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Abstract.—Recent analyses of genomic sequence data suggest cross-species gene flow is common in both plants and animals,
posing challenges to species tree estimation. We examine the levels of gene flow needed to mislead species tree estimation
with three species and either episodic introgressive hybridization or continuous migration between an outgroup and one
ingroup species. Several species tree estimation methods are examined, including the majority-vote method based on the
most common gene tree topology (with either the true or reconstructed gene trees used), the UPGMA method based on
the average sequence distances (or average coalescent times) between species, and the full-likelihood method based on
multilocus sequence data. Our results suggest that the majority-vote method based on gene tree topologies is more robust
to gene flow than the UPGMA method based on coalescent times and both are more robust than likelihood assuming a
multispecies coalescent (MSC) model with no cross-species gene flow. Comparison of the continuous migration model with
the episodic introgression model suggests that a small amount of gene flow per generation can cause drastic changes to
the genetic history of the species and mislead species tree methods, especially if the species diverged through radiative
speciation events. Estimates of parameters under the MSC with gene flow suggest that African mosquito species in the
Anopheles gambiae species complex constitute such an example of extreme impact of gene flow on species phylogeny. [IM;
introgression; migration; MSci; multispecies coalescent; species tree.]

Cross-species hybridization or introgression has long
been recognized as an important process that generates
biological diversity in plants (e.g., Anderson 1949; Mallet
2007). Analyses of genomic data in the past few years
suggest that introgression is also common in animals
(Ellegren et al. 2012; Chan et al. 2013; Kumar et al. 2017;
Mao et al. 2018; Wu et al. 2018), including humans and
their close relatives (Nielsen et al. 2017). Introgression
may involve either sister or nonsister species (e.g.,
Mallet et al. 2016) and may play an important role
in the speciation process (Mallet et al. 2016; Martin
and Jiggins 2017). Introgression, together with deep
coalescence (also known as incomplete lineage sorting),
may cause difficulties for species tree reconstruction
(Maddison 1997; Nichols 2001). In extreme cases, the
whole genome, and in particular the autosomes, are
affected by such pervasive gene flow that they do not
reflect the species phylogeny anymore. This appears, for
example, to be the case with the Anopheles gambiae species
complex, in which the autosomes suggest different
species relationships from the X chromosome, which,
being apparently enriched with sterility genes and
resistant to cross-species gene flow, reflects the true
history of species divergences (Fontaine et al. 2015). The
Heliconius butterflies appear to be another such case,
with the Z chromosome favoring different phylogenies
from the autosomes (Edelman et al. 2019). In both
examples, the species arose through a rapid succession of
speciation events, generating species phylogenies with
very short interior branches, which are challenging to
reconstruct even without cross-species gene flow.

A number of methods have been developed to detect
gene flow across species using genetic sequence data,
including population genetic methods based on Fst

and summary methods that make use of observed
site patterns (Green et al. 2010; Durand et al. 2011) or
estimated gene tree topologies (Yu et al. 2012, 2014;
Yu and Nakhleh 2015; Solis-Lemus and Ane 2016; Wen
et al. 2016). Full-likelihood methods based on sequence
alignments (Hey and Nielsen 2004; Hey et al. 2018; Wen
and Nakhleh 2018; Zhang et al. 2018) are also being
actively developed. See Degnan (2018) and Folk et al.
(2018) for recent reviews.

Here, we consider the question of how much gene flow
is sufficient to mislead species tree estimation methods
that accommodate the coalescent process but not gene
flow. As discussed by Folk et al. (2018), the impact
of gene flow on the tree of life is an important topic
worth serious study. We focus on the case of three
species with sequences evolving under the molecular
clock and are specifically interested in closely related
species, for which gene flow may be a major concern.
We consider two distinct models of gene flow, both of
which accommodate the multispecies coalescent (MSC).
The model of isolation with migration (IM) assumes
continuous migration, with the species exchanging
migrants at a certain rate in every generation (see Fig. 1b,
d for examples) (Hey and Nielsen 2004; Hey 2010).
The model of multispecies coalescent with introgression
(MSci) assumes episodic introgression or hybridization,
with introgressions occurring at fixed time points in
the past (e.g., Fig. 1a, c) (Yu et al. 2012, 2014; Wen
and Nakhleh 2018). The MSci model was called the
“multispecies network coalescent” by Wen and Nakhleh
(2018). As the term “network” has been used to refer
to both biological and nonbiological processes (Solis-
Lemus and Ane 2016; Degnan 2018), we follow Degnan
(2018) and use the more-expressive term “MSC with
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introgression” to highlight the two major factors in the
model: coalescent and introgression. We consider two
scenarios of gene flow on the species tree (A,(B,C)).
Inflow is introgression (or migration) from the outgroup
species A to the ingroup species C, and outflow is in
the reverse direction. In both scenarios, gene flow makes
species A and C look similar, potentially misleading
species tree methods to infer the incorrect tree (B,(C,A)).

Previously Leaché et al. (2014) used computer
simulation to examine the impact of continuous
migration on species tree inference, finding that the
effects depend on the species tree topology and the mode
of gene flow. For example, while gene flow between
nonsister species might mislead species tree inference,
gene flow between sister species actually made it easier
to infer the species tree. Solis-Lemus et al. (2016) used
simulation to study the statistical consistency of several
species tree methods that ignore gene flow, including
ASTRAL (Mirarab et al. 2014) and NJST (Liu and Yu 2011),
when the model assumes cross-species introgression. A
method was considered inconsistent if the probability of
retrieving the correct species tree fails to increase when
the number of gene trees (the number of loci) increases.
The approach we take here is largely analytical, not
affected by sampling errors in simulation. Hahn and
Nakhleh (2016, Fig. 3) calculated gene tree probabilities
under an introgression model, arguing that the concept
of a species tree is poorly defined when there is gene
flow. Long and Kubatko (2018) studied the probabilities
of gene tree topologies under a model of isolation
with initial migration (Wilkinson-Herbots 2012) for three
species, in which there is initial gene flow between sister
species after their divergence. One might expect gene
flow between sister species to make them appear more
similar, making it easier to infer the species tree, but
surprisingly with different population sizes, gene flow
between sister species can cause the most probable gene
tree topology to differ from the species tree, leading to
so-called “anomalous gene trees”.

Here we study the asymptotic behavior of several
species tree inference methods when there is gene flow
affecting nonsister species. All the methods ignore gene
flow but are statistically consistent in the case of three
species when there is deep coalescence but no gene flow.
We consider both continuous migration and episodic
introgression. The first method is the majority-vote
method of using the most common (true) gene tree
topology as the estimate of the species tree. This is
known to be statistically consistent in the case of three
species and three sequences per locus when there is no
gene flow, with the estimated species tree approaching
the true tree when the number of loci approaches
infinity (Hudson 1983). We derive the distribution of
the true gene tree topologies under each model of
gene flow, and examine the impact of phylogenetic
reconstruction errors when the estimated gene trees are
used to estimate the species tree. Use of estimated gene
trees is known to be consistent in the case of three species
when the model involves coalescent but no gene flow

(Yang 2002). Next we consider the UPGMA method,
which uses the average sequence distance between
species (or the average coalescent time between species
since we assume the molecular clock) to infer the species
tree (Liu et al. 2009). This is equivalent to calculating
sequence distances using concatenated data followed by
UPGMA reconstruction of the species tree. This method
is known to be consistent in the case of three species (Liu
et al. 2009). Finally, we consider the maximum likelihood
(ML) method of species tree estimation, which averages
over the gene trees and branch lengths and thus accounts
for phylogenetic reconstruction errors (Yang 2002; Xu
and Yang 2016). While full-likelihood methods of species
tree estimation under the MSC applied to multilocus
sequence alignments, including ML (Yang 2002; Zhu
and Yang 2012) and Bayesian inference (Liu and Pearl
2007; Heled and Drummond 2010; Yang and Rannala
2014), are analytically intractable, the 3s program has an
efficient ML implementation that can handle thousands
of loci (Yang 2002; Dalquen et al. 2017). We thus use 3s to
analyze tens of thousands of loci to approximate the case
of infinite data. Note that our interest is in the consistency
or inconsistency of each species tree estimation method
in the face of gene flow as the number of loci approaches
infinity. To our knowledge, this represents the first
analysis of full-likelihood methods based on sequence
alignments, which may be expected to make the most
efficient use of information in the sequence data and to
have statistically optimal performance when the model
is correct. The performance of likelihood methods when
the model is mis-specified is unknown. As pointed out
by Solis-Lemus et al. (2016), statistical consistency is
conventionally defined under the true model, but here
we follow the tradition in statistical phylogenetics to
examine the impact of model violations.

