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Abstract.—How can we best learn the history of a protein’s evolution? Ideally, a model of sequence evolution should capture
both the process that generates genetic variation and the functional constraints determining which changes are fixed.
However, in practical terms the most suitable approach may simply be the one that combines the convenience of easily
available input data with the ability to return useful parameter estimates. For example, we might be interested in a measure
of the strength of selection (typically obtained using a codon model) or an ancestral structure (obtained using structural
modeling based on inferred amino acid sequence and side chain configuration).

But what if data in the relevant state-space are not readily available? We show that it is possible to obtain accurate
estimates of the outputs of interest using an established method for handling missing data. Encoding observed characters
in an alignment as ambiguous representations of characters in a larger state-space allows the application of models with the
desired features to data that lack the resolution that is normally required. This strategy is viable because the evolutionary
path taken through the observed space contains information about states that were likely visited in the “unseen” state-
space. To illustrate this, we consider two examples with amino acid sequences as input. We show that ω, a parameter
describing the relative strength of selection on nonsynonymous and synonymous changes, can be estimated in an unbiased
manner using an adapted version of a standard 61-state codon model. Using simulated and empirical data, we find that
ancestral amino acid side chain configuration can be inferred by applying a 55-state empirical model to 20-state amino acid
data. Where feasible, combining inputs from both ambiguity-coded and fully resolved data improves accuracy. Adding
structural information to as few as 12.5% of the sequences in an amino acid alignment results in remarkable ancestral
reconstruction performance compared to a benchmark that considers the full rotamer state information. These examples
show that our methods permit the recovery of evolutionary information from sequences where it has previously been
inaccessible. [Ancestral reconstruction; natural selection; protein structure; state-spaces; substitution models.]

The evolution of protein sequences is driven by a
combination of forces that influence both what types of
mutation occur and which of them are allowed to fix by
natural selection. The former process operates at the level
of the nucleotide sequence and manifests at the amino
acid level through the structure of the genetic code.
Functional and structural constraints then determine
the probability of survival of the mutants. A wide
variety of computational tools to make inferences about
different layers of this process are available, considering
observations from nucleotide, codon or amino acid
sequences, and (occasionally) protein structure. Models
that take data from one of these state-spaces as input
typically use transition probabilities between these same
character states to compute outputs, such as phylogenies,
selective constraints, or ancestral states. Being able to
obtain certain types of information about evolution
is therefore usually contingent on having access to
observations in the relevant state-spaces.

Given the abundance of available genome sequences,
access to interesting data is ordinarily not a problem.
Codon sequences, for example, are commonly used to
quantify the strength of natural selection, measured by
ω, the relative rate of nonsynonymous to synonymous
substitutions. Variants of the standard codon model
estimate constraints on specific sites, branches, or dif-
ferent types of amino acid substitutions (Yang et al.

1998; Yang 2014; Weber and Whelan 2019). Empirical
amino acid models, which work with amino acid
sequences and are often used to estimate phylogenies,
consider how “exchangeable” different residues are
(Whelan and Goldman 2001; Le and Gascuel 2008). This
allows them to capture some functional constraints and
therefore reconstruct plausible amino acid trajectories
and ancestral sequences.

A subset of models go beyond sequence alone and
incorporate elements of structure. This can either take
the form of mixture models describing site- or partition-
specific amino acid propensities (Koshi and Goldstein
1995; Le et al. 2008a,b; Le and Gascuel 2010), or explicitly
modeling observed changes in the protein’s three-
dimensional organization. Recently, an extended version
of the empirical amino acid model was introduced that
additionally accounts for rates of exchange between
amino acid side chain configurations (Perron et al. 2019).
How suited a given amino acid is to a particular sequence
and structural context is not only influenced by the
biochemical properties of its side chain, but also by
its spatial orientation. This includes the rotation of the
C�–C� bond, or the �1 rotational isomer (“rotamer”)
configuration, which can be discretized into up to
three states per residue, resulting in a state-space
with 55 characters (see Methods and (Perron et al.,
2019) for details). The empirical rotamer-aware model
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therefore allows reconstruction of ancestral amino acid
sequences that include side chain configurations (Perron
et al. 2019)—provided structural information is available
for the extant descendants of the protein of interest.
Reconstructed side chain configurations are of practical
interest as they can provide a plausible prior for structure
prediction for a variety of applications. For example,
structural models are widely used for in silico functional
annotation of genes and variants, prediction of protein-
protein interactions and docking (Zhang et al. 2012;
Vakser 2014; Waterhouse et al. 2018).

Given the variety of options, the choice of model
for a study might be guided by the research question
and which aspects of the evolutionary process are
most interesting. In some cases, data availability may
limit the range of suitable models. For example, given
a set of amino acid sequences, models operating in
codon- or rotamer space cannot be straightforwardly
applied. Scenarios where one might encounter this mis-
match include selection analyses incorporating protein
sequences from ancient specimens or databases where
corresponding nucleotide sequences are not retrievable,
or studies where access to complete high-quality protein
structures is limited. Attempts to bridge the gap between
available input and desired model output have, thus far,
been limited—at least as far as conventional observable
character states are concerned. For example, Yang et al.
(1998) formulated an amino acid model that merges
synonymous codons into a single amino acid state, with
substitution rates computed as an average of the codon
rates. This model can estimate transition–transversion
bias from amino acids. However, it is unable to provide
a measure of the strength of selection.

