model selection (and in particular phylogenetic
tree estimation), Yang (1996, 2014, pp. 159–163) has argued
that the asymptotic efficiency of MLEs for parameter estima-
tion does not apply. Nevertheless, simulations have invariably
found that full-likelihood methods outperform heuristic
methods based on summaries of the data (Ogilvie et al.
2016; Xu and Yang 2016; Shi and Yang 2018). We conduct
four sets of simulations to examine four different inference
problems: 1) estimation of divergence time and population
size parameters under the MSC model (ss and hs) (Rannala
and Yang 2003; Burgess and Yang 2008), 2) estimation of the
species tree topology accommodating deep coalescence
(Heled and Drummond 2010; Yang and Rannala 2014;
Rannala and Yang 2017), 3) species delimitation through
Bayesian model selection (Yang and Rannala 2010; Rannala
and Yang 2013, 2017; Leach�e et al. 2019), and 4) estimation of
cross-species introgression probability (Wen and Nakhleh
2018; Flouri et al. 2020). We focus on inference problems
for closely related species and assumed the molecular clock
and the JC mutation model (Jukes and Cantor 1969). We
study how the amount of information grows (or inference
uncertainty decreases) when the number of loci, the number
of sequences, and the number of sites per sequence increase.
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We also examine the impact of the species phylogeny and
mutation rate on inference accuracy or information content.

Results

Estimation of Species Divergence Times and
Population Sizes
In the first set of simulations, we fix the species tree at either
tree B or tree U of figure 1 and estimate the parameters in the
MSC model (ss and hs) through Bayesian MCMC. This is
analysis A00 in BPP (Yang 2015). Note that both node ages
(ss) and population sizes (hs) are measured by genetic dis-
tance, in the expected number of mutations per site. We
varied the number of loci (L¼ 40 or 160), the number of
sequences per species (S¼ 2 or 8), and the number of sites
in the sequence (N¼ 250 or 1,000), as well as the mutation
rate (h ¼ 0:0025 or 0.01). As the species divergence times ss
are proportional to h in our experimental design (fig. 1), the
two values of h mimic different mutation rates. For example,
the noncoding and coding parts of the genome have very
different neutral mutation rates but may be used to infer the
same species divergence history, with nearly proportional
parameters (hs and ss) (Shi and Yang 2018;
Thawornwattana et al. 2018). The posterior means and 95%
highest probability density (HPD) credible intervals (CIs) for
the 100 replicate data sets for each simulation setting are
shown in figure 2 for tree B. The results for tree U are similar
(supplementary fig. S1, Supplementary Material online). The
CI width and root-mean-square error (RMSE) calculated us-
ing the posterior means as point estimates are in supplemen-
tary tables S1 and S2, Supplementary Material online. We are
interested in how the information content increases or the
estimation precision improves when the amount of data
increases in different ways: that is, when the number of loci
increases from 40 to 160, the number of sequences per species
increases from 2 to 8, or the number of sites in the sequence
increases from 250 to 1,000. In each case, the total number of
sites (or base pairs) in the data set increases by 4-fold, but the
effects on the precision of parameter estimates may differ.
Under the MSC model, data at different loci have indepen-
dent and identical distributions, so that the asymptotic the-
ory may be expected to apply, with the number of loci L to be
the sample size. In large data sets (with large L) the posterior
CI width and the RMSE may be expected to decrease in
proportion to L�1=2: In other words, a 4-fold increase in L
should reduce the RMSE or posterior CI width by a half. Note
that the sequence length N cannot be treated as the sample
size under the MSC model, because the estimation error will
reach a certain nonzero limit when N!1 if L is held con-
stant. When the sequences are long so that the gene tree and
branch lengths (coalescent times) at each locus are inferred
with virtually no errors, adding more sites will add little in-
formation but parameter estimates may still involve consid-
erable uncertainties due to coalescent fluctuations among
loci.

Before examining the importance of the various factors, we
note that the method or the BPP program behaves as
expected. First, with more data and more information, the

estimates of all parameters improve and converge to the true
values, with the CIs becoming narrower. The CI coverage, or
the probability that the 95% HPD CI includes the true pa-
rameter value, is in general higher than the nominal 95%,
although there were random fluctuations due to limited
number of replicates (R¼ 100) (fig. 2). Note that in our sim-
ulation, the parameters are fixed when replicate data sets are
generated, so that we are evaluating the frequentist proper-
ties of a Bayesian method. In a Bayesian simulation, the
parameters would be sampled from their priors for each rep-
licate data set (e.g., Yang and Rannala 2005). There exists no
theory to predict that the 95% HPD CI calculated here should
include the true value in exactly 95% of the replicate data sets.
Nevertheless, Bayesian methods are often found to have good
frequentist properties (O’Hagan and Forster 2004). Overall,
the results suggest a healthy inference method (fig. 2 and
supplementary fig. S1, Supplementary Material online).
Second, different parameters are estimated with very different
precisions. There are three groups of parameters. In the first
group, the population size parameters (hs) for the five mod-
ern species (A; B; C;D, and E) are well estimated even in
moderately sized data sets. In the second group, the hs for
the four ancestral species are estimated less well. Among
them, hU in tree B is the most poorly estimated (fig. 2 and
supplementary fig. S1, Supplementary Material online).
Because branch U in tree B is short and deep, few sequences
(from D and E) will reach node U and coalesce along the short
branch. Note that the probability that all eight sequences
from D coalesce in D before reaching U is Pðtmrca < 9Þ ¼
0.99988 as the age of node U is 2sU=hD ¼ 9 coalescent units
(fig. 3). Thus, at almost every locus, only two sequences (one
from D and one from E) enter U, and they coalesce in branch
U with probability 1� e�2ðsR�sUÞ=hU ¼ 1� e�1 ¼ 0.632
(fig. 3). Infrequent coalescent events in U lead to poor esti-
mation of hU. This also explains why there is no difference in
estimates of hU between S¼ 2 and 8 (fig. 2). In the third group
of parameters, species divergence times (ss) are well esti-
mated in almost all parameter combinations examined.
Species trees B and U overall show very similar patterns.

Performance improves with the increase in the number of
loci (L), the number of sequences per species (S), the number
of sites per sequence (N), and the mutation rate (h). Note

R
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U

T

A B C D EA B C D E

(a) (b)Tree B Tree U

FIG. 1. (a) Balanced species tree B and (b) unbalanced species tree U
for five species, used to simulate data for estimation of parameters in
the MSC model (the A00 analysis in Yang [2015]). For tree B, the
parameters used are sR¼ 5h, sS¼ 4h, sT¼ 3h, and sU¼ 4.5h. For tree
U, they are sR¼ 5h, sS¼ 4h, sT¼ 3h, and sU¼ 2.5h. Two values of h
are used: 0.0025 and 0.01.
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that it is meaningful to compare parameter estimates be-
tween the two values of h by using the relative error (i.e.,
the CI width or RMSE divided by the true value). This mimics
the estimation of the effective population size N using geno-
mic regions of different mutation rates, with the expectation
that fast evolving loci will be more informative than con-
served loci. We start from the least informative data sets
with L¼ 40, S¼ 2, N¼ 250, and h ¼ 0:0025, and consider

the effects of quadrupling the amount of data by increasing
the number of loci (L from 40 to 160), the number of sequen-
ces (S from 2 to 8), the number of sites (N from 250 to 1,000),
and the mutation rate (h from 0.0025 to 0.01) (fig. 2 and
supplementary fig. S1 and tables S1 and S2, Supplementary
Material online).