We note that with cross-species gene flow, the concept
of the true species tree may be ambiguous (Hahn and
Nakhleh 2016). One strategy, adopted in PhyloNetworks
(Solis-Lemus et al. 2017), is to use the introgression
probability to define the major species tree, which is the
species tree represented by parental branches at the
hybridization nodes with contribution probabilities > 1

2 .
For example, in Figure 1a, the true species tree is (A(CB))
if ϕ< 1

2 and ((AC)B) if ϕ> 1
2 . With this definition, the true

species tree changes when the introgression probability
increases from below 0.5 to above 0.5, with the truth
always on the winning side. Another strategy is to start
with a species tree and add gene flow onto it, with the
true species tree to be always the starting species tree.
In this article, we use the second strategy, motivated by
the inferred pattern of gene flow in the Anopheles gambiae
species group (see Discussion section).

THEORY

We consider two gene flow scenarios: “inflow” where
there is gene flow (introgression or migration) from
the outgroup species A to the ingroup species C on
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a) b)

c) d)

FIGURE 1. Species tree (A,(B,C)), with introgression (a and c)
or migration (b and d) from the outgroup species A to the ingroup
species C (inflow, a and b) or in the reverse direction (outflow, c and d).
In the MSci models, an introgression or hybridization event occurs
at time �H =�S, and the hybrid species H consists of a proportion
ϕ of introgressed individuals. In the IM model, gene flow occurs
continuously (i.e., in every generation) over the time period (0,�T ).
The migration rate in (b) is defined as MA→C =NCmA→C, where NC
is (effective) population size of species C and mA→C is the proportion
of immigrants (from species A) in the receiving population C, so that
MA→C is the expected number of migrants from A to C per generation.
Migration rate in (d) is defined similarly as MC→A =NAmC→A. In
this article, the backbone tree represented by black thick branches is
considered the true species tree, irrespective of the strength of gene
flow (or the values of ϕ or M).

the species tree (A,(B,C)) (Fig. 1a,b) and “outflow”
in the opposite direction (Fig. 1c,d). Both the species
divergence times (�R,�S, and �T) and the population
size parameters (�s) in the model are measured by the
expected number of mutations/substitutions per site.
The data consist of multiple loci, with three sequences—
one from each of the three species at each locus (a,b,c).
The possible gene trees at each locus are G1 = (a,(b,c)),
which matches the species tree; G2 = (b,(c,a)), which
reflects the introgression or migration pattern; and G3 =
(c,(a,b)) which matches neither. Sequence data are then
analyzed to infer the species tree under the MSC model
(assuming no gene flow). We derive analytical results for
two simple methods of species tree estimation assuming
no gene flow: 1) the majority-vote method for which
the correct species tree is inferred if P(G1)>P(G2) and
2) the UPGMA method using the average coalescent

times across loci (Liu et al. 2009) for which the correct
species tree is inferred if E(tbc)<E(tac). Initially, we
ignore sampling errors in the gene trees or the estimated
sequence distances. We study the asymptotic behavior
of the two methods as the number of loci approaches
infinity. We derive results for the two methods under
both the MSci and IM models.

We note that the analytical results derived here apply
to the specific scenarios of species tree and gene flow.
Even for the case of three species, we do not consider
gene flow between sister species (Dalquen et al. 2017;
Long and Kubatko 2018) or bidirectional gene flow (A↔
C). Larger species trees with more than three species
and more complex gene flow scenarios involving more
than one pair of species will add much complexity to the
analysis (Zhu et al. 2016; Zhu and Degnan 2017).

Gene Flow under the MSci Model
Here, we consider properties of the majority-vote and

UPGMA methods for data arising under an MSci model
of admixture. Referring to Figure 1, we define

PS =e− 2
�S

(�R−�S) and PT =e− 2
�T

(�R−�T )

to be the probability that two sequences entering either
species S, or species T, do not coalesce in that species
and instead both enter the ancestral species (species R for
both). Note that 2

�S
(�R −�S) and 2

�T
(�R −�T) are known as

the branch lengths in coalescent units in Figure 1.
We first consider properties of the methods with data

generated by inflow.

UPGMA method with inflow.— Here, we derive results
for a model assuming instantaneous introgression from
A to C (inflow), with the introgression probability
ϕ. Sequences a and b can coalesce in R only,
and the coalescent time has the exponential density

f (tab)= 2
�R

e− 2
�R

(tab−�R) with expectation E(tab)=�R + �R
2 .

Sequences a and c can coalesce in population S as well
as R, while sequences b and c can coalesce in species T
as well as R. This means that E(tab)>max{E(tac),E(tbc)}.
The probability density of the coalescent time tac is

f (tac)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ϕ 2
�S

e− 2
�S

(tac−�S)
, if �S < tac <�R,

ϕPS
2
�R

e− 2
�R

(tac−�R)

+(1−ϕ) 2
�R

e− 2
�R

(tac−�R)
, if tac >�R,

(1)

with expectation

E(tac)=ϕ

[
�S + �S

2
+PS

(
�R

2
− �S

2

)]
+(1−ϕ)

(
�R + �R

2

)
.

(2)
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Similarly, sequences b and c can coalesce in species T and
R, so we have the density

f (tbc)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1−ϕ) 2
�T

e− 2
�T

(tbc−�T )
, if �T < tbc <�R,

(1−ϕ)PT
2
�R

e− 2
�R

(tbc−�R)

+ϕ 2
�R

e− 2
�R

(tbc−�R)
, if tbc >�R,

(3)

with expectation

E(tbc)= (1−ϕ)
[
�T + �T

2
+PT

(
�R

2
− �T

2

)]
+ϕ

[
�R + �R

2

]
.

(4)
Then E(tbc)>E(tac) and the UPGMA method based on
average coalescent times infers an incorrect species tree
if and only if

ϕ>
1

1+ �R−�S+ 1
2 (1−PS)(�R−�S)

�R−�T+ 1
2 (1−PT )(�R−�T )

. (5)

Majority-vote method with inflow—. If sequences b and
c coalesce in population T, the gene tree will be G1 =
(a,(b,c)), while if a and c coalesce in population S,
the gene tree will be the G2 = (b,(c,a)). If neither of
those events occurs, both coalescent events for the three
sequences will occur in species R and the three gene
trees will occur with equal probabilities. Thus P(G3)<
min{P(G1),P(G2)}. We have

P(G1)= 1
3
ϕPS +(1−ϕ)

(
1−PT + 1

3
PT

)
,

P(G2)=ϕ

(
1−PS + 1

3
PS

)
+ 1

3
(1−ϕ)PT, (6)

P(G3)= 1
3

[ϕPS +(1−ϕ)PT]=1−P(G1)−P(G2).

For example, gene tree G1 results from sequences b
and c coalescing first. If sequence c enters species S
(which happens with probability ϕ), this can occur only if
sequences c and a do not coalesce in species S. This is the
first term, ϕPS · 1

3 , in P(G1). If sequence c enters species H
(which happens with probability 1−ϕ), sequences b and
c can coalesce in species T or R. Hence the second term

(1−ϕ)
(

1−PT + 1
3 PT

)
.

Thus P(G1)<P(G2) and the majority-vote method
based on the most common gene tree infers an incorrect
species tree if and only if

ϕ>
1−PT

2−PS −PT
= 1

1+ 1−PS
1−PT

. (7)

This can also be obtained by noting that P(G1)<P(G2)
if and only if the probability that sequences b and c
coalesce in population T is smaller than the probability
that sequences a and c coalesce in population S: that is,
if (1−ϕ)(1−PT)<ϕ(1−PS).

Note that the gene tree probabilities (Equation 6) and
the ϕ limit based on them (Equation 7) depend on

only the internal branch lengths (in coalescent units)
on the species tree, but not the species divergence
times and population sizes. The ϕ limits for both
gene tree probabilities and the average coalescent times
(Equations 5 and 7) depend on the gene tree topologies
and coalescent times but not the mutation rate: they are
functions of �/� ratios and not of �s and �s individually.