Nevertheless, there are well-established methods that
allow the handling of data for which only part of the
state-space information is available. This is achieved by
encoding observed states as ambiguous representations
of characters in a larger state-space. This application
of standard statistical theory for missing data has
been used previously in phylogenetics (e.g., Yang 2014,
p. 110–112). A notable example are covariotide models,
conceptualized by Fitch and Markowitz (1970), where
each nucleotide may be in an “on” or “off” state that
cannot be directly observed (Tuffley and Steel 1998;
Galtier 2001; Huelsenbeck 2002). Can the principles
employed by these methods be applied more broadly to
allow substitution models to take “partial” observations
as input?

In this article, we present a proof of principle,
demonstrating that it is possible to infer informa-
tion about evolutionary processes that occurred in
an expanded state-space using only the aggregated
data, taking advantage of an established method for
handling ambiguity in sequence alignments. The ability
to model sequences in a state-space with a larger set
of characters allows us to obtain outputs that would
otherwise be unavailable. For example, we can capture
relative selective constraints on nonsynonymous versus
synonymous substitutions from amino acid sequences.
The path through amino acid space hence helps reveal

the path evolution takes through codon space. The
same method can be applied to reconstructing ancestral
amino acid rotamer configurations using only amino
acid sequences. Using input data consisting of a mixture
of rotamer and amino acid sequences further allows us to
refine these reconstructions and obtain a useful starting
point for homology modeling.

MATERIALS AND METHODS

Inferring Model Parameters from Data in an Aggregated
State-Space using Ambiguity

Our framework is maximum likelihood (ML) inference
on phylogenetic trees, based on alignments of observ-
able characters that evolve independently according
to a Markov process. We consider cases where the
characters at the tips of a phylogenetic tree are only
available in an “aggregated” state-space A with m states.
Each state ai in A={a1,...,am} corresponds to one or
more “separate” states sj in a larger state-space S=
{s1,...,sn} (where n>m). Meanwhile, each state in S
maps to a single state in A. For example, where S
describes the set of 61 sense codons, A might describe
the 20 amino acid states: each codon codes for one
specific amino acid, while a given amino acid can be
represented by multiple codons. Similarly, each amino
acid (A) can represent multiple rotamer configurations
(S; see Perron et al. (2019), Table 1). If we only have
access to amino acid sequences rather than codon or
rotamer sequences, but modeling the data in S would
be more informative, we can take advantage of these
mappings.

In order to estimate phylogenetic models under ML
when the data do not match the model state-space,
we modify an established method for handling align-
ment gaps and ambiguity characters. The conditional
probability vector Lk(j) is a crucial part of phylogenetic
likelihood calculations. It records the probability of the
observed data descended from node k conditional on
the presence of state j at node k. There is one such
vector for each combination of alignment position (not
indicated in this notation, for simplicity) and node k,
with one element for every permitted state j. The iterative
calculation of the likelihood is initialized at the tips of the
tree: if k is a tip with state x recorded in the alignment,
the element Lk(x) is set to 1 and Lk(j)=0 for all other
j �=x (Felsenstein 2004)—the data are recorded as having
been correctly observed with certainty. When data are
missing, or when there is a gap at a site in the alignment,
the corresponding Lk(j) are set to 1 for all j, representing
total absence of knowledge of the true character states
and effectively removing node k from the likelihood
calculation for the site.

In the case where the observed data are in the
aggregated state-space A, and we are interested in
modeling in the separate state-space S, we can proceed
in a similar manner. Consider a simple four-state (S)
model with the aggregated (A) states a={a1,a2} and b=
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{b1,b2}. If we observe state a in A, which could represent
either a1 or a2 in S, the corresponding conditional
probability vector Lk = (La1 ,Lb1 ,La2 ,Lb2 ) is set to (1,0,1,0).
Hence, our observation is ambiguous with respect to
the character in S. We use the term “ambiguous” to
refer to instances where incomplete information about
the state at a given site is available, but the character is
not missing. Where data are completely absent (missing)
for an alignment position, the same vector is encoded
by Lk(xj)= (1,1,1,1). Once Lk has been set at all tips
according to this modification, the calculation of the
likelihood proceeds as normal following Felsenstein’s
pruning algorithm (Felsenstein 1981).

Treating data observed in A as ambiguous states in
S is similar to the “covariotide” model of Huelsenbeck
(2002), which assigns each nucleotide an ambiguous
“on” or “off” state. Ambiguity has also been used
to encode population allele frequencies using small
samples as input (De Maio et al. 2015), and to handle
sequence error and uncertainty (Kozlov 2018). Our
approach differs from that presented in Yang et al.
(1998), where all synonymous codons for an amino
acid are combined into one state and substitution
rates between amino acids represent averages over
codons.