For estimating hs for the five modern species, the most
important factor is the number of loci (L), and the least

FIG. 2. Posterior 95% HPD CIs for the 13 parameters in the MSC model for species tree B (fig. 1) in 100 replicate data sets. The numbers above the CI
bars are the CI coverage probability.
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important factors are the number of sites (N) and the muta-
tion rate (h). For example, the CI width in tree B is in the range
2.19–2.28 in the least informative data sets with S¼ 2,
h ¼ 0:0025, N¼ 250, and L¼ 40. This is reduced to 1.72–
1.82 when longer sequences are used (N¼ 1,000), to 1.74–
1.76 (upon division by 4 to account for the 4-fold difference in
the two values of hs) at the higher mutation rate (h ¼ 0:01),
to 1.31–1.34 when more sequences are used (S¼ 8), and to
1.19–1.20 when more loci are used (L¼ 160). The reduction
in the CI width upon quadrupling the number of loci is
slightly less than a half (1.19/2.19¼ 0.54). The results for spe-
cies tree U are very similar (supplementary table S2,
Supplementary Material online). These results for hs of mod-
ern species agree with expectations for estimating h for one
population in the standard coalescent (Felsenstein 2006).

For estimating hs for the four ancestral species, the most
important factors are the number of loci (L) and the sequence
length (N), whereas the number of sequences (S) is the least
important. In the case of tree B and hR, the CI width is 3.23 in
the least informative data sets (with S¼ 2, h ¼ 0:0025,
N¼ 250, and L ¼ 40), and this becomes 3.32 (which is
even larger) when S¼ 8, is reduced to 2.51 (after division
by 4) when h ¼ 0:01, to 2.47 when L¼ 160, and to 2.43
when N¼ 1,000.

For estimating ss, the most important factors are the num-
ber of sites (N) and the number of loci (L), which have similar
effects, whereas the number of sequences (S) is the least im-
portant. For example, in the case of tree B and sR (the age of
the root in the species tree), the CI width is 2.69 in the least
informative data with S¼ 2, h ¼ 0:0025, N¼ 250, and
L¼ 40. This becomes 2.66 when S¼ 8, with virtually no re-
duction, and is reduced to 1.57 at L¼ 160, to 1.51 at the
higher rate (h ¼ 0:01), and to 1.45 when N¼ 1,000.

We note that the factors do not always work indepen-
dently and the effect of one factor may depend on other
factors. For example, comparison of the cases L¼ 40 and
N¼ 1,000 with the case L¼ 160 and N¼ 250, other param-
eters being equal, informs us of the relative importance of L
versus N. In the case of tree B, the number of sites (N) is more
important than the number of loci (L) for estimating species
divergence times (sR; sS; sT , and sU) at the low mutation rate
(h ¼ 0:0025), but the two factors have similar effects at the
higher mutation rate (with h ¼ 0:01) (supplementary table
S1, Supplementary Material online). In the case of tree U, the
two factors have similar effects on estimation of divergence
times. As another example, increasing sequence length (N)
has a greater effect at the low mutation rate (h ¼ 0:0025)
than at the higher rate (h ¼ 0:01). The reduction in CI width
for hA–hE is 17–22% at the lower rate and �10% at the
higher rate when S¼ 2; when S¼ 8, the reduction is 33%
at the lower rate and �22% at the higher rate (supplemen-
tary table S1, Supplementary Material online). This may be
because at the lower mutation rate, the alignments with
N¼ 250 have few variable sites with little information about
the gene tree and coalescent times and increasing sites can
effectively improve the information content, whereas at the
higher mutation rate (h ¼ 0:01), the alignments with
N¼ 250 sites are already informative and adding more sites
will have only minor effects.

Nevertheless, in informative data sets or for estimation of
parameters where the asymptotics concerning L is reliable (in
other words, when the CI width for L¼ 40 is about half that
for L¼ 160), the effects of h, N, and S are noted to be inde-
pendent of L. For example, the CI-width reduction in hs for
the five modern species when N quadruples is 21–23% at
L¼ 40, very close to 22–24% at L¼ 160. The CI-width reduc-
tion in the four s parameters when N quadruples is 41–46%
at L ¼ 40, very close to 44–48% at L¼ 160. Similarly, the
effect of mutation rate is similar between L¼ 40 and
L¼ 160. The CI-width reduction in hA–hE when mutation
rate increases by 4-fold is 22–24% and 22–24% at L¼ 40
and L ¼ 160, respectively. The reduction in the CI width
for ss is 40–44% at L¼ 40, very similar to 44–46% at
L¼ 160. Similarly, the effect of the number of sequences (S)
is similar between L¼ 40 and L¼ 160. The CI-width reduc-
tion for hA–hE when S quadruples is 56–57% at L ¼ 40 and
57% at L ¼ 160. The CI-width reduction for the s parameters
is only 3–6% at L ¼ 40 and 2–4% at L ¼ 160.

We now examine the asymptotic expectation of half re-
duction in the CI width when the number of loci L increases
from 40 to 160. Population size parameters (hs) for modern
species are well estimated, and the asymptotics holds well.
The reduction in CI width is 46–47% for tree B and 46–49%
for tree U in the least informative case (with h ¼ 0:0025,
S¼ 2, and N¼ 250) (supplementary table S1,
Supplementary Material online). The reduction is even closer
to 50% in the more informative data sets, when h ¼ 0:01,
S¼ 8, and/or N¼ 1,000. Species divergence times are less well
estimated than hs for modern species (in particular sU is

tMRCA
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FIG. 3. The cumulative distribution function (CDF) for the time to the
most recent common ancestor, tmrca , for a sample of size s¼ 2 or 8.
Time is measured in the coalescent unit of 2N generations or 2s=h in
the notation of this article. The CDF gives the probability that the
whole sample coalesces within the given time. For S¼ 2, t is expo-
nential with mean 1 and CDF 1� e�t , whereas for S¼ 8, the CDF is
generated by coalescent simulation (with 107 replicates).
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poorly estimated) and the asymptotics holds only in the in-
formative data sets. The CI-width reduction in sR, sS, and sT is
31–42% for tree B and 36–44% for tree U in the least infor-
mative case (with S¼ 2, N¼ 250, and h ¼ 0:0025) and is 49–
50% in the most informative case (with S¼ 8, N¼ 1,000, and
h ¼ 0:01) for both trees B and U. Ancestral population sizes
(hs for R, S, and T) are the most poorly estimated, and the
asymptotics is not reliable at such small values of L. The re-
duction is 23–26% for tree B and 22–30% for tree U in the
least informative case (with S¼ 2, N¼ 250, and h ¼ 0:0025)
and is 47–48% for tree B and 48% for tree U in the most
informative case (with S¼ 8, N¼ 1,000, and h ¼ 0:01).