UPGMA method with outflow.— Here, we derive results
for a model assuming instantaneous introgression from
C to A (outflow) with introgression probability ϕ.
Referring to Figure 1c we define

P∗
S =e− 2

�S
(�T−�S)

to be the probability that two sequences entering
population S do not coalesce in that population and
instead enter its ancestor (population T) (Fig. 1c).
Sequences a and c can coalesce in populations S, T, and
R, and sequences b and c or a and b can coalesce in species
T and R. The probability density of the coalescent time
tac is

f (tac)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ϕ 2
�S

e− 2
�S

(tac−�S)
, if �S < tac <�T,

ϕP∗
S

2
�T

e− 2
�T

(tac−�T )
, if �T < tac <�R,[

ϕP∗
SPT+(1−ϕ)

] 2
�R

e− 2
�R

(tac−�R)
, if tac>�R,

(8)
with expectation

E(tac) = ϕ

[
�S + �S

2
+P�

S

(
�T

2
− �S

2

)
+P�

SPT

(
�R

2
− �T

2

)]

+(1−ϕ)
[
�R + �R

2

]
. (9)

The coalescent time between sequences b and c has the
density

f (tbc)=
⎧⎨
⎩

2
�T

e− 2
�T

(tbc−�T )
, if �T < tbc <�R,

PT
2
�R

e− 2
�R

(tbc−�R)
, if tbc >�R,

(10)

with expectation

E(tbc)=�T + �T

2
+PT

(
�R

2
− �T

2

)
. (11)

The probability density of the coalescent time tab is

f (tab)=
⎧⎨
⎩

ϕ 2
�T

e− 2
�T

(tab−�T )
, if �T < tab <�R,

[ϕPT +(1−ϕ)] 2
�R

e− 2
�R

(tab−�R)
, if tab >�R,

(12)
with the expectation

E(tab)=ϕ

[
�T + �T

2
+PT

(
�R

2
− �T

2

)]
+(1−ϕ)

(
�R + �R

2

)
.

(13)
It is easy to see that E(tab)>max{E(tac),E(tbc)}. Then
E(tbc)>E(tac) and the UPGMA method infers an
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incorrect species tree if and only if

ϕ>
�R −�T + 1

2 (1−PT)(�R −�T)

�R −�S + 1
2 (�R −�S)− 1

2 P�
S(�T −�S)− 1

2 PTP�
S(�R −�T)

.

(14)

Majority-vote method with outflow—. When we trace the
genealogy of sequences a, b, and c backwards in time,
sequence a may enter species S (with probability ϕ) or
species H (with probability 1−ϕ). Consider the first case,
of sequence a entering species S. If a and c coalesce
in population S, the gene tree will be G2. Otherwise,
the two coalescent events for the three sequences can
occur in either T or R and the three gene trees occur
with equal probabilities. In the second case, sequence a
enters species H. Then if b and c coalesce in population T,
the gene tree will be G1, and otherwise, both coalescent
events for the three sequences will occur in R with
equal probabilities for the three gene trees. This means
that G3 is the least frequent gene tree, with P(G3)<
min{P(G1),P(G2)}. We have

P(G1)= 1
3
ϕP�

S +(1−ϕ)
(

1−PT + 1
3

PT

)
,

P(G2)=ϕ

(
1−P�

S + 1
3

P�
S

)
+ 1

3
(1−ϕ)PT, (15)

P(G3)= 1
3

[
ϕP�

S +(1−ϕ)PT
]=1−P(G1)−P(G2).

Thus P(G1)<P(G2), i.e., the majority-vote method infers
an incorrect species tree, if and only if

ϕ>
1−PT

2−P�
S −PT

= 1

1+ 1−P�
S

1−PT

. (16)

Gene Flow under the IM Model
UPGMA method with inflow—. We first consider an IM
model with inflow. Define the migration rate (in forward
time) from species A to C under the IM model to be
MAC =mACNC migrants per generation (Fig. 1b). When
we trace the genealogy of the sample backwards in time,
the process of coalescence and migration during time
interval (0,�T) can be described by a Markov chain with
three states: Sabc, Saab, and Sab (Hobolth et al. 2011; Zhu
and Yang 2012). Here, Sabc is the initial state with the
three sequences in the three populations, Saab is the state
after sequence c enters species A (tracing the genealogy
backwards in time), with two sequences in A and a third
in B, and Sab is the state after sequence c enters A and
coalesces with sequence a, so that two sequences remain
in the sample.

As the model assumes unidirectional migration, the
only migration possible is from C to A (when time
runs backwards), at the rate mAC per generation. The
only coalescent possible during the time epoch (0,�T) is
between a and c in population A, at the rate 1/(2NA) per
generation (Fig. 1b). Divide both rates by the mutation
rate � per generation so that one time unit is the expected

time taken to accumulate one mutation per site. Then the
migration rate becomes wAC =mAC/�=4MAC/�C, and
the coalescent rate in species A becomes 2/�A. Thus the
backward process of migration and coalescence can be
described by a Markov chain with the generator matrix
Q

Sabc Saab Sab
Sabc −wAC wAC 0
Saab 0 − 2

�A
2
�A

Sab 0 0 0

The eigenvalues of Q are �1 =0, �2 =− 2
�A

, and �3 =
−wAC. The transition probability matrix, P(t)=exp(Qt),
is

Sabc Saab Sab
Sabc e−wACt �AwAC

2−�AwAC
1− 2

2−�AwAC
e−wACt

×
(

e−wACt−e− 2
�A

t
)

+ �AwAC
2−�AwAC

e− 2
�A

t

Saab 0 e− 2
�A

t 1−e− 2
�A

t

Sab 0 0 1

Sequences a and b can coalesce in population R
only, with the coalescent time having an exponential

distribution f (tab)= 2
�R

e− 2
�R

(tab−�R)
, tab >�R, with

expectation E(tab)=�R + �R
2 . Sequences a and c

can coalesce in both A and R, while sequences
b and c can coalesce in both T and R. Thus
E(tab)>max{E(tac),E(tbc)}.

The probability density of coalescent time tac is

f (tac)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Pabc,aab(tac) 2
�A

, if 0< tac <�T,

Pabc,aab(�T) 2
�A

e− 2
�A

(tac−�T )
, if �T < tac <�R,(

Pabc,aab(�T)PA +Pabc,abc(�T)
)

× 2
�R

e− 2
�R

(tac−�R)
, if tac >�R,

(17)

where PA =e− 2
�A

(�R−�T ) is the probability that two
sequences entering population A at time �T do not
coalesce before they reach time �R. The expectation of
tac is

E(tac)=
(

1
wAC

+ �A
2

)
+ �AwAC

2−�AwAC

(
�T + �A

2

)
e− 2

�A
�T

− 2
2−�AwAC

(
�T + 1

wAC

)
e−wAC�T

+Pabc,aab(�T)
[
�T + �A

2
+PA

(
�R

2
− �A

2

)]

+Pabc,abc(�T)
(

�R + �R

2

)
.

(18)
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The coalescent time tbc has the density

f (tbc)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Pabc,abc(�T) 2
�T

e− 2
�T

(tbc−�T )
, if �T < tbc <�R,[

Pabc,abc(�T)PT
+(

1−Pabc,abc(�T)
)]

2
�R

e− 2
�R

(tbc−�R)
, if tbc >�R,

(19)
with expectation

E(tbc) = Pabc,abc(�T)
[
�T + �T

2
+PT

(
�R

2
− �T

2

)]

+(1−Pabc,abc(�T))
(

�R + �R

2

)
. (20)

Determining the threshold value of wAC or MAC for
which E(tbc)>E(tac), so that the UPGMA method
is inconsistent, is not analytically tractable but the
threshold can be calculated numerically through a linear
search for given values of parameters (�s and �s).