Description of the Codon Model
The codon model considered here follows the stand-

ard M0 model as implemented in PAML (Yang 2007; see
also Goldman and Yang 1994; Yang et al. 2000), with
parameters ω = dN/dS, � representing the ratio of trans-
ition mutations to transversions, and � representing the
codon equilibrium frequencies. The instantaneous rate
matrix is given by:

Qij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 i and j differ by more
than a single nucleotide

�j i and j differ by a single
synonymous transversion

��j i and j differ by a single
synonymous transition

ω�j i and j differ by a single
nonsynonymous transversion

ω��j i and j differ by a single
nonsynonymous transition .

(1)

We implemented the model (now available in PAML
as M5) and likelihood calculations in a standard ML
framework, encoding the conditional probability vector
Lk in codon space (S) using observed amino acids
(A), as outlined above. We make the simplifying
assumption that the vector of equilibrium frequen-
cies is fixed at �j =1/61 for all codons j. The codon
frequencies cannot be directly observed and examin-
ing their identifiability is beyond the scope of this
work.

Codon Sequence Simulations and Inference
We used evolver (Yang 2007) to generate a single

random unrooted tree with 20 tip nodes using a birth–
death process (Yang and Rannala 1997) with a tree
height of 0.5 (see Supplementary Fig. S1A available on
Dryad at http://dx.doi.org/10.5061/dryad.tx95x69sm).
We next simulated sequences under M0 over a range of
parameters generating 100 replicates with 3000 codons
for each combination of configurations (unless stated
otherwise). We then analyzed the simulated sequences
using codeml from the PAML package, fitting M5 to the
translated amino acid sequences and fitting M0 to the
original codon sequences, both assuming equal codon
frequencies (Yang 2007). We also recorded the standard
errors for the parameters (option getSE = 1).

Description of the Rotamer Model
The empirical rotamer-aware model (RAM55) follows

the structure of a standard empirical amino acid model
and is fit to alignment data in the same manner.
The instantaneous rate matrix, Qij, is defined by the
exchangeabilities between states derived from a database
of sequences of proteins with known 3D structure and
their equilibrium frequencies. Rather than the usual
20 amino acid states, the rotamer model considers 55
discrete states determined by the �1 dihedral angle
between the side chain’s first two covalently linked
carbons, the rotamer configuration. Each amino acid can
be categorized into up to three distinct states based on an
observed protein structure; for example, state L3 denotes
a leucine residue in conformational state 3. The exchange
rates likely capture the effect of local steric constraints on
side chain orientation. RAM55 is described in detail by
Perron et al. (2019), along with RUM20, a conventional
20-state empirical amino acid model computed from the
same data set.

Rotamer Sequence Simulation and Ancestral Side Chain
Configuration Reconstruction

To generate sequences in rotamer space with known
phylogenies and ancestral states, we used a set-up
similar to the one described by Perron et al. (2019).
Briefly, we randomly generated a 32-tip tree using
a Yule process and scaled the branches by 0.1–1
(Supplementary Fig. S2 available on Dryad). We then
performed a continuous-time Markov chain simulation
along the branches for 1000 replicates of 200 sites each
using the RAM55 exchangeabilities and equilibrium
frequencies. Simulated alignments use a custom encod-
ing format which expresses both amino acid states
and rotamer states (i.e., a mixed alignment) using
a common alphabet of single-character symbols (see
https://bitbucket.org/uperron/ambiguity_coding).

To emulate cases where structural information is not
available for some of the terminal nodes, we generated
mixed alignments by “masking” a proportion of the
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terminal rotamer sequences, leaving only amino acids.
Amino acid states are then treated as ambiguous rotamer
state assignments in the inference step (see below).
Further, sequences can be removed from the simulated
alignment to illustrate the loss of information caused
by discarding sequences entirely when no structure is
available. This is done by replacing a specific proportion
of the alignment’s sequences with gap characters. Both
the masking and discarding operations are performed
over a set of sequences selected independently for each
replicate according to a uniform distribution.

To reconstruct ancestral states, we modified the
approach described by Perron et al. (2019), encoding each
amino acid (state-space A) observed in the alignment as
ambiguous in rotamer space (state-space S) in the condi-
tional probability vector. This procedure allows us to use
the RAM55 model to infer rotamer sequences at internal
nodes using amino acid or rotamer sequences and the
tree that was used for simulation as input. To compute
posterior probabilities for reconstructions (Yang et al.
1995), we applied the marginal reconstruction algorithm
of Koshi and Goldstein (1996). A joint reconstruction
algorithm (Pupko et al. 2000) gives qualitatively similar
results. To assess the accuracy of the reconstructions,
we examined the proportion of sites with matching
characters in rotamer space. That is, we require both the
amino acid and its rotamer configuration to be identical.