An interesting comparison is between the case of
N¼ 1,000 and h ¼ 0:0025 and that of N¼ 250 and
h ¼ 0:01, other things being equal. In both cases, the muta-
tion rate for the whole locus is the same. The ratio of CI
widths between the two scenarios (with the CI width for h
¼ 0:01 divided by 4 to be comparable) is close to 1 (from 0.98
to 1.00) for hs for the five modern species, 0.90–1.00 for hs for
the four ancestral species, and 0.92–1.00 for the four species
divergence times (ss) (supplementary table S1,
Supplementary Material online). Although increasing sites
(N) often leads to slightly better performance (in particular,
for estimating divergence times) than increasing the muta-
tion rate (h), the data sets simulated under those two sce-
narios are nearly equally informative for estimating the
parameters in the MSC model.

Species Tree Estimation
In the second set of simulations, we evaluate the power or
information content for species tree estimation. We focus on
challenging species tree problems with short internal
branches (fig. 4). Species tree B has one internal branch of
length 0:1h and two branches of length 0:2h, whereas species
tree U has all three internal branches of length 0:2h. The
probability that two sequences entering the ancestral species
will not coalesce in that species is e�0:2 ¼ 81.9% for branch
length Ds ¼ 0:1h or e�0:4 ¼ 67.0% for Ds ¼ 0:2h (fig. 3).
Deep coalescence is thus expected to be common in gene
trees generated using those species trees.

Posterior probabilities for the true species tree in the rep-
licate data sets are shown in figure 5, whereas those for the
true subtrees R (which means the whole tree), S, T, and U are
listed in table 1. The probability for the true tree increases
steadily with the increase in data size and mutation rate and
reaches 100% in the most informative data sets of L¼ 160 loci
and N¼ 1,000 sites at the higher mutation rate (h ¼ 0:01)
when the true tree is tree U. Tree B is harder to recover than
tree U, because of the extremely short branch T, so that the
probability for the true tree in the most informative data sets
is only 97% (table 1).

The Bayesian estimate of the species tree is the one with
the maximum posterior probability (or the MAP tree,
Rannala and Yang 1996). The probabilities that the MAP
tree includes the true subtrees increase steadily with the in-
crease in the amount of data (table 2). The 95% credible set
tends to include the true species tree with probabilities higher
than the nominal 95% (table 3). When the amount of data

increases, the CI size decreases, eventually with only one tree
(the true tree) in the credible set. These results indicate good
performance of Bayesian estimation of the species tree, con-
sistent with previous simulation studies (Ogilvie et al. 2016;
Rannala and Yang 2017).

To evaluate the information content in the data sets, we
use the average posterior probability for the true species tree
(fig. 5 and table 1). Using the probability that the MAP tree is
the true species tree (table 2) leads to the same conclusions.
The number of loci (L) is the most important factor for im-
proving the power of inference, followed the number of sites
(N) and the mutation rate (h), whereas the number of
sequences per species (S) is the least important. For example,
the probability for the true species tree is only 9% when the
true species tree is tree B in the least informative data (with
S¼ 2, h ¼ 0:0025, N¼ 250, and L¼ 40). This probability
stays almost unchanged (8%) when more sequences are
used (S¼ 8) and rises to 28% at the higher mutation rate
(h ¼ 0:01), to 36% when longer sequences are used
(N¼ 1,000), and to 40% when more loci are used (L¼ 160).
The same pattern holds if we consider the probabilities for the
true subtrees (S, T, and U) or if the true species tree is tree U
(table 1). For some parameter settings (e.g., tree U,
h ¼ 0:0025, N¼ 1,000, and L¼ 40), the probability is even
lower at S¼ 8 than at S¼ 2 (table 1), but the differences are
small and may be attributed to random errors.

We now compare the error rates in species tree estimation
between the case of N¼ 1,000 and h ¼ 0:0025 with that of
N¼ 250 and h ¼ 0:01, other things being equal. Although
the locus-wide mutation rates are the same, a longer se-
quence with a lower mutation rate (N¼ 1,000 and
h ¼ 0:0025) gives a better performance than a shorter se-
quence with a higher mutation rate (N¼ 250 and h ¼ 0:01).
For example, when L ¼ 40 and S¼ 2, the average posterior
for the correct species tree is 0.36 at N¼ 1,000 and
h ¼ 0:0025, in comparison with 0.28 at N¼ 250 and h
¼ 0:01 for tree B (table 1). The same conclusion holds for
other combinations of L and S and for tree U. Similarly, qua-
drupling the sequence length (N) leads to higher probabilities
that the estimated species tree is correct and to greater
reductions in the credible set than quadrupling the mutation
rate (h). The larger effects of N than h on species tree esti-
mation are somewhat surprising, especially as the two factors
have nearly equal importance for parameter estimation un-
der the MSC, as discussed earlier.

Species Delimitation
In the third set of simulations, we evaluate the information
content for delimiting species using the approach of Bayesian
model selection (Yang and Rannala 2010). Our simulation
model assumes five populations (A, B, C, D, and E) and three
species (AB, C, and DE) with the phylogeny ððAB; CÞ;DEÞ
(fig. 6). We used two sets of parameters representing two
tree shapes. With tree shape 1 (sR ¼ 5h and sS ¼ 4:8h),
the species phylogeny is challenging because of the short
internal branch. With tree shape 2 (sR ¼ h and sS ¼ 0:5h),
species delimitation is challenging because the species diver-
gence times are similar to the average coalescent times so
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that the between-species divergence is not much greater than
the within-species polymorphism (fig. 6).

For tree shape 1 (fig. 6a), the probabilities of recovering the
correct delimitation or correct delimited species (AB, C, and
DE) grow rapidly when the amount of data increases, but the
probability of recovering the whole model (the correct de-
limitation and correct species phylogeny) remains far away
from 100% except for the most informative data sets with
L ¼ 160;N ¼ 1; 000, and h ¼ 0:01 (fig. 7 and tables 4 and 5).
Because of the short internal branch in the true species tree,
the species phylogeny is hard to recover even when the spe-
cies are correctly delimited. Furthermore, species C is easier to
delimit or identify than species AB and DE as it is farther away
from other species.