Majority-vote method with inflow—. Using the Markov
chain characterization of the backward process
of coalescent and migration described above, the
probabilities of three gene trees can be easily derived
(Fig. 1b). We have

P(G1)=Pabc,abc(�T)(1−PT + 1
3

PT)+Pabc,aab(�T)PA · 1
3
,

P(G2)=Pabc,ab(�T)+Pabc,aab(�T)(1−PA

+ 1
3

PA)+ 1
3

Pabc,abc(�T)PT, (21)

P(G3)= 1
3

Pabc,abc(�T)PT + 1
3

Pabc,aab(�T)PA,

where PA =e− 2
�A

(�R−�T ). For example, gene tree G1 occurs
if sequences b and c coalesce first. This can only occur if
there is no coalescent (between sequences a and c) in
the time epoch (0,�T), so that the state of the Markov
chain at time �T must be either Sabc or Saab. In the
former case (state Sabc at time �T), sequences b and c
may coalesce first, in either species T (with probability
1−PT) or species R (with probability PT · 1

3 ). In the latter
case (state Saab at time�T), sequences b and c may coalesce
first only if there is no coalescence (between sequences a
and c) in species A between �T and �R (with probability
PA · 1

3 ).
It is easy to see that P(G3)<min{P(G1),P(G2)}. We

have P(G1)<P(G2) if and only if Pabc,abc(�T)(2−PT)+
Pabc,aab(�T)PA <1, or if and only if

e−wAC�T (2−PT)+
�AwAC

(
e−wAC�T −e− 2

�A
�T

)

2−�AwAC
PA <1.

(22)
Again the threshold value of wAC for this condition
to be satisfied, so that the majority-vote method is

inconsistent, can be calculated numerically through a
linear search.

UPGMA method with outflow—. Similar to the IM model
of Figure 1b, we use a Markov chain to characterize the
coalescent-migration process in the time interval (0,�T)
(Fig. 1d). The migration rate from C to A (in forward
time) is MCA migrants per generation or wCA =mCA/�=
4MCA/�A when time is scaled by the mutation rate.
The coalescent rate (in population C after sequence a
moves into C) is 1/(2NC) per generation or 2/�C on the
mutational time scale. For a sample of three sequences
(a,b,c), the three states of the Markov chain are Sabc, Sccb,
and Scb, where Sccb indicates three sequences exist with
two sequences in species C and one in B, and Scb indicates
two sequences exist with one in species C and one in B.
The rate matrix Q is

Sabc Sccb Scb
Sabc −wCA wCA 0
Sccb 0 − 2

�C
2
�C

Scb 0 0 0

This has the eigenvalues �1 =0, �2 =− 2
�C

, and �3 =
−wCA. The transition probability matrix P(t)=exp(Qt)
is

Sabc Sccb Scb
Sabc e−wCAt �CwCA

2−�CwCA
1− 2

2−�CwCA
e−wCAt

×
(

e−wCAt −e− 2
�C

t
)

+ �CwCA
2−�CwCA

e− 2
�C

t

Sccb 0 e− 2
�C

t 1−e− 2
�C

t

Scb 0 0 1

Sequences a and c can coalesce in populations C, T,
and R. Sequences b and c or a and b can coalesce in T and
R. The probability density of coalescent time tac is

f (tac)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Pabc,ccb(tac) 2
�C

, if 0< tac <�T,

Pabc,ccb(�T) 2
�T

e− 2
�T

(tac−�T )
, if �T < tac <�R,(

Pabc,ccb(�T)PT +Pabc,abc(�T)
)

× 2
�R

e− 2
�R

(tac−�R)
, if tac >�R,

(23)
with expectation

E(tac)=
(

1
wCA

+ �C
2

)
+ �CwCA

2−�CwCA

(
�T + �C

2

)
e− 2

�C
�T

− 2
2−�CwCA

(
�T + 1

wCA

)
e−wCA�T

+Pabc,ccb(�T)
[
�T + �T

2
+PT

(
�R

2
− �T

2

)]

+Pabc,abc(�T)
(

�R + �R

2

)
.

(24)
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The coalescent time tbc has the density

f (tbc)=
⎧⎨
⎩

2
�T

e− 2
�T

(tbc−�T )
, if �T < tbc <�R,

PT
2
�R

e− 2
�R

(tbc−�R)
, if tbc >�R,

(25)

with expectation

E(tbc)=�T + �T

2
+PT

(
�R

2
− �T

2

)
. (26)

The probability density of the coalescent time tab is

f (tab)=

⎧⎪⎪⎨
⎪⎪⎩

Pabc,ccb(�T) 2
�T

e− 2
�T

(tab−�T )
, if �T < tab <�R,[

Pabc,ccb(�T)PT +(
1−Pabc,ccb

(�T)
)] 2

�R
e− 2

�R
(tab−�R)

, if tab >�R,

(27)
with expectation

E(tab) = Pabc,ccb(�T)
[
�T + �T

2
+PT

(
�R

2
− �T

2

)]

+(
1−Pabc,ccb(�T)

)(
�R + �R

2

)
. (28)

It is easy to see that E(tab)>max{E(tac),E(tbc)}. Again
the threshold value of wCA or MCA for which E(tbc)>
E(tac), so that the UPGMA method is inconsistent, can
be calculated numerically through a linear search.

Majority-vote method with outflow—. The procedure we
used previously to analyze the IM model with inflow is
also applied here (Fig. 1d). We have

P(G1)=Pabc,abc(�T)(1−PT + 1
3

PT)+ 1
3

Pabc,ccb(�T),

P(G2)=Pabc,cb(�T)+ 1
3

Pabc,abc(�T)PT + 1
3

Pabc,ccb(�T),

P(G3)= 1
3

Pabc,abc(�T)PT + 1
3

Pabc,ccb(�T),

It is easy to see that G3 is the least probable gene tree,
with P(G3)<min{P(G1),P(G2)}. Furthermore, P(G1)<
P(G2) if and only if Pabc,abc(�T)(1−PT)<Pabc,cb(�T), or if
and only if

e−wCA�T (1−PT)+ 2e−wCA�T −(�CwCA)e− 2
�C

�T

2−�CwCA
<1. (29)

Again a linear-search algorithm can be used to determine
the value of wCA for which this condition is satisfied and
the majority-vote method is inconsistent.

RESULTS

The majority-vote and UPGMA methods
Here, we apply the theoretical results developed above

to determine the amount of gene flow, as measured by the
migration rate M in the IM model and the introgression
probability ϕ in the MSci model, that is sufficient to

mislead species tree estimation. These thresholds define
the boundary of the zone of inconsistency for each gene
flow model and each inference method. In Figure 2,
the threshold values of ϕ under the MSci model and of
M under the IM model are plotted against �T/�R. All
populations are assumed to have the same size (�), and
�R =5� or 10� is fixed. In the case of the MSci model,
there is an introgression event at time �H =�S =�R/5
(see Fig. 1a,c). Note that a larger �T/�R (or �T since �R
is fixed) means that the internal branch in the species
tree is shorter and the species tree is more challenging
to recover, so that all methods are expected to be more
sensitive to gene flow.

We focus on hard species trees with a short internal
branch, that is, with �T/�R larger than 1

2 or even close
to 1. Note that the plotted threshold value is the point
at which the two species trees are equally good. For
example, in the case of the inflow introgression model
and the majority-vote method, with �R =5� and �T/�R =
0.95, the threshold is ϕlim =0.282 (Fig. 2a). Thus, if and
only if the introgression probability is higher than 28.2%
will the mismatching gene tree G2 be more frequent
than the matching gene tree G1, and the majority-
vote method infer the incorrect species tree (and be
inconsistent). The threshold of ϕlim =0.0588 for the
UPGMA method (Fig. 2a) is much lower, suggesting
that the UPGMA method is much more sensitive to
gene flow than the majority-vote method. The results for
outflow introgression are similar, with the majority-vote
method being more robust to gene flow than the UPGMA
method. Indeed when �T >0.9�R, the ϕ thresholds are
nearly identical for inflow versus outflow introgressions.

For the inflow migration model (Fig. 2b) and with
�R =5� and �T/�R =0.95, the lower limit for migration
rate is MAC =0.0183 for the majority-vote method and
MAC =0.00473 for UPGMA. The limiting MCA values for
the outflow model are similar. Again the majority-vote
method is much more robust to gene flow than UPGMA.
Note that in population genetic models of subdivision,
gene flow of rates M≈0.1 immigrants per generation
is considered low enough so that strong population
differentiation will not occur, yet such low levels can still
lead to inconsistency when the species tree is difficult to
reconstruct due to short internal branches.

UPGMA using Reconstructed Gene Trees
The gene tree probabilities we derived above are for

the true gene trees. In analyses of real data, gene trees
estimated from sequence alignments may differ from the
true gene trees due to inference errors. Here, we study
properties of the majority-vote method when it is applied
to estimated gene trees. We expect random sampling
errors to be unimportant for the UPGMA method based
on average sequence distances between species because
the number of sites in multilocus data sets is huge.