The same reconstruction approach can be modified to
predict side chain configurations for extant homologous
proteins in a given family (i.e., tip nodes of the tree).
Specifically, each terminal rotamer sequence is, in turn,
masked and its side chain configurations are reconstruc-
ted conditioned on the observed amino acid states by
treating the terminal node as if it were an internal node.
This permits us to infer rotamer configurations for extant
proteins with known sequences but unknown structures,
based on the known sequences and structures of their
homologs. To illustrate this, we considered two manually
curated empirical data sets, consisting of 16 ADK struc-
tures and 30 RuBisCO structures from PDBe (wwPDB
consortium 2018), respectively. For each data set, a
multiple amino acid sequence alignment was generated
using MAFFT (Katoh et al. 2002). Rotamer configuration
was then assigned to each amino acid in the alignment,
generating a rotamer sequence alignment (see Perron
et al. (2019) Methods for details). The tree for the
reconstruction was estimated from the rotamer sequence
alignment using RAxML-NG under the RAM55 model
(Kozlov et al. 2019; Perron et al. 2019). We then masked,
in turn, each terminal rotamer sequence in the alignment
and predicted each amino acid’s �1 configuration using
RAM55 and the marginal reconstruction algorithm as
described above. Here, the extant amino acid sequence
is known and the rotamer state prediction is thus
constrained to the observed amino acid. Prediction
accuracy can be computed against the original rotamer
sequence; in order to benchmark our method’s accuracy
we first established a baseline accuracy by assigning
the �1 configuration either according to a uniform
probability distribution (we denote this by “Unif”)

or using the relative equilibrium frequencies of each
possible configuration according to RAM55 (“RelFreq”).

A widely used strategy to predict side chain config-
urations in unresolved structures consists of assigning
to each amino acid the same configuration found at the
corresponding site in the nearest homologous neigh-
bor’s structure (Sutcliffe et al. 1987; Waterhouse et al.
2018); we refer to this approach as “Nearest Neighbor
Configuration” (NNC). NNC is only applicable to sites
where the amino acid is conserved in the template, and
so our implementation of NNC falls back to a RelFreq
strategy for nonconserved sites. We also evaluated a
scenario where no structural information is available
for the nearest sequence [“Masked Nearest Neighbor”
(MNN)]. Here, RAM55 can make use of mixed data
(both amino acid-only and rotamer sequences) using the
ambiguity coding described above.

RESULTS

Substitutions in the Aggregated State-Space Contain
Information about the Path Taken through the Larger

State-Space
We first consider how it might be feasible to extract

information about a process operating in a separate state-
space S from data in A. This will naturally depend on the
relationships between the structures of the state-spaces.
Where some states in the aggregated space are only
accessible via multiple steps in the separate space, it is
possible to gather information about which states might
have been visited. To illustrate this concept, we examine
an example where sequences evolve in codon space and
are observed in amino acid space. For simplicity, we
disregard transition-transversion bias (i.e., we assume
� = 1). Given an alignment and phylogeny that strongly
suggest an evolutionary trajectory W → L → H, the most
direct path through codon space in single nucleotide
steps requires at least two synonymous substitutions
(Fig. 1). Hence, knowledge of amino acid sequence
evolution can reveal information about codon changes.
In practice, many different routes through codon space
may be compatible with the observed data; each is
assessed by standard likelihood calculations and the
embedded information about codon changes weighted
appropriately.

Where the separate state-space model disallows many
transitions (as with the codon model in equation 1), it is
easy to see how inferred moves through the aggregated
space can give information about the separate states.
However, even when the model of interest in S is
described by a Q-matrix that does not contain zeros,
similar principles apply. Here, none of the routes
through the unobserved space are prohibited by the
exchangeabilities, but each is more or less probable.
We can therefore distinguish between different routes
without directly observing them. For example, given
an alignment that implies the amino acid trajectory
L → F → Y, the RAM55 model has several available
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* : TGA
W: TGG
R: CGT
R: CGC
R: CGA
R: CGG

L: TTA
L: TTG
L: CTT
L: CTC
L: CTA
L: CTG

* : TAA
* : TAG
H: CAT
H: CAC
Q: CAA
Q: CAG

FIGURE 1. The path of a sequence through amino acid space contains
information about which codons may have been visited. We illustrate a
W (tryptophan) → L (leucine) → H (histidine) trajectory that requires
multiple synonymous substitutions. Amino acid states representing
the trajectory are shown in dark font. Compatible corresponding
(unobserved) codons are shown in lighter font. Faded out boxes
represent neighboring states in the genetic code. Solid arrows indicate
changes required for the trajectory with the minimum number of steps,
while dashed arrows indicate substitutions associated with multiple
compatible paths. Black arrows denote nonsynonymous substitutions,
and lighter arrows indicate synonymous substitutions.

L: L1 F: F1 Y: Y1
L: L2 F: F2 Y: Y2
L: L3 F: F3 Y: Y3

FIGURE 2. Illustration of paths through amino acid and rotamer
space, given an implied trajectory L (leucine) → F (phenylalanine)
→ Y (tryptophan). Dark font indicates observed amino acid states.
Light font indicates unobserved rotamer configurations. Arrows show
observed path through amino acid space. Lines connecting rotamer
states indicate transition probabilities between states, with darker
shading indicating more probable substitutions according to the
RAM55 matrix. L3 → F3 → Y3 is the most likely trajectory.

routes through rotamer space. However, considering
the relative empirical exchangeabilities between states,
we observe marked differences in how probable each
path is (Fig. 2). This, in turn, should allow us to infer,
for example, the most probable rotamer sequence at an
ancestral node, using the ambiguity approach. Note that,
in some cases, the aggregated state-space will not retain
sufficient information about paths through the separate
space to estimate parameters. One example would be a
nucleotide model with � applied to a (fully) RY-coded
alignment, where all transitions become unobservable
and transversions provide direct routes between both
aggregated states.