For recovering the whole model (fig. 6a), the importance of
the factors is in the order of mutation rate (h), the number of
loci (L), and the number of sites (N), and then the number of
sequences (S). For example, the average posterior probability
for the true model is 0.42 in the least informative data sets
(with h ¼ 0:0025, L¼ 4, N¼ 250, and S¼ 2). This rises to
0.46 when S¼ 8, to 0.63 when N¼ 1,000 or L¼ 160, and to
0.66 at the high mutation rate (h ¼ 0:01) (table 4). If we
disregard the phylogeny and focus on delimitation only, the
most important factor is the number of sequences (S), fol-
lowed by the mutation rate (h), and then by the number of
loci (L) and the number of sites (N). For example, the average
posterior probability for the true delimitation is 0.90 in the
least informative data sets (with h ¼ 0:0025, L¼ 4, N¼ 250,
and S¼ 2), and this rises to 0.94 when N¼ 1,000, to 0.95
when h ¼ 0:01, to 0.95 when L¼ 160, and to 0.99 when
S¼ 8 (table 4). The importance of the number of sequences
to species delimitation contrasts with species tree estimation,
in which the number of sequences is the least important
factor among those examined here. The pattern is the
same if we use the probabilities that the MAP model is the
true model or includes the true delimitation.

For tree shape 2 (fig. 6b), the phylogeny is easy to recon-
struct because of the long internal branch, and the correct
species tree is always recovered if the delimitation is correct.
As a result, the probability for the correct model is the same
as that for the correct delimitation. The number of sequences
S is the most important for the inference, whereas the other
factors (L, N, and h) are of equal importance. For example, the

average posterior probability for the true model and true
delimitation is 0.74 in the least informative data sets (with
h ¼ 0:0025, L¼ 40, N¼ 250, and S¼ 2). This rises to 0.92
when S¼ 8, compared with 0.85 for N¼ 1,000, 0.84 for
L ¼ 160, and 0.83 for h ¼ 0:01 (table 4). If we focus on spe-
cies delimitation, the number of sequences is the most influ-
ential for both trees of figure 6.

Estimation of Introgression Parameters under the
MSci Model
In the fourth set of simulations, we examine the estimation of
parameters under the MSci model, in particular, the intro-
gression probability parameters (fig. 8). We use two models or
trees, each with 21 parameters (fig. 8). As in the A00 simula-
tion under the MSC model without gene flow, the hs for the
five extant species are all well estimated, as are the six diver-
gence times (ss). However, hs for the eight ancestral species
are more poorly estimated. Among them, hU in tree B has
substantial uncertainties even in the most informative data
sets (supplementary fig. S2 and tables S3 and S4,
Supplementary Material online).

The relative importance of the various factors to the esti-
mation precision is similar to what was found earlier for the
MSC simulation. For estimation of hs for the modern species,
the number of sites (N) is the least important, followed by the
mutation rate (h) and the number of sequences (S), whereas
the number of loci (L) is the most influential. For estimation
of hs for the ancestral species, the number of sequences (S) is
the least important, followed by the mutation rate (h), and
the number of loci (L), whereas the number of sites (N) is the
most influential. For estimation of species divergence times
(e.g., sR), the number of sequences (S) is the least important,
followed by the mutation rate (h) and the number of loci (L),
whereas the number of sites (N) is the most influential.

The reduction in the CI width upon quadrupling the num-
ber of loci (L) is 46–50% for hs for modern species, only 6–
24% for hs for the ancestral species, and 33–53% for the
species divergence times (ss) in the least informative case.
As before, the reduction is close to a half when the parame-
ters are well estimated and the asymptotics is reliable but less
than a half for poorly estimated parameters.

Here, we focus on the estimation of the introgression prob-
abilities (uY and uZ) (fig. 9 and supplementary tables S3 and
S4, Supplementary Material online). The least important fac-
tor is the number of sequences (S), whereas the most impor-
tant factor is the number of loci (L). For example, the CI width
for uY in model tree B is 0.343 in the least informative data
sets (with S¼ 2, h ¼ 0:0025, N¼ 250, and L¼ 40). This is
reduced to 0.303 when the number of sequences is increased
to S¼ 8, to 0.272 at h ¼ 0:01, to 0.264 at N¼ 1,000, and to
0.178 at L¼ 160. The reduction in the CI width upon qua-
drupling the number of loci is 48%, close to a half. For intro-
gression parameter uZ, the mutation rate is more important
than the number of sites, but again the number of sequences
(S) is the least important, whereas the number of loci (L) is the
most influential. The results are similar for the MSci model U
(fig. 9 and supplementary tables S3 and S4, Supplementary
Material online).

R
S
T

U

A B C D E A B CDE

R
S
T
U

Tree B(a) (b) Tree U

FIG. 4. Species trees B and U for five species (A; B; C;D; and E) used to
simulate data for the A01 analyses. For balanced species tree B, the
parameters used are sR¼ 5h, sS¼ 4.8h, sT¼ 4.7h, and sU¼ 4.8h. For
unbalanced species tree U, we used sR¼ 5h, sS¼ 4.8h, sT¼ 4.6h, and
sU ¼ 4.4h. In each tree, two values of h are used: 0.0025 and 0.01.
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Discussion

Measures of Performance
The performance of phylogenetic tree reconstruction is often
measured using the Robinson–Foulds distance (Robinson
and Foulds 1981) between the inferred tree and the true
tree. Sometimes, a modified measure is used that incorpo-
rates the branch lengths in the true and estimated trees, with
the rationale that an incorrectly inferred clade with a short
branch is less serious than one with a long branch (Kuhner
and Felsenstein 1994). The measure of Ogilvie et al. (2016)
uses averages over the whole posterior distribution, so that it
incorporates both errors of model selection (errors in tree
topology) and of parameter estimation (errors in branch
lengths), as well as the calculated measure of confidence in
the point estimate (posterior probability). Because the
asymptotics are very different for errors in model selection
and in parameter estimation, we have in this article separated
the two inference problems in our measure to simplify the
interpretation of the simulation results. We used standard
measures of performance in statistics, such as the probability
of incorrectly selected model and the width of the CI or RMSE
for parameter estimation. Parameter estimation is considered
only if the model is fixed or if the inferred model is correct, as
parameters in incorrectly inferred models may not have
meaningful biological interpretations.

Information Content in Phylogenomic Data Sets
This study deals with the question of what kinds of multilocus
sequence data sets are most informative for addressing infer-
ence problems under the MSC model, such as estimation of
evolutionary parameters, estimation of species trees, and de-
limitation of species. The study is in the realm of experimental
design and aims to provide useful insights into the best se-
quencing strategy concerning the nature of genomic regions
targeted (such as the mutation rate), the number of loci (or

genomic regions), the number of samples per species, etc.
given the focus of the study. Table 6 provides a brief summary
of our findings. Here, we note a number of limitations of our
study, which may affect the interpretations of our results.