The impact of phylogenetic errors under the MSC
model without gene flow and in the case of three
species and Jukes–Cantor (JC) model (Jukes and Cantor,
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FIGURE 2. The lower limit of the introgression probability ϕ in the MSci model and of the migration rate M in the IM model that is necessary
and sufficient to mislead species tree estimation methods UPGMA (based on average coalescent times) and majority-vote (based on gene tree
probabilities), plotted against �T/�R. All populations are assumed to have the same size parameter (�), while the age of the root is �R =5� in (a)
and (b) and �R =10� in (c) and (d). In the MSci model, we use �H =�S =�R/5. Note that the ϕ and M limits do not depend on the precise value
of �.

1969) was studied by Yang (2002). Without phylogenetic
errors, the probabilities of the gene trees satisfy P(G1)>
P(G2) = P(G3) (Hudson 1983). Let Pn(Gk),k =1,2,3, be
the probability that the estimated gene tree (the ML
gene tree, for example) is Gk at a locus with sequences
of n sites, with P∞(Gk)=P(Gk). While phylogenetic
reconstruction errors may cause the true matching gene
tree (G1) to be reconstructed as a mismatching gene
tree (G2 or G3) and vice versa, reconstruction errors
on balance always inflate the gene tree-species tree
mismatch probability, but do not change the order of the
gene trees. In other words, Pn(G1)<P(G1) and Pn(G2)>
P(G2), but the relationship Pn(G1)> Pn(G2) = Pn(G3)
still holds (Yang 2002). Thus the majority-vote method,
when applied to estimated gene trees, is consistent,

and the probability of inferring the correct species tree
will approach one with the increase in the number of
loci or gene trees, even if the gene trees are estimated
with sampling errors. The internal branch length in
the species tree (in coalescent units) is nevertheless
inconsistently estimated and underestimated, because
the gene tree probabilities are distorted by phylogenetic
errors.

The effects of phylogenetic errors on the gene tree
probabilities when there is gene flow (under either
the IM or MSci models) are unknown. Here, we use
simulation to explore the issue. The ML gene tree for the
case of three sequences and JC model with the molecular
clock is analytically tractable (Yang 1994, 2000). The
sequence alignment at each locus can be summarized
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FIGURE 3. Probabilities of estimated gene trees, Pn(G1) and Pn(G2), as a function of sequence length (n), under the MSci and IM models.
The following parameter values are used: �=0.01 for all populations, �T =0.04, and �R =0.05; and for the MSci model, �H =0.01 and ϕ= 0.4638
for inflow introgression (A→C) and 0.4643 for outflow introgression (C→A), while for the IM model, M=0.0393 for inflow migration and
0.0419 for outflow immigration. At those parameter values, P(G1)=P(G2) when the sequence length is infinity (so that there are no phylogenetic
reconstruction errors). P(tie) is the proportion of data sets in which two or three gene trees are equally best.

as five site pattern counts (n0–n4), for xxx, xxy, xyx, yxx,
and xyz, where x,y,z are any three distinct nucleotides,
and the gene trees G1, G2, or G3 is the ML tree if n1, n2, or
n3 is the greatest among the three. There is then no need
for ML iteration to estimate the gene tree and branch
lengths at each locus. We used this approach to calculate
the probabilities of estimated gene trees Pn(G1),Pn(G2),
and Pn(G3) by simulating 105 data sets or loci using BPP4
under the MSci or IM models (Yang 2015; Flouris et al.
2018). In Figure 3, we chose a set of parameter values
for the MSci and IM models from Figure 2a, b for which
P(G1)=P(G2), and simulated data at different sequence
lengths. In this case, phylogenetic reconstruction errors
are seen to inflate the gene tree-species tree mismatch
probability, with Pn(G1)<P(G1).

We then used a linear search to find the minimum ϕ
in the MSci model and minimum M in the IM model at
which Pn(G1)=Pn(G2), with the gene tree probabilities
determined by simulating 105 loci and for each locus
by determining the ML tree using the observed site
pattern counts. The results for the MSci model are shown
in Figure 4a, c. We focus on hard species trees and a
small amount of introgression, with ϕ� 1

2 . In such cases,
phylogenetic reconstruction errors inflate gene tree-
species tree conflicts, with Pn(G1)<P(G1). As a result,
the low limit of ϕ necessary to mislead the majority-
vote method of species tree estimation is lower than
when true gene trees are used (Fig. 2). In other words,
species tree estimation is more sensitive to introgression
when gene trees are reconstructed from sequence data

than when true gene trees are used. The patterns are
the same for the inflow (A→C) and outflow (C→A)
introgressions.

The results under the IM model are similar (Fig. 4b,
d). For hard species trees with short internal branches,
phylogenetic reconstruction errors inflate the gene tree-
species tree conflicts, making the estimation of the
species tree even harder.

Full-Likelihood Methods
Full-likelihood methods applied to multilocus

sequence alignments, including ML and Bayesian
methods, integrate over the gene tree topologies
and coalescent times and naturally accommodate
phylogenetic reconstruction errors due to limited
number of sites at each locus (see, for a review, Xu
and Yang 2016). They are not tractable analytically.
Nevertheless, in the case of three species and three
sequences per locus, an efficient ML implementation of
the MSC model exists in the 3s program (Yang, 2002;
Dalquen et al., 2017). Here, we use 3s to analyze data sets
of 10,000 loci (with sequence length n=1000), assuming
that at such large data size, the estimates are close to the
infinite-data limits. In Figure 5, we conducted similar
calculations to Figure 4, but with ML (the 3s program)
replacing majority-vote. Consider Figure 5a, where the
true model is the MSci model. For each value of �T , a
linear search (bisection) is used to find the lowest value
of ϕ in the true MSci model at which the two species trees
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FIGURE 4. The lower limit of the introgression probability ϕ in the MSci model and the migration rate M in the IM model necessary to mislead
the majority-vote method of species tree estimation, plotted against �T/�R, when either the true or estimated gene trees are used. For estimated
gene trees the sequence length is n=1000. At the ϕ or M values shown, P(G1)=P(G2) when the true gene trees are used or Pn(G1)=Pn(G2) when
estimated gene trees are used. The estimated gene tree is the ML tree from the sequence alignment of n=1000 sites, determined by using the site
pattern counts at the locus. Monte Carlo simulation, with 105 replicates (loci or sequence alignments), was used to estimate the probabilities of
the ML gene trees: Pn(G1) and Pn(G2). Parameters other than ϕ or M are fixed at �=0.01 for all populations, �H =�S =�R/5 for the MSci model
(a and c), while �R =5� in (a) and (b) and �R =10� in (c) and (d). Results for the true gene trees are from Figure 2, shown here for comparison.

have the same log likelihood under the MSC model,
�1 =�2, where the log likelihood is calculated under the
JC model and the molecular clock by averaging over the
three gene trees and integrating over the two coalescent
times in each gene tree (Yang 2002). For each ϕ (and
�T as well as other parameters in the MSci model), a
data set of 10,000 loci is simulated and analyzed using
3s to determine whether �1 >�2 (e.g., whether ϕ is too
small). Each round of bisection reduces the interval of
uncertainty by a half. The scatter-points in the plots
(Fig. 5) show some fluctuations, due to the finite nature
of the data sets, and are used to fit a smoothed curve.

The lower limits of ϕ in the MSci model and of M in the
IM model for the ML/3s method of Figure 5 are much
lower than the corresponding values for the majority-
vote and the UPGMA methods of Figures 2 and 4. The
ML/3s method assuming MSC without gene flow infers

the incorrect species tree at much lower levels of gene
flow (and is less robust to gene flow) than the majority-
vote or UPGMA methods.

Differences between the IM and MSci Models
The MSci and IM models are two idealized models

that accommodate gene flow between species. The MSci
model assumes episodic introgression or hybridization
events that occur at fixed time points in the past, while
the IM model assumes continuous-time migration with
migrants occurring at a certain rate in every generation.
The MSci and IM models represent two extremes and in
reality a combination of the two processes may be more
realistic. When the two models are applied to the same
data, a frequently asked question is how the important
parameters of the two models (ϕ in MSci and M in IM
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FIGURE 5. The lower limit of ϕ in the MSci model and M in the IM model necessary to mislead the ML/3s method of species tree estimation
under the MSC, plotted against �T/�R. The sequence length is 1000. Data of 10,000 loci were analyzed using 3s to determine the ML species tree.
Parameter values used are the same as in Figure 4.

models, say) correspond to each other. One may expect
a higher migration rate M should correspond to a larger
introgression probability ϕ, but the precise relationship
may depend on the values of other parameters in the
models, as well as the data configurations (the number
of loci, the number of sequences per locus, and the
sequence length). Bearing in mind those caveats we
conducted three analyses to address this question.