Selection can be Inferred from Amino Acid Data Alone
Next, the question arises whether ambiguity coding

extracts enough signal to allow meaningful inferences
to be made. We therefore asked whether the ambiguity
approach permits inference about codon evolution from
amino acid data, considering the M5 variant of the
standard M0 codon model (see Methods section). To

determine if M5 is capable of detecting the relative
strength of selection under which a sequence evolved,
we require data for which this parameter is known. The
most straightforward way of obtaining this is to simulate
sequences under a model identical to the one used in the
estimation step.

We therefore considered translated sequences that
were evolved on a randomly generated 20-taxon tree
under the codon model M0. As an initial benchmark,
we generated 100 alignments with 3000 codons with the
simulation parameters ω∗ = 0.3 and �∗ = 2, and obtain
accurate and unbiased estimates of both (median ω̂ =
0.304; median �̂ = 1.99). Analyzing the original codon
sequences using M0 with identical settings gives similar
results (median ω̂ = 0.299; median �̂ = 2.00). We note that
M5 tends to be noisier, presumably due to its inability to
directly observe synonymous changes. This observation
holds across a range of ω∗ and �∗ values, with high
ω∗ values being somewhat prone to overestimation,
although a strong linear relationship between true and
estimated parameters is maintained (Fig. 3). There is
little interaction between ω and � (see Supplementary
Fig. S3 available on Dryad). In the following, we therefore
consider only the combination ω∗ =0.3 and �∗ =2, unless
otherwise noted.

The parameter �̂ shows a relatively modest increase
in variance under M5 compared to M0 (standard
deviation s� =0.0541 under M5; s� =0.0364 under M0),
presumably due to its direct, and thus inferable, impact
on nonsynonymous substitution patterns. The results
obtained for �̂ under M5 are similar to those for
M6 (�̂M6 = 2.00 with s� =0.0561), which estimates the
parameter from amino acid sequences by averaging over
synonymous codons rather than gathering information
from ambiguity coding while traversing the tree (Yang
et al. 1998). This suggests that �̂ can be robustly estimated
from amino acid sequences, even using coarse-grained
approaches.

However, as expected, discarding codon information
does lead to a loss of signal primarily affecting ω̂, which
displays a markedly higher variance under M5 than
under M0 (s� =0.0456 vs. 0.0056, respectively). Why
might this be? A comparison of the estimates for dS tree
length versus dN tree length suggests that M5 has more
difficulty estimating the former, with variation in dS tree
length accounting for almost all of the variation in overall
tree length (see Supplementary Fig. S4 available on
Dryad). This is consistent with the fact that synonymous
changes are not directly represented in amino acid
sequences, whereas nonsynonymous changes are (as
long as sufficiently short timescales are considered). We
therefore next consider how much information about ω
is retained by M5, compared to M0.

How Much Information Loss Does Discarding Codons
Cause?

The ability of M5 to capture information that is
directly “seen” by M0 can be measured by comparing
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A B

FIGURE 3. Estimation of codon model parameters from amino acid data. A) Simulation (ω∗) and estimated (ω̂) values of ω show a strong
linear relationship (�∗ = 2 for all simulations shown). Squares represent the median ω̂M5 for each ω∗; points show estimates from individual
alignments. Dashed line indicates y=x; solid line shows the line fit for the medians, with high values of ω∗ slightly prone to overestimation
(slope = 1.07, intercept = 0.0083, r2 = 0.92, p≈ 0). B) Estimates of �∗ show a similar pattern (ω∗ = 0.3; slope = 1.00, intercept = −0.0009, r2 = 1.00,
p≈ 0).

A B

FIGURE 4. Increasing the number of columns allows us to quantify how much information is retained in amino acid sequences (M5) relative to
codon sequences (M0). The median standard errors of A) ω̂ and B) �̂ decrease for both models as codons are added. The dashed horizontal line in
a) indicates the observed median standard error of ω̂ for 100 codons under M0, and illustrates that M5 requires a substantially longer alignment
to reach a comparable standard error. Fitting functions of the form c/

√
n to the median standard errors, with n equaling the number of alignment

columns, allows us to quantify the difference in information content. Equating cM0/
√

f n with cM5/
√

n indicates equivalent information content
for f n codons in M0 and n codons in M5: hence M5 recovers a fraction f = (cM0/cM5)2 of the information available to M0. Alternatively, M5 has
lost 100(1 −f )% of the information available to M0.

the variances in parameter estimates on alignments
with varying amounts of evolutionary signal. The most
straightforward way to add information to a phylogeny
given a codon model is to increase the number of codons
in the alignment. Since both M0 and M5 give rise to
unbiased estimates of ω̂ and �̂ (Fig. 3), we compared the
variance in the parameter estimates for alignments of
varying lengths. Given ω∗ =0.3 and �∗ =2 across 1000
replicates, we find that the median standard error of
ω̂M0, as estimated by codeml, is consistently lower than
that of ω̂M5. Across the range, the standard error is
approximately 10 times higher for M5 (Fig. 4), indicating
an information loss of 98.7% (see Fig. 4A for details).
By comparison, the equivalent loss for �̂ is only 38.8%
(Fig. 4B). Nevertheless, the estimates of ω̂ are reasonably
accurate given a sufficiently long alignment (Fig. 3).