First, we have examined only two levels for each of the
factors considered and have explored only a very small por-
tion of the parameter space, due to computational costs. It
may not be safe to generalize to regions of the parameter
space not examined in our simulation. The information con-
tent is a complex function of the values of parameters in the
MSC model and the factors we considered (the number of
loci L, the number of sequences per species S, and the number
of sites per sequence N), and the multiple factors may be
interdependent. An ideal situation for using simulation may
be where a body of theory exists to predict the method be-
havior and simulation is then used to confirm the theory and
delineate its limits of applicability. In this regard, the large-
sample asymptotics applies with the increase in the number
of loci L, as confirmed in our simulation: Quadrupling the
number of loci reduces the CI width by a half for parameters
that are well estimated (or if L is sufficiently large). However,
we lack similar theories concerning S and N. A practical prob-
lem is to identify the point of diminished returns. For exam-
ple, two sequences are clearly more informative than one
sequence (some parameters are unidentifiable when only
one sequence is sampled from each species) and we expect
performance to increase quickly initially when we add more
sequences to the data set but beyond a certain number, in-
cluding more sequences will add very little extra information.
For species tree estimation, it seems that going beyond two
sequences may not be important.

Second, our simulation ignored many issues such as the
challenges and costs of sampling and sequencing (Edwards
et al. 2017; Karin et al. 2020), and the issues of coverage and
sequencing errors (Lemmon and Lemmon 2013).
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FIG. 5. Posterior probabilities for the true species tree in 100 replicate data sets for each of the 32 simulation conditions, which are combinations of
the species tree (B and U, fig. 4), the number of loci (L¼ 40 and 160), the number of sequences per species (S¼ 2 and 8), the number of sites per
sequence (N¼ 250 and 1,000), and the mutation rate (h ¼ 0:0025 and 0.01).
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Advancements in sequencing technologies and reduction of
sequencing cost mean that such factors may be more impor-
tant than information for inference in evolutionary biology
when sequencing priorities are determined. Sometimes
genomes are sequenced as a valuable primary source of
data that can be utilized in a variety of ways in the future.
Nevertheless, inference content in the resulting data sets
should be an important factor to consider. Another use of
results on information content is to advise on data subsam-
pling. Analysis of genomic sequence data using full-likelihood
inference methods is computationally expensive, and it is
often necessary to subsample existing data to make the com-
putation feasible. The results of this study may then be useful
for establishing good practices of data subsampling. For ex-
ample, for species tree estimation, it is far better to include

many loci or genomic regions than many samples from the
same species.

Third, we have assumed the molecular clock and the JC
mutation model in the simulation and analysis of the data,
and our study concerns coalescent-based inference for closely
related species only, at low sequence divergences (say, within
10%). The coalescence process affects deep phylogenies as
well, since the issue lies with the length rather than the depth
of the internal branches on the phylogeny (Edwards et al.
2005). However, inference of deep phylogenies incorporating
the coalescent process and relaxed clocks involves many chal-
lenges, which are beyond the scope of our study (Xu and
Yang 2016).

Finally, we have used the program BPP as a representative
of full-likelihood methods and our results may not apply to

Table 1. Average Posterior Probabilities for the True Subtrees Represented by Nodes R (the whole tree), S, T, and U in Species Trees B and U of
Figure 4.

Data h ¼ 0:0025; S ¼ 2 h ¼ 0:0025; S ¼ 8 h ¼ 0:01; S ¼ 2 h ¼ 0:01; S ¼ 8

Tree B
L 5 40, N 5 250 0.09, 0.32, 0.46, 0.50 0.08, 0.30, 0.39, 0.51 0.28, 0.50, 0.60, 0.64 0.28, 0.44, 0.56, 0.68
L 5 40, N 5 1,000 0.36, 0.58, 0.65, 0.64 0.39, 0.55, 0.66, 0.77 0.60, 0.68, 0.71, 0.88 0.63, 0.72, 0.74, 0.88
L 5 160, N 5 250 0.40, 0.67, 0.75, 0.66 0.39, 0.57, 0.67, 0.75 0.78, 0.85, 0.86, 0.92 0.81, 0.85, 0.87, 0.95
L 5 160, N 5 1,000 0.90, 0.92, 0.92, 0.98 0.90, 0.92, 0.92, 0.98 0.92, 0.92, 0.92, 1.00 0.97, 0.97, 0.97, 1.00

Tree U
L 5 40, N 5 250 0.30, 0.30, 0.46, 0.68 0.30, 0.30, 0.46, 0.68 0.58, 0.58, 0.73, 0.84 0.58, 0.58, 0.72, 0.82
L 5 40, N 5 1,000 0.70, 0.70, 0.85, 0.91 0.68, 0.68, 0.84, 0.88 0.87, 0.87, 0.94, 0.96 0.93, 0.93, 0.95, 0.97
L 5 160, N 5 250 0.74, 0.74, 0.93, 0.95 0.76, 0.76, 0.93, 0.95 0.97, 0.97, 0.99, 1.00 0.97, 0.97, 0.99, 1.00
L 5 160, N 5 1,000 0.99, 0.99, 1.00, 1.00 0.99, 0.99, 1.00, 1.00 1.00, 1.00, 1.00, 1.00 1.00, 1.00, 1.00, 1.00

NOTE.—Averages are over the 100 replicate data sets. Probabilities for R are plotted in figure 5.

Table 2. Proportions of Simulated Replicates in Which the MAP Tree Includes the True Subtrees R, S, T, and U in Species Trees B and U of Figure 4.

Data h ¼ 0:0025; S ¼ 2 h ¼ 0:0025; S ¼ 8 h ¼ 0:01; S ¼ 2 h ¼ 0:01; S ¼ 8

Tree B
L 5 40, N 5 250 0.11, 0.43, 0.57, 0.47 0.03, 0.34, 0.42, 0.43 0.40, 0.61, 0.71, 0.71 0.46, 0.61, 0.65, 0.74
L 5 40, N 5 1,000 0.55, 0.74, 0.80, 0.76 0.60, 0.75, 0.80, 0.84 0.77, 0.82, 0.82, 0.93 0.77, 0.83, 0.83, 0.91
L 5 160, N 5 250 0.65, 0.85, 0.90, 0.76 0.60, 0.74, 0.80, 0.81 0.86, 0.91, 0.91, 0.94 0.96, 0.97, 0.97, 0.99
L 5 160, N 5 1,000 0.99, 0.99, 0.99, 1.00 0.97, 0.97, 0.97, 1.00 0.96, 0.96, 0.96, 1.00 0.99, 0.99, 0.99, 1.00

Tree U
L 5 40, N 5 250 0.52, 0.52, 0.68, 0.79 0.50, 0.50, 0.66, 0.80 0.82, 0.82, 0.92, 0.95 0.77, 0.77, 0.87, 0.89
L 5 40, N 5 1,000 0.92, 0.92, 0.96, 0.96 0.85, 0.85, 0.97, 0.97 0.98, 0.98, 1.00, 1.00 1.00, 1.00, 1.00, 1.00
L 5 160, N 5 250 0.89, 0.89, 1.00, 1.00 0.91, 0.91, 0.99, 1.00 0.99, 0.99, 1.00, 1.00 1.00, 1.00, 1.00, 1.00
L 5 160, N 5 1,000 1.00, 1.00, 1.00, 1.00 1.00, 1.00, 1.00, 1.00 1.00, 1.00, 1.00, 1.00 1.00, 1.00, 1.00, 1.00

Table 3. Average Size (the average number of species trees) and Coverage of the 95% Credible Set of Species Trees in Data Simulated Using Species
Trees B and U of Figure 4.