Firstly, we may compare the limiting values of ϕ
under the MSci model and M in the IM model for
the same �T/�R ratio in Figure 2. For example, for
the inflow migration or introgression (A→C), with
�R =5� and �T/�R =0.95, the limiting values to achieve
equal gene tree probabilities, P(G1)=P(G2), are ϕlim =
0.282 for the MSci model and MAC =0.0183 for the IM
model. The limiting values for achieving equal average
coalescent times, E(tbc) = E(tac), are ϕlim =0.0588 for
the MSci model and MAC =0.00473 for the IM model.
Here, we are matching certain summaries of the data to

establish a correspondence between ϕ and M in the two
models.

Secondly, we used the IM model to simulate large data
sets of 10,000 loci, with two sequences per species per
locus and with sequence length of 100 or 1000 sites, and
then used BPP to analyze the data under the MSci model
(Flouris et al. 2019). The rationale is that the data sets are
so large that random sampling errors in the estimates are
negligible, as are the impact of the prior or the differences
between MLEs and Bayesian estimates. In other words,
the posterior means of parameters should be close to
the pseudotrue parameter values, which are the limits of
the MLEs when the data size approaches infinity. This
approach also allows us to examine the estimates of other
parameters in the model besides the rate of gene flow.
The results are listed in Table 1.

In the case of inflow migration (A→C), population
sizes (�) for most populations (in particular, the extant
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TABLE 1. Posterior means and 95% highest probability density credible intervals (below) for parameters in the MSci model when large data
sets of 10,000 loci simulated under the IM model are analyzed using BPP under the MSci model

�A �B �C �R �T �S �H �R �T �H ϕ

Inflow migration (A→C) with MAC =0.0393, n=100 sites
0.0096 0.0095 0.0111 0.0121 0.0185 0.0149 0.0106 0.0478 0.0386 0.0075 0.3319
0.0093 0.0093 0.0107 0.0109 0.0131 0.0140 0.0092 0.0471 0.0372 0.0072 0.3208
0.0099 0.0098 0.0115 0.0134 0.0241 0.0157 0.0119 0.0485 0.0401 0.0077 0.3435

Inflow migration (A→C) with MAC =0.0393, n=1000 sites
0.0091 0.0099 0.0100 0.0106 0.0115 0.0250 0.0100 0.0496 0.0398 0.0050 0.4393
0.0089 0.0097 0.0098 0.0102 0.0107 0.0243 0.0095 0.0495 0.0395 0.0049 0.4300
0.0094 0.0101 0.0103 0.0109 0.0122 0.0256 0.0106 0.0498 0.0400 0.0051 0.4485

Outflow migration (C→A) with MCA =0.0419, n=100 sites
0.0108 0.0098 0.0096 0.0154 0.0032 0.0122 0.0094 0.0437 0.0417 0.0068 0.3012
0.0104 0.0095 0.0092 0.0145 0.0020 0.0115 0.0083 0.0431 0.0410 0.0066 0.2907
0.0112 0.0101 0.0099 0.0163 0.0049 0.0129 0.0106 0.0442 0.0424 0.0071 0.3122

Outflow migration (C→A) with MCA =0.0419, n=1000 sites
0.0102 0.0099 0.0094 0.0111 0.0094 0.0243 0.0098 0.0485 0.0401 0.0051 0.4437
0.0099 0.0097 0.0091 0.0107 0.0089 0.0237 0.0093 0.0483 0.0399 0.0050 0.4342
0.0105 0.0101 0.0096 0.0115 0.0099 0.0250 0.0104 0.0488 0.0403 0.0052 0.4533

Note: The true model is IM, with parameter values �A =�B =�C =�T =�R =0.01, �R =0.05 and �T =0.04, and with MAC =0.0393 and MCA =0.0419.
These are the lower limits of M in the IM model, at which P(G1)=P(G2) (Fig. 2). Large data sets of 10,000 loci, with two sequences from each
species per locus and with the sequence length n=100 or 1000 sites, were simulated under the IM model, and analyzed using BPP under the MSci
model. Inverse-gamma priors are assigned on � and �0: �∼ IG(3,0.02) with mean 0.02/(3−1)=0.01 for all �s, and �0 ∼ IG(3,0.1) with mean 0.05
for the age of the species tree root, while the introgression probability ϕ is assigned the U(0,1) prior.

species) are well estimated, especially at n=1000. Species
divergence times �R and �T estimated under MSci are
very similar to the true values under the IM model
(0.05 and 0.04, respectively). The age of the hybridization
node �H (=�S) is very small, especially at the larger
sequence length. Under the IM model, migration occurs
over the whole time interval (0,�T), and one might
naively expect �H under MSci to be close to the mid
value. Instead the MSci estimate of �H is near the lower
limit. Indeed the estimate should be smaller for longer
sequences and/or more loci, because under the MSci
model, the hybridization time must be smaller than
the between-species sequence divergence time, with
�H < tac. Thus, longer sequences or more loci should
provide stronger evidence that the minimum sequence
divergence tac generated under the IM model can be
arbitrarily small, leading to reduced estimates of �H
under the MSci model. The migration rate MAC =0.0393
in the IM model is relatively small, while the estimates
of ϕ are substantial, at 33–44%. The results for the case
of outflow migration (C→A) are similar to those of
inflow migration (Table 1). Again, species divergence
times �R and �T are well estimated, as are population
sizes, even though the model is incorrect. The estimated
hybridization time �H(=�S) is very small. Although the
migration rate is only MAC =0.0419, the estimates of ϕ
in the MSci model are substantial, at 30–44%. Overall,
very low migration rates, on the order of M=1–5% may
correspond to substantial introgression probabilities
close to 50%.

Thirdly, we analyzed the case of two species (A and B)
with one sequence per locus for each species when the
true sequence distance (or the coalescent time between
the two sequences) is known (Fig. 6a, b). Using the
theory for the IM model developed earlier, we have the
probability density of coalescent time t between the two
sequences to be

fM(t)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2w
2−�Aw (e−wt −e− 2

�A
t), if 0< t<�R,(

2
2−�Aw e−w�R

− �Aw
2−�Aw e− 2

�A
�R

)
2
�R

e− 2
�R

(t−�R)
, if t>�R,

(30)
where w=mAB/�=4MAB/�B is the mutation-scaled
migration rate from A to B. The density depends on
w but not on MAB and �B individually, so that the
parameters specifying the density for the migration
model are θ(M) ={w,�A,�R,�R}. Similarly the density
under the introgression model is specified by parameters
θ(I) ={ϕ,�S,�R,�H,�R} and is

fI(t)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ϕ 2
�S

e− 2
�S

(t−�S)
, if �S < t<�R,

[ϕe− 2
�S

(�R−�S)+(1−ϕ)]
2
�R

e− 2
�R

(t−�R)
, if t>�R.

(31)

Note that in the MSci model (Fig. 6b), �H =�S so we use
the two interchangeably. Some parameters (such as �R
and �R) are common between the two models but they
may take different values: when the parameter definition
may be unclear from the context, we use �

(M)
R , with the

superscript “(M)” or “(I)” to indicate the model involved.
The Kullback–Leibler (KL) divergence

D(θ(M)||θ(I))=
∫ ∞

0
fM(t)log

fM(t)
fI(t)

dt, (32)

is a measure of distance from the fitting introgression
model to the true migration model. By minimizing
D, we obtain the pseudotrue parameter values under
MSci, θ(I)∗ , when the true model is the IM model with
parameters θ(M). Here θ(M) are fixed while θ(I) are being
optimized. Because the IM model allows arbitrarily
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FIGURE 6. The a) migration and b) introgression models for two species (A,B), and c) the pseudotrue parameter values of ϕ and �
(I)
R in

the introgression model plotted against the migration rate MAB(=NBmAB =w�B/4). The pseudotrue parameter values are the parameter values
under the introgression model θ(I) that minimizes the KL divergence of equation 32: they are the limiting values of the MLEs of θ(I), when the
number of loci L→∞, when the MSci model is fitted to data of L loci generated under the IM model, with two sequences (one from each species)
of infinite length per locus. Other parameters in the migration model are fixed at �

(M)
R =0.03 and �=0.01 (for all populations). In the MSci model,

�=0.01 is assumed for all populations, while ϕ and �
(I)
R are estimated by minimizing the KL divergence (equation 32).