It is perhaps counter-intuitive that acceptable estim-
ates of ω̂ can still be obtained with M5 in these
circumstances. However, the relative magnitude of the
error may remain relatively small. For example, given
ω∗ =0.3,�∗ =2, and n=3000, the interquartile range for
ω̂ is 0.296–0.304 under M0 and 0.270–0.344 under M5.
Note that the information loss seems to vary with ω∗.
We observe a larger ratio of standard errors when ω∗
= 0.1 (approximately 12–20 times), with an information
loss of about 99.2% (results not shown).

Tree Depth and Taxon Number Impact M5 Information Loss
Our results show estimates of ω̂M5 to be noise-prone

for short alignments. Because increasing alignment
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FIGURE 5. Tree length influences variance in estimates ω̂ for
both M5 and M0, with intermediate values producing the lowest
standard errors. Points show the median value across replicates. Note
the difference in scale on the y-axis between M5 and M0.

length is not a viable solution to reduce variance for
real amino acid sequence data, we also considered how
other features of the alignment impact M5’s ability to
accurately infer ω̂. For example, it may be possible
to select sequences with higher divergence or include
additional taxa in the phylogeny, hence adding more
information. Scaling-up the branch lengths of the tree
in the simulations gives an initial improvement in the
standard error of ω̂. The greatest reduction is observed
for a tree length of approximately 4 times the length
of the original tree (around 20), followed by a decline
for longer trees (see Fig. 5). This is a consequence of the
increased number of substitution events from which the
model can infer parameters, which is advantageous until
the sequences become too divergent, the true number of
substitutions is underestimated, and the data become too
noisy.

The trajectory of the change in variance observed
across different tree lengths is broadly comparable
for M0 and M5, with the variance for M5 remaining
consistently higher for all lengths. In the case of M0, this
is due to saturation at synonymous sites (Yang 2014). For
M5, it is easy to see that multiple substitutions at a site
along a single branch make it more difficult to infer the
path through codon space (see Fig. 1). This confirms that
the model is behaving as expected.

Adding additional taxa has a similar effect on the
variance. When we examine a tree of comparable height
(0.5) with twice as many tips (n=40, see Supplementary
Fig. S1B available on Dryad), the standard error of ω̂
decreases compared to the smaller tree (median = 0.0223
vs. 0.0396 for 1000 replicates of 5000 codons and ω∗ =
0.3; equivalent values for M0 are 0.0030 vs. 0.0043). As
above, this behavior is expected as the additional tips add
information, provided the branches are not exceedingly
long.

Given these observations, we conclude that estim-
ating the strength of selection from amino acids is a
feasible strategy where nucleotide sequences may be
difficult or impossible to obtain (e.g., where amino

acid sequences from databases or publications cannot
be reliably mapped back to the underlying codons).
Although there is an appreciable loss of signal, M5
is statistically consistent and approaches the correct
parameter estimates given enough amino acid sequence
data.

Accurate Reconstruction of Ancestral Side Chain
Configuration from Amino Acids

We next ask whether the strategy of treating char-
acters that are not directly observable as ambiguous
is also informative when the instantaneous rate matrix
underlying the substitution model is not sparse (i.e.,
does not contain transitions with probabilities equal to
0). To examine how ambiguity coding performs given
an empirical rotamer-aware model, we simulated data
with 55 states under the RAM55 model on a 32-taxon
tree (Supplementary Fig. S2 available on Dryad, see
Methods section), and subsequently reconstructed the
ancestral sequences under the same model. We opted to
benchmark the model using reconstruction accuracy, as
ancestral side chain configurations represent an output
that would be otherwise unobtainable from amino acid
data alone. Varying the proportion of masked sequences
in the alignment (see Methods section) allows us to
compare scenarios where structures are available for
some of the sequences of interest, or none at all, similar
to what would be observed for real empirical data.
The reconstruction accuracy for the data where rotamer
information is available for all of the tips provides a
benchmark for the performance of ambiguity coding.

There is a relatively modest reduction in overall rot-
amer state reconstruction accuracy between simulations
where rotamer configurations are known for all taxa,
and simulations where this information is not available
for any of the taxa (∼15% difference for the unscaled
tree, Fig. 6, scaling factor = 1.0). Reconstruction under
RAM55 using only amino acid sequences is markedly
more accurate than the only alternative approaches of
using a conventional empirical amino acid model to
reconstruct the protein sequence and randomly assign-
ing (“guessing”) rotamer states (Fig. 6, dashed line), or
assigning them based on the equilibrium frequencies of
the RAM55 model (Supplementary Fig. S5 available on
Dryad). Hence, it is advantageous to reconstruct under
the rotamer-aware model, even when the input data are
only available in the aggregated state-space.