Data h ¼ 0:0025; S ¼ 2 h ¼ 0:0025; S ¼ 8 h ¼ 0:01; S ¼ 2 h ¼ 0:01; S ¼ 8

Tree B
L 5 40, N 5 250 15.9, 0.90 13.7, 0.86 9.26, 0.96 10.1, 0.99
L 5 40, N 5 1,000 7.40, 0.97 7.00, 0.97 3.66, 0.96 3.34, 1.00
L 5 160, N 5 250 6.46, 0.97 7.07, 0.98 2.32, 0.99 2.31, 1.00
L 5 160, N 5 1,000 1.75, 1.00 1.66, 1.00 1.41, 1.00 1.19, 1.00

Tree U
L 5 40, N 5 250 14.8, 0.96 15.1, 0.98 4.99, 1.00 4.67, 1.00
L 5 40, N 5 1,000 3.73, 1.00 3.51, 1.00 1.84, 1.00 1.63, 1.00
L 5 160, N 5 250 2.61, 1.00 2.48, 1.00 1.15, 1.00 1.16, 1.00
L 5 160, N 5 1,000 1.09, 1.00 1.08, 1.00 1.00, 1.00 1.00, 1.00
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methods based on summary statistics. Summary methods
have a huge computational advantage and may be the only
methods feasible in analysis of very large data sets. For species
tree estimation, ASTRAL and MP-EST (Liu et al. 2010) infer
gene trees at individual loci, and then construct a species tree
estimate treating the gene trees as given data. In such a two-
step approach, the reliability of the inferred gene trees may
affect the performance, so that the number of sites may be
important (Mossel and Roch 2017). For full-likelihood meth-
ods, phylogenetic errors are not a major concern (Liu et al.

2015; Xu and Yang 2016), although increasing sequence
length increases information content as well. For parameter
estimation, full-likelihood methods may be necessary, because
summary methods such as ASTRAL and MP-EST can esti-
mate the internal branch lengths in coalescent units on the
species tree but cannot identify or estimate most parameters
in the MSC or MSci models (Xu and Yang 2016; Zhu and
Degnan 2017; Flouri et al. 2020). We leave it to future studies
to examine the relative importance of various factors to per-
formance of summary methods.

Computational Issues
In this article, we examined the statistical performance of BPP
under the MSC model (either with or without cross-species
introgression) but ignored the computational requirements
and mixing issues of MCMC algorithms. Computational will
be an important factor when one subsamples data to apply
full-likelihood methods of inference. Computation increases
with the increase in the number of species/populations, the
number of loci, the number of sequences per locus, and the
number of sites per sequence. The number of species may
have the greatest impact, because more species mean many
more species trees and a much expanded parameter space.
The number of sites should be the least important factor that
affects computation. Although there are more site patterns
under complex models such as GTR (Yang 1994) than under
JC, computation is proportional to the number of site pat-
terns and grows sublinearly with the number of sites under
any model. In comparison, computation grows much faster
with the increase in the number of species, the number of
sequences, and the number of loci. The increased

(a) (b)

FIG. 6. The true species trees or MSC models used in the simulation for
species delimitation. There are five populations (A; B; C;D, and E) and
three species (AB, C, and DE) in the true model. Data are simulated by
assuming the tree of five populations with sT and sU set to very small
values (¼ 10�50h), and then analyzed to infer both the species de-
limitation and species phylogeny (the A11 analysis, Yang 2015). Two
sets of parameters are used to represent different tree shapes: (a) sR

¼ 5h and sS ¼ 4:8h and (b) sR ¼ h and sS ¼ 0:5h. The thickness of
the branches indicates the population sizes (hs) relative to the species
divergence times (ss). Two values are used for h: 0.0025 or 0.01.

(a) (b)

FIG. 7. Posterior probability of the correct model (both delimitation and phylogeny), correct delimitation, and correct delimited species AB, C, and
DE in the A11 analysis of joint species delimitation and species tree estimation (Yang 2015). Two sets of model parameters are used for the model of
figure 6: (a) sR ¼ 5h and sS ¼ 4:8h and (b) sR ¼ h and sS ¼ 0:5h.
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computational effort may manifest itself in two ways. First,
with more data, each iteration of the MCMC algorithm takes
more computation, mainly because the phylogenetic likeli-
hood (the probability of observing the sequence alignment at
the locus given the gene tree and coalescent times) is more
expensive. In typical data analysis, the likelihood calculation
accounts for most (>80%) of the CPU time. The likelihood
calculation on a gene tree grows roughly linearly with the
number of sequences, although more sequences at each locus
also mean more gene trees and branch lengths to average
over. Second, with more data, the posterior distribution of the
parameters (hs and ss) under each species tree becomes
more concentrated. As a result, it becomes more difficult to
move from one species tree to another in the trans-model
MCMC algorithm, and many more iterations will be necessary
to allow adequate sampling of the posterior (Yang 2014, pp.
254–255). If the proposed parameter values for the new spe-
cies tree are poor and far away from the posterior mode,
which is very likely when the within-model parameter poste-
rior is spiky, the proposal will most likely be rejected even if
the new species tree has a higher posterior than the current
species tree. In large data sets, the problem of poor mixing
appears to be a far greater challenge than the problem of
more expensive likelihood calculation per MCMC iteration
(Rannala and Yang 2017).

Materials and Methods

A00 Estimation of Divergence Times and Population
Size Parameters
The first set of simulations examined the estimation of
parameters in the MSC model (hs and ss), with the species
tree fixed. Data were generated using the “simulate” option of
BPP (Yang 2015; Flouri et al. 2018). Gene trees with branch
lengths (coalescent times) were simulated under the MSC
model (Rannala and Yang 2003). Then, sequences were
“evolved” along the branches of the gene tree according to
the JC model (Jukes and Cantor 1969), and the sequences at
the tips of the gene tree constituted the data at the locus. We
assumed species trees B or U of figure 1. For tree B, the
parameters were sR ¼ 5h, sS ¼ 4h, sT ¼ 3h, and sU ¼
4.5h, with two values for h: 0.0025 and 0.01. For tree U, we
used sR ¼ 5h, sS ¼ 4h, sT ¼ 3h, and sU ¼ 2.5h, with h ¼
0.0025 or 0.01. We sampled either S¼ 2 or 8 sequences per
species at each locus, with the sequence length to be either
N¼ 250 or 1,000 sites. The number of loci was either L ¼ 40
or 160. Each replicate data set consisted of L loci, with 10 or 40
sequences per locus. The number of replicate data sets was
100. The total number of simulated data sets, for all the
combinations of tree, S, N, L, and h is thus
2� 2� 2� 2� 2� 100 ¼ 3; 200.