FIGURE 7. a) Contour plot of D(θM||θI ) (equation 32) as a function of ϕ and �
(I)
R in the MSci model for the case of M = 0.1 or w=40. Parameters

in the IM model are �
(M)
R =0.03 and �=0.01 for all populations. The MLE under the MSci model, which minimizes D, is at ϕ∗ =0.5395 and

�
(I)∗
R =0.02280. Note that in the MSci model, �=0.01 is fixed for all populations and only ϕ and �

(I)
R are optimized as �H =0. The D surface is

not smooth at �
(I)
R =�

(M)
R =0.03. b) The densities fM(t) (equation 30) and fI (t) (equation 31) as well as the integrand, fM(t)log fM (t)

fI (t) , of equation 32,
plotted at the MLEs of (a). In other words, the red dashed curve fI (t) is the best fit of the MSci model to the infinite-sized data under the IM
model represented by the black solid curve fM(t). Note that fM(t) and fI (t) have one discontinuity point, while the integrand has two.

small coalescent time t while �H < t under the MSci
model, we have �∗

H =0. As the integrand of equation
32 has one or two discontinuity points, depending on
whether �

(M)
R and �

(I)
R are identical (Fig. 7), we applied

Gaussian quadrature, with 64 points, to each continuous
segment to calculate the integral of equation 32. The

BFGS optimization routine in PAML (Yang 2007) is used to
produce the MLEs. One such model fitting is illustrated
in Figure 7.

Figure 6c shows the estimates of ϕ and �
(I)
R under the

assumption that � is the same for all populations and also
between the two models; thus �=0.01 is fixed and only
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ϕ and �
(I)
R are estimated by minimizing D in equation

32. When M in the IM model is small, ϕ increases nearly
linearly with the increase of M (Fig. 6c). However, when
M is large (>0.08, say, corresponding to ϕ=0.56) and
further increases, ϕ decreases.

As a summary of all three analyses above, we note that
small values of the migration rate, in the order of 0.01–
0.1 migrants per generation, may correspond to large
introgression probabilities and have a large effect on
the genetic history of species divergences represented
by the gene tree probabilities. Furthermore, the IM and
MSci models make very different predictions of the
distribution of coalescent times, so that the two models
may be easily distinguishable using genomic sequence
data when both models are implemented in the same
program.

DISCUSSION

The Impact of Gene Flow on Species Tree Estimation
The impact of gene flow, either in the form of episodic

introgressive hybridization or continuous migration,
on species tree estimation clearly depends on how
challenging the species tree is. Our analyses suggest that
when the species tree is hard with very short internal
branch lengths, even a small amount of gene flow can
cause species tree estimation to become inconsistent. We
found that the limiting ϕ and M values for the gene
tree probabilities are much higher than the values for
the sequence distances (Figs. 2 and 4), indicating that
the majority-vote method based on gene tree topologies
is more robust to gene flow than the UPGMA method
based on average sequence distances. The full-likelihood
method making use of information in both gene tree
topologies and branch lengths is even more sensitive.
This difference in sensitivity may be explained by the
fact that a small amount of gene flow may easily affect
the branch lengths or sequence distances but may not
alter the distribution of gene tree topologies. For hard
species trees, phylogenetic reconstruction errors tend to
inflate the gene tree-species tree conflicts, adding further
challenges to correct inference of the species tree.

When the effects of gene flow is a concern, it is
important to use species tree methods that account
for both the coalescent process and cross-species gene
flow. Such methods are under active development. A
number of methods have been developed to detect gene
flow using sequence data (Green et al. 2010; Durand
et al. 2011; Solis-Lemus and Ane 2016; Dalquen et al.
2017), and furthermore, a number of methods have been
developed to infer the species tree with reticulation
events, including summary methods based on estimated
gene tree topologies (Yu et al. 2014; Yu and Nakhleh 2015;
Solis-Lemus and Ane 2016; Wen et al. 2016; Allman et al.
2019) and full-likelihood methods applied to sequence
alignments (Hey et al. 2018; Wen and Nakhleh 2018;
Zhang et al. 2018). Furthermore, we have in this article
examined the effects of gene flow on the inference of

FIGURE 8. The species tree for the Anopheles gambiae species complex
inferred by Thawornwattana et al. (2018) from the Xag region of the X
chromosome, with two migration events for the autosomes. Redrawn
following (Thawornwattana et al. 2018, Fig. 6).

species tree topology only. The impact of gene flow
on evolutionary parameters such as species divergence
times and ancestral population sizes merits detailed
study (Dalquen et al. 2017; Wen and Nakhleh 2018).

Introgression in the Anopheles gambiae Species Complex
The Anopheles gambiae species complex is comprised

of eight recognized species and includes major malaria
vectors in Africa. Genome sequence data from six of the
species, A. gambiae (G), Anopheles coluzzii (C), Anopheles
arabiensis (A), Anopheles melas (L), Anopheles merus (R),
and Anopheles quadriannulatus (Q), have been analyzed to
estimate the species phylogeny and to infer the direction
and intensity of gene flow across species (Fontaine et al.
2015; Thawornwattana et al. 2018). Anopheles gambiae,
A. coluzzii, and A. arabiensis have large overlapping
geographical distributions across sub-Saharan Africa
and are major malaria vectors (Wiebe et al. 2017).
Anopheles melas and A. merus are found in coastal waters
of eastern and western Africa, respectively, and are
minor vectors. Anopheles quadriannulatus does not bite
humans and is not a malaria vector.

Fontaine et al. (2015) analyzed the genomic sequence
data for the six species using sliding windows and
suggested that gene flow is so widespread that the
predominant gene trees for the autosomes are different
from the species phylogeny, and that the X chromosome,
which is apparently not affected by gene flow, reflects
the true species history. This conclusion is supported in
the reanalysis of Thawornwattana et al. (2018), although
the inferred species trees were different. The species
tree obtained by Thawornwattana et al. (2018) for the
X-chromosomal data is shown in Figure 8. Besides
being inferred using coalescent-based methods that
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TABLE 2. Estimates and limiting values of ϕ for different chromosomal arms obtained from the genomic data of the Anopheles gambiae species
complex

A→G R→Q

Data set ϕ̂A→G ϕlim (UPGMA) ϕlim (M-V) ϕ̂R→Q ϕlim (UPGMA) ϕlim (M-V)

2L1+2 coding 0.94 0.89 0.74 0.28 0.77 0.76
2L1+2 noncoding 0.98 0.60 0.56 0.00 0.25 0.35
2La coding 0.73 0.14 0.16 0.01 0.30 0.42
2La noncoding 0.64 0.00 0.00 0.00 0.18 0.29
2R coding 0.97 0.90 0.81 0.34 0.80 0.79
2R noncoding 0.97 0.68 0.63 0.22 0.82 0.80
3L1+2 coding 0.94 0.76 0.66 0.32 0.70 0.69
3L1+2 noncoding 0.96 0.73 0.64 0.33 0.83 0.82
3La coding 0.93 0.87 0.78 0.65 0.56 0.56
3La noncoding 0.98 0.77 0.66 0.54 0.57 0.55
3R coding 0.95 0.98 0.95 0.43 0.65 0.64
3R noncoding 0.98 0.64 0.61 0.03 0.30 0.38

Note: The estimates (ϕ̂A→G and ϕ̂R→Q) are posterior means in the BPP analysis of genomic data from all six species (Flouris et al. 2019, Table 1),
while the lower limits for ϕA→G and ϕR→Q are calculated using triplet data (AQG and RQA) using equations for UPGMA and majority-vote
(M-V), respectively.

accommodate deep coalescence, this tree is supported
by additional sources of evidence, such as chromosome
inversion data and well-known evidence of introgression
from A. arabiensis → A. gambiae + A. coluzzii (Slotman
et al. 2005). Moreover, computer simulation confirmed
that the species trees inferred by Fontaine et al. (2015)
were artifactual and reflected systematic errors of the
sliding-windows analyses (Thawornwattana et al. 2018).
Here, we apply the theory of this article to the species
tree of Figure 8 and the parameter estimates under
MSci from Flouris et al. (2019, Table 1) to confirm that
the introgression rates affecting the autosomes are high
enough to mislead species tree estimation.