As expected, the overall accuracy depends on how
difficult the ancestral sequence reconstruction problem
is, with a shallower tree showing higher sequence
identity between simulated and reconstructed characters
(Fig. 6A). Interestingly, the greatest increase in perform-
ance appears between alignments with no rotamer con-
figuration information present and 12.5% of sequences
containing that information (Fig. 6). This suggests that
little structural information is required in order to
achieve ancestral reconstruction of rotamer states with
acceptable accuracy. Intuitively, the fraction of correctly
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FIGURE 6. The accuracy of ancestral rotamer sequence reconstruction from mixed data under RAM55 increases and shows lower variance when
more rotamer configuration information is available. The x-axis shows the fraction of rotamer configuration information removed (i.e., masked).
The vertical bars show the standard deviation of the reconstruction accuracies, centered around the median. The black dash-dot lines represent
the maximum accuracy reached on full (unmasked) alignments; black dashed lines show the accuracy achieved by reconstructing the amino
acids under RUM20 and randomly assigning (“guessing”) the rotamer configuration. A) Results when all branches of the tree (Supplementary
Fig. S2 available on Dryad) are multiplied by 0.1, showing greater overall accuracy in this case. B) Results for the standard simulation tree (see
Methods section).

inferred states declines with increasing distance from the
tips of the tree (Spearman’s rank correlation coefficient
−0.537, p<0.001; details not shown). We also considered
how the certainty with which the model assigns the
correct ancestral state responds to rotamer information
being masked at the tips of the tree. Unsurprisingly,
the marginal posterior probability for the correct state
declines as information is removed (see Supplementary
Fig. S6 available on Dryad). We observe a drop in the
certainty of the reconstruction preceding the drop in
accuracy.

To examine the robustness of our approach, we also
assessed ancestral sequence reconstruction accuracy
under a simple model violation scenario, simulating
data under RAM55 with gamma-distributed rates (Yang
1994) and reconstructing under RAM55 without rate
heterogeneity. When rotamer configuration is masked,
we observe a larger decline in accuracy compared
to a scenario with no violation, which is expected
given that the amino acid sequence contains less signal
(Supplementary Fig. S7 available on Dryad).

Gains Associated with using Amino Acid Sequences to Infer
Rotamer Configuration in Absence of Structure

As with the codon model example, we would like to
quantify the loss of information associated with using
aggregated state-space data for inference in the separate
state-space. Given that the output of the empirical model
we are studying is not a parameter estimate (as opposed
to our mechanistic codon model/selection example)
but the percentage of correctly reconstructed residues,
extending the alignment is not informative. Instead,

we compared the accuracy of reconstructions under
two scenarios: (a) all state information (amino acid and
rotamer configuration) is discarded from a proportion of
sequences and (b) masking is used so that amino acid,
but not rotamer, sequences are available for a proportion
of the alignment. This provides a measure of the
advantage gained by considering additional amino acid
sequences where no structural information is available.

For the unscaled tree, masking 50% of the rotamer
configurations produces ancestral reconstructions that
are comparable in accuracy to trees where 12.5% of taxa
have gaps (Fig. 7A), indicating a noticeable advantage for
including amino acid sequences where full rotamer state
information is unavailable. In other words, augmenting
half of the amino acid sequences with rotamer config-
uration information is approximately as informative as
having 87.5% of the full rotamer information. Further,
removing all rotamer information and reconstructing
with ambiguity is equivalent to retaining 50% of the
original information. These results suggest that it can
be very valuable to consider amino acid sequences that
lack structures.

Improved Prediction of Side Chain Configurations in
Homologous Structures

Considering its robust performance, how might ambi-
guity coding be put to practical use in the context
of reconstructing side chain configurations? Prediction
of side chain conformations is an important part of
protein structure modeling and interaction modeling.
For a given protein sequence of unknown structure, it is
possible to construct a model of the target protein from
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FIGURE 7. The accuracy of ancestral rotamer sequence reconstruction from mixed data under RAM55 increases when masked sequences,
which lack rotamer states, are not discarded. The x-axis shows the fraction of information available under two scenarios. The dark circles reflect
the amount of rotamer information that has been masked (i.e., replaced with amino acids), and the light crosses represent the amount of rotamer
sequences that has been replaced with gaps (discarded). Masking half of the rotamer configurations produces accuracies comparable with
those obtained by replacing 1/8–1/4 of sequences in the alignments with gaps (see black dashed lines). Reconstructions with ambiguity always
outperform discarding an equivalent fraction of amino acid sequences. As before, the shallower tree, A), shows higher overall accuracy.

its amino acid sequence and experimentally determ-
ined structures of related homologous proteins. This
homology modeling strategy aims to predict both the
main chain geometry and side chain configurations. In
conserved regions, side chains can be modeled starting
from configurations observed at corresponding sites in
the nearest homologous structure (NNC: see Methods
section). Further steps are then required, particularly to
model nonconserved side chain configurations (Water-
house et al. 2018). Side chain configurations could be pre-
dicted for an extant amino acid sequence using RAM55
and a modified ancestral reconstruction algorithm by
constraining the �1 configuration prediction to the set
of configurations that are possible given the observed
amino acid at any given site. Another realistic homology
modeling scenario might involve our target’s nearest
homolog also lacking a resolved structure and only
being available as an amino acid sequence (MNN: see
Methods section). In this context, RAM55 can use a
mixed alignment (amino acid sequences and rotamer
sequences) to inform its predictions rather than relying
exclusively on available structures, which ought to
improve reconstruction accuracy as seen above (Fig. 7).