Each replicate data set was analyzed using BPP version 4
(Flouri et al. 2018) to estimate the parameters in the MSC
model (ss and hs on the species tree). The correct species tree
and the correct model (JC) were assumed. Inverse-gamma
priors were assigned on the population size parameters (h)
and the age of the root on the species tree (s0 ¼ sR), with the
shape parameter 3 and the prior means equal to the true
values: s0 � IG(3, 0.025) and h � IG(3, 0.005) for h ¼ 0:0025,
and s0 � IG(3, 0.1) and h � IG(3, 0.02) for h ¼ 0:01. The
inverse-gamma distribution with shape parameter a¼ 3 has
the coefficient of variation 1 and constitutes a diffuse prior.
Note that although the same h for all species on the species
tree was assumed in the simulation, every branch on the
species tree had its own h when the data were analyzed using
BPP.

Pilot runs were used to determine the suitable settings for
the MCMC, and then the same setting was used to analyze all

Table 4. Average Posterior Probabilities for the True Model, True Delimitation, and True Species AB, C, and DE for the Model of Figure 6.

h ¼ 0:0025; S ¼ 2 h ¼ 0:0025; S ¼ 8 h ¼ 0:01; S ¼ 2 h ¼ 0:01; S ¼ 8

Tree shape 1
L 5 40, N 5 250 0.42, 0.90, 0.95, 1.00, 0.96 0.46, 0.99, 0.99, 1.00, 0.99 0.66, 0.95, 0.98, 1.00, 0.97 0.66, 0.99, 0.99, 1.00, 1.00
L 5 40, N 5 1,000 0.63, 0.94, 0.96, 1.00, 0.97 0.63, 0.98, 0.99, 1.00, 1.00 0.77, 0.97, 0.98, 1.00, 0.99 0.81, 1.00, 1.00, 1.00, 1.00
L 5 160, N 5 250 0.63, 0.95, 0.97, 1.00, 0.98 0.64, 1.00, 1.00, 1.00, 1.00 0.90, 0.98, 0.99, 1.00, 0.99 0.90, 1.00, 1.00, 1.00, 1.00
L 5 160, N 5 1,000 0.86, 0.97, 0.99, 1.00, 0.98 0.88, 0.99, 0.99, 1.00, 1.00 0.98, 0.98, 0.99, 1.00, 1.00 0.99, 1.00, 1.00, 1.00, 1.00

Tree shape 2
L 5 40, N 5 250 0.74, 0.74, 0.81, 1.00, 0.91 0.92, 0.92, 0.94, 1.00, 0.98 0.83, 0.83, 0.88, 1.00, 0.95 0.96, 0.96, 0.97, 1.00, 0.99
L 5 40, N 5 1,000 0.85, 0.85, 0.90, 1.00, 0.95 0.96, 0.96, 0.98, 1.00, 0.99 0.89, 0.89, 0.93, 1.00, 0.96 0.97, 0.97, 0.98, 1.00, 0.99
L 5 160, N 5 250 0.84, 0.84, 0.89, 1.00, 0.95 0.96, 0.96, 0.98, 1.00, 0.98 0.90, 0.90, 0.93, 1.00, 0.97 0.98, 0.98, 0.99, 1.00, 0.99
L 5 160, N 5 1,000 0.91, 0.91, 0.93, 1.00, 0.97 0.98, 0.98, 0.99, 1.00, 0.99 0.95, 0.95, 0.97, 1.00, 0.97 0.99, 0.99, 0.99, 1.00, 1.00

NOTE.—The five numbers in each cell are for the true model, true delimitation, and the three true delimited species (AB, C, and DE). The true model means that the number of
species is 3, the three species are AB, C, and DE, and the phylogeny is ððAB; CÞ;DEÞ. The true delimitation means that the number of species is 3 and the three species are AB, C,
and DE but the phylogeny may and may not be correct.

(a) (b)

FIG. 8. Two introgression (MSci) models used in the simulation. The
parameters for tree B are sR ¼ 5h, sS ¼ 4h, sT ¼ 3h, sU ¼ 4.5h,
sX ¼ sY ¼ h, and sW ¼ sZ ¼ h, whereas those for tree U are sR ¼
5h, sS ¼ 4h, sT ¼ 3h, sU ¼ 2.5h, sX ¼ sY ¼ h, and sW ¼ sZ ¼ h. In
both trees, we have uY ¼ 0:3 and uZ ¼ 0:2 and use two values for h:
0.0025 or 0.01.
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replicates. Convergence was assessed by running the same
analysis multiple times and confirming consistency between
runs (Yang 2015; Flouri et al. 2018). We used 32,000 iterations
for burnin, after which we took 105 samples, sampling every
five iterations. Analysis of each data set took�4 h on a single
core for small data sets of 40 loci and ten sequences per locus
or�23 h for large data sets of 160 loci and 40 sequences per
locus.

As measures of performance, we used the 95% HPD CI
width and the RMSE. This is defined as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

R

XR

i¼1

ðb/ i � /Þ2
vuut ; (1)

where / is the true value of any parameter and b/ i is the
estimate (posterior mean) in the ith replicate data set, with
i ¼ 1; . . . ; R. The RMSE is a combined measure of estimation
bias and variance.

A01 Species Tree Estimation
The second set of simulations examined the estimation of the
species tree topology under the MSC model. Multilocus se-
quence data were simulated assuming species trees B or U of
figure 4. For tree B, the parameters were
sR ¼ 5h; sS ¼ 4:8h; sT ¼ 4:7h, and sU ¼ 4:8h. For tree
U, they were sR ¼ 5h; sS ¼ 4:8h; sT ¼ 4:6h, and
sU ¼ 4:4h. Two values were used for h: 0.0025 and 0.01.
The other parameters and data configurations were the
same as in the A00 simulation. In total, 3,200 replicate data
sets were simulated.