For the A → G introgression, we used parameter
estimates (�s and �s) for the triplet AQG to determine
the low limit of ϕ in the MSci model. We retrieved the
BPP estimates of parameters �s and �s for nodes a,d,e, and
f in the species tree of Figure 8 from Flouris et al. (2019,
Table 1) to calculate ϕlim for outflow (equations 14 and
16). The results are shown in Table 2. For both the coding
and noncoding data and for almost all chromosomal
arms, the estimates (ϕ̂) are larger than the limiting values
(ϕlim). Thus, both majority-vote (based on gene tree
topologies) and UPGMA (based on average sequence
divergences) are inconsistent and are expected to infer
an incorrect species tree.

For the R → Q introgression, we used the RQA triplet
and the inflow equations 5 and 7. All estimates of ϕR→Q
are smaller than ϕlim for both the majority-vote and
UPGMA methods except for the 3La coding region (Table
2). Thus, for most of the autosomal arms introgression
from R to Q did not reach a sufficient intensity to mislead
species tree estimation.

Migration, introgression, and the concept of species tree
The concept of the true species tree in the presence

of cross-species gene flow may be poorly defined,
especially if the models of gene flow are too simple
to capture the major features of species divergence

history. As mentioned in Introduction section, we have
assumed in this article the backbone species tree to be the
true species tree, whether the estimated introgression
probability is below or above 50%. If the model of
introgression/hybridization applies, it is reasonable to
use the introgression probability at each hybridization
node to define the “major hybridization branch” and
the “major species tree,” as in Solis-Lemus et al. (2017).
The interpretations of our results will then have to be
adjusted accordingly. For example, Figure 2a shows that
at �T/�R =0.4 under the outflow model, P(G1)<P(G2) if
and only if ϕ>0.536. With the true species tree defined to
be the major species tree, majority-vote will be consistent
when ϕ>0.536 (as well as when ϕ<0.5); it is inconsistent
only when 0.5<ϕ<0.536. Note that the results in Figures
2, 3, 4, and 5 concerning the ϕ and M limits are all
valid, but the change of the definition of the true species
tree may change the consistency or inconsistency of the
methods.

Our analysis in this article has been motivated
by the inferred patterns of gene flow and species
divergences in the Anopheles gambiae species complex,
where the introgression or hybridization model appears
to be a poor fit, and the major species tree for the
autosomes does not appear to reflect the true history
of species divergence and gene flow (Fontaine et al.
2015; Thawornwattana et al. 2018). Gene flow from
A. arabiensis to A. gambiae (or A. coluzzii) affecting
the autosomes appears to be ongoing (Slotman et al.
2005), and the continuous migration model may be a
more realistic description than the episodic introgression
model. Estimates of the migration rate MA→G from
the 3s program vary among the chromosomal arms
with the estimate from the combined autosomal data
to be 0.22 migrants per generation. In contrast, the
estimated rate in the opposite direction is MG→A =0
for all chromosomal arms (Thawornwattana et al. 2018,
Table S3), consistent with the experiment of Slotman et al.
(2005), which was unsuccessful in introducing A. gambiae
into the A. arabiensis host. Here we use the estimate
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FIGURE 9. a) A plausible species history for A. arabiensis (A), A. quadriannulatus (Q), and A. gambiae (G), with continuous gene flow at the
migration rate of mA→G ≈10−7. b) The inferred history when the introgression model is fitted to the genomic (autosomal) sequence data, with the
introgression probability ϕA→G >90% (Table 1). The major species tree is represented by the thick branches. b) The dominant gene tree. Parameter
values mA→G and ϕA→G are based on rough calculations using the estimates from the genomic sequence data (see text for discussions).

MA→G =0.22 as well as the scaled population size �G =
4NG�=0.027 to calculate the migration rate or the
proportion of migrants per generation, mA→G. Suppose
the mutation rate is 2×10−9 per site per generation
based on fruit flies (Keightley et al. 2014). Then we
have NG =0.027/(4×2×10−9)=3.4×106, and mA→G =
MA→G/NG =6.5×10−8 per generation. We note that the
migration rates m and M are averages over evolutionary
time scales and reflect the action of natural selection
removing introgressed alleles or chromosomes (Martin
and Jiggins 2017): for example, m is very likely to be much
lower than the proportion of hybrids in the population.
Low levels of gene flow are consistent with the distinct
species status, given A. gambiae and A. arabiensis have
extensively overlapping geographical distributions, as
is the fact that hybridization experiments failed to
produce introgression in the reverse A. gambiae →
A. arabiensis direction (Slotman et al. 2005). Nevertheless,
as predicted by our theoretical calculations, even
such low levels of migration can produce very high
introgression probabilities when the data are analyzed
under the MSci model. Indeed the estimates of ϕA→G
from the same genomic data are greater than 90% for
every autosomal arm except for the 2La inversion which
has a different history (Table 2) (Flouris et al. 2019). The
evolutionary history in this species complex may be close
to the one depicted in Figure 9a (see Mallet et al. 2016,
Fig. 3). A very low migration rate, with the proportion
of migrants below one in 10 million or with far less than
one migrant individual per generation, can have a huge
impact on the genetic history of the species, such that a
sequence sampled today from G will most likely trace its
history to the introgressing parental species A. arabiensis.
Both the major species tree and the dominant gene tree
(Fig. 9b, c) reflect cross-species migration, even though
the species phylogeny describing the order of species
divergences is undoubtedly the one in Figure 9a.

One may imagine a situation in which the whole
genome, including sex chromosomes, are affected by
continuous migration, and the whole genome may
consistently support the incorrect species phylogeny
(Mallet et al. 2016, Fig. 3). It appears that even in
such cases, the true history of species divergences
including introgression or migration events may still be
recoverable using genomic sequence data, given that the
IM and MSci models (such as the models in Fig. 9a,b)
make very different predictions on the distribution of
gene trees (topologies and coalescent times).
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Corrigendum. Jiao X, Flouri T, Rannala B, Yang Z. 2020. The impact of cross-species gene flow on species
tree estimation. Systematic Biology 69:830-847.
A coding error affected the numerical correctness of figures 6c and 7a&b in the paper. In the legend to figure 7, ϕ∗ = 0.5395 and
τ
(I)∗
R = 0.02280 should read ϕ∗ = 0.57158 and τ

(I)∗
R = 0.02653. The conclusions of the paper are not affected. The correct figures with

legends are as follows. We thank Yuttapong Thawornwattana for pointing out the errors.
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Figure 6: The (a) migration and (b) introgression models for two species (A,B), and (c) the pseudo-true parameter values of ϕ and
τ
(I)
R in the introgression model plotted against the migration rate MAB(= NBmAB = wθB/4). The pseudo-true parameter values are

parameter values under the introgression model θθθ
(I) that minimizes the KL divergence of equation 32: they are the limiting values of

the MLEs of θθθ
(I), when the number of loci L → ∞, when the MSci model is fitted to data of L loci generated under the IM model, with

two sequences (one from each species) of infinite length per locus. Other parameters in the migration model are fixed at τ
(M)
R = 0.03

and θ = 0.01 (for all populations). In the MSci model, θ = 0.01 is assumed for all populations, while ϕ and τ
(I)
R are estimated by

minimizing the KL divergence (equation 32).
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Figure 7: (a) Contour plot of D(θθθ M||θθθ I) (equation 32) as a function of ϕ and τ
(I)
R in the MSci model for the case of M = 0.1 or w = 40.

Parameters in the IM model are τ
(M)
R = 0.03 and θ = 0.01 for all populations. The MLE under the MSci model, which minimizes D,

is at ϕ∗ = 0.57158 and τ
(I)∗
R = 0.02653. Note that in the MSci model, θ = 0.01 is fixed for all populations and only ϕ and τ

(I)
R are

optimized as τH = 0. The D surface is not smooth at τ
(I)
R = τ

(M)
R = 0.03. (b) The densities fM(t) (equation 30) and fI(t) (equation 31)

as well as the integrand, fM(t) log fM(t)
fI(t)

, of equation 32, plotted at the MLEs of (a). In other words, the red dashed curve fI(t) is the
best fit of the MSci model to the infinite-sized data under the IM model represented by the black solid curve fM(t). Note that fM(t)
and fI(t) have one discontinuity point, while the integrand has two.
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