Each data set was analyzed using BPP to estimate the
species tree. The subtree-pruning-and-regrafting algorithm
was used to move between species trees (Rannala and
Yang 2017; Flouri et al. 2018). During the pilot runs, the pro-
gram showed mixing problems in some large data sets (with

Table 5. Proportions of Replicates in Which the MAP Model Is the True Model, and Includes the True Delimitation, and True Species AB, C, and DE
for the Models of Figure 6.

h ¼ 0:0025; S ¼ 2 h ¼ 0:0025; S ¼ 8 h ¼ 0:01; S ¼ 2 h ¼ 0:01; S ¼ 8

Tree shape 1
L 5 40, N 5 250 0.50, 0.97, 0.97, 1.00, 1.00 0.56, 1.00, 1.00, 1.00, 1.00 0.79, 0.99, 1.00, 1.00, 0.99 0.80, 1.00, 1.00, 1.00, 1.00
L 5 40, N 5 1,000 0.74, 0.97, 0.98, 1.00, 0.99 0.76, 0.99, 0.99, 1.00, 1.00 0.87, 1.00, 1.00, 1.00, 1.00 0.91, 1.00, 1.00, 1.00, 1.00
L 5 160, N 5 250 0.78, 0.99, 0.99, 1.00, 1.00 0.75, 1.00, 1.00, 1.00, 1.00 1.00, 1.00, 1.00, 1.00, 1.00 0.97, 1.00, 1.00, 1.00, 1.00
L 5 160, N 5 1,000 0.94, 0.98, 0.99, 1.00, 0.99 0.98, 1.00, 1.00, 1.00, 1.00 1.00, 1.00, 1.00, 1.00, 1.00 1.00, 1.00, 1.00, 1.00, 1.00

Tree shape 2
L 5 40, N 5 250 0.90, 0.90, 0.93, 1.00, 0.97 0.98, 0.98, 0.98, 1.00, 1.00 0.94, 0.94, 0.95, 1.00, 0.99 1.00, 1.00, 1.00, 1.00, 1.00
L 5 40, N 5 1,000 0.97, 0.97, 0.97, 1.00, 1.00 1.00, 1.00, 1.00, 1.00, 1.00 0.97, 0.97, 0.98, 1.00, 0.99 1.00, 1.00, 1.00, 1.00, 1.00
L 5 160, N 5 250 0.94, 0.94, 0.96, 1.00, 0.98 0.99, 0.99, 1.00, 1.00, 0.99 0.97, 0.97, 0.97, 1.00, 1.00 1.00, 1.00, 1.00, 1.00, 1.00
L 5 160, N 5 1,000 0.99, 0.99, 0.99, 1.00, 1.00 1.00, 1.00, 1.00, 1.00, 1.00 0.99, 0.99, 1.00, 1.00, 0.99 1.00, 1.00, 1.00, 1.00, 1.00

FIG. 9. Posterior 95% CIs and CI coverage in 100 replicate data sets for introgression parameters in the MSci model of figure 8. The numbers above or
below the CI bars are the CI coverage probability. Results for all 21 parameters in the model are shown in supplementary figures S2 and S3,
Supplementary Material online.

Table 6. Relative Importance of the Different Factors Examined in
This Article (the number of loci L, the number of sequences per
species per locus S, the sequence length N, and the mutation rate
h) to Different Inference Problems under the MSC.

Analysis Influencea N versus hb

Parameter estimation under MSC and MSci (A00)
hs for modern species L � S � ðN; hÞ N � h

hs for ancestral species ðL;NÞ � h � S N � h

ss ðN; LÞ � h � S N � h

us L � ðN; hÞ � S N � h

Species tree estimation under MSC (A01) L � N � h � S N � h

aL � S � ðN; hÞmeans that increasing the number of loci (L) improves information
content more than increasing the number of sequences (S), which is in turn more
effective than increasing the sequence length (N) or the mutation rate (h), while N
and h have similar effect.
bN � h means that when the locus-wide mutation rate (Nh) is fixed, a longer
sequence with a lower mutation rate gives better performance than a shorter
sequence with a higher mutation rate, whereas N � h means that the two have
similar performance.
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S¼ 8 sequences and L¼ 160 loci). It was found helpful to
integrate out hs analytically through the use of the conjugate
inverse-gamma priors (Flouri et al. 2018). Furthermore, the
starting species tree was noted to affect the time taken to
reach stationarity or the specification of the burnin, but not
the mixing efficiency of the Markov chain after the burnin.
Thus, we used the true species tree as the starting tree. We
calculated the posterior probabilities for the species tree and
clades to measure performance.

A11 Species Delimitation
The third set of simulations examined species delimitation
using multilocus data sets under the MSC model (Yang and
Rannala 2010, 2014). There are three species (AB, C, and DE)
and five populations (A; B; C;D, and E) in the true model
(fig. 6). Two sets of node ages are used to represent different
tree shapes: 1) sR ¼ 5h and sS ¼ 4:8h (fig. 6a) and 2) sR ¼ h
; sS ¼ 0:5h (fig. 6b). We simulated gene trees and sequence
alignments by using the true species tree for five populations
with sT and sU close to 0. The number of sequences for each
of the five populations was either 2 or 8. Other parameter
settings were as before. A total of 3,200 data sets were
simulated.

Each replicate data set was analyzed to infer both the
species delimitation and species phylogeny (analysis A11 in
Yang [2015]). Five populations, with the correct assignment
of sequences to populations, were assumed in the analysis,
and the program evaluates different models of merging the
five populations into species as well as different species phy-
logenies (if the number of delimited species is 3 or more)
(Yang and Rannala 2014). Trans-dimensional reversible-jump
MCMC (Yang and Rannala 2010; Rannala and Yang 2013) was
used to move between different delimitation models, whereas
the subtree-pruning-and-regrafting algorithm (Yang and
Rannala 2014; Rannala and Yang 2017) was used to move
between species trees. Similarly, hs were integrated out ana-
lytically through the use of inverse-gamma priors to improve
mixing (Flouri et al. 2018). The starting model was generated
by collapsing at random some of the four internal nodes on
the five-population tree (fig. 6) (Yang and Rannala 2010).
Posterior probabilities for inferring the correct model or cor-
rect delimitation were calculated.

A00-MSci Estimation of Introgression Parameters
under the MSci Model
The fourth set of simulation explored the performance of BPP
under the two MSci models of figure 8 (Flouri et al. 2020). In
each model, there were two unidirectional introgression
events. The parameters for tree B were sR ¼ 5h,
sS ¼ 4h; sT ¼ 3h; sU ¼ 4:5h; sX ¼ sY ¼ h, and sW ¼ sZ

¼ h. Parameters for tree U were sR ¼ 5h; sS ¼ 4h;
sT ¼ 3h; sU ¼ 2:5h; sX ¼ sY ¼ h, and sW ¼ sZ ¼ h. In
both trees, uY ¼ 0:3 and uZ ¼ 0:2. Two values were used
for h: 0.0025 or 0.01. Gene trees and sequence alignments
were simulated using BPP under the JC model. A total of 3,200
replicate data sets were generated. Each data set was then
analyzed to estimate the 21 parameters in the MSci model
(Flouri et al. 2020).

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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