To evaluate our approach to side chain configuration
prediction, we considered two empirical protein family
data sets (RuBisCO and ADK, see Methods section)
composed of amino acid sequences from a range of
species and their corresponding rotamer configuration
information. We investigated two scenarios: (i) a rotamer
sequence is available for the nearest neighbor of each
terminal node or (ii) only a masked amino acid sequence
is available for the nearest neighbor. Predicting �1 side

chain configurations using RAM55 is more accurate (∼
11% median improvement for both data sets) than NNC
(see Methods section) when the nearest neighbor’s struc-
ture is available (Supplementary Figs. S8, S9 available on
Dryad). Further, RAM55 can make use of all the available
rotamer sequence information, as well as the nearest
neighbor’s amino acid information, when the nearest
neighbor’s structure is not available. Meanwhile, the
traditional approach would instead rely on the second-
nearest structure (MNN: see Methods section). This
results in improved reconstruction accuracy for RAM55
(∼9% and ∼12% median improvement, respectively)
over MNN (Supplementary Figs. S8, S9 available on
Dryad). For both NNC and MNN analyses, the improve-
ments with RAM55 are driven by strongly increased
accuracy at nonconserved sites (results not shown).

Our method provides plausible predictions of �1
configurations using a strategy that, as opposed to NNC
or MNN, explicitly models the evolutionary process
along the branches of the phylogeny and can make
use of amino acid information when structures are not
available. RAM55-based predictions could speed up the
side chain homology modeling process by creating an
informed prior to constrain the search space, particularly
where close homologs with unresolved structures might
otherwise be discarded by traditional strategies.

DISCUSSION

We have demonstrated that treating characters in
an aggregated state-space A as ambiguous versions of
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characters in a larger state-space S allows us to obtain
information that would otherwise not be accessible from
data in A. Our examples show that this is true for
estimating the strength of natural selection under a
codon model, and for reconstructing ancestral side chain
configurations under an empirical model, both from
amino acid sequences alone.

Naturally, where data are available in a larger state-
space matching the internal structure of the preferred
model it is advantageous to make use of them. The codon
model example provides a particularly clear illustration:
completely discarding codon information leads, for
obvious reasons, to increased variance in estimates of ω̂.
We nevertheless find it remarkable that selection para-
meter estimates ordinarily derived from comparisons of
synonymous and nonynonymous substitutions can be
obtained given sufficient amino acid data.

It has previously been argued that modeling coding
sequence evolution at the codon level rather than the
amino acid level is generally preferable because it offers
a more detailed description of the process that generated
the data (Ren et al. 2005; Seo and Kishino 2008; Kosiol and
Goldman 2011; Whelan et al. 2015; Weber and Whelan
2019). On the other hand, the ambiguity approach may
be useful to obtain an approximate estimate of the
strength of natural selection in cases where amino acid
sequences are more readily obtainable. For example, the
supplementary materials accompanying phylogenetic
studies often only provide amino acid alignments, and
as many as 17% of nucleotide sequences corresponding
to proteins in Pfam (El-Gebali et al. 2018) have been
previously reported unrecoverable (Whelan et al. 2003).
The ability to perform a preliminary screen to determine
whether a sequence of interest is under weak or strong
evolutionary constraint might therefore be conveni-
ent. However, we caution against over-interpreting the
results returned by M5, particularly when individual
sequences are being considered or codon usage may be
biased (violating model assumptions).

The absence of high-quality structures for many
extant proteins provides more practical applications for
ambiguity coding. In the case of the RAM55 empirical
rotamer model, we have shown the utility of using
amino acid sequences alone, and “mixed” inputs where
even a limited amount of structural information leads
to considerable improvements in the accuracy of �1
configuration prediction. Being able to use information
from amino acid sequences improves prediction
accuracy over modeling side chains based on the
nearest available structure alone. This approach could
benefit homology modeling strategies, specifically the
steps involving modeling both conserved side chains
based on a known template structure, and nonconserved
side chain modeling achieved by searching a rotamer
library and minimizing an energy function (Xu 2005;
Krivov et al. 2009; Shapovalov and Dunbrack Jr 2011). In
this context, RAM55’s predictions constrain the rotamer
configuration sampling space. This could result in a

reduction of the number of energy refinement cycles
required.

In addition, using RAM55 and the marginal ancestral
reconstruction algorithm makes it possible to obtain
posterior probabilities for each of the possible con-
figurations at a given site. This distribution might
provide a more robust prior for further refinement,
compared to using the single most likely reconstructed
configuration or the nearest homolog’s configuration at
that site. Further work would be required to quantify
improvements in speed and accuracy.

Given the advantage of including mixed input data
demonstrated in our rotamer sequence reconstruction
analyses, we expect combining amino acid and DNA
sequences to be promising, as well as straightforward
to implement. This would address some of the current
limitations of M5 with respect to analyzing phylogenetic
data sets with some missing codon sequences. For
example, accurate estimates of codon frequencies would
be more readily obtainable. A more speculative and
potentially intriguing application would be estimating
selection or structural information from ancient protein
sequences. Proteins can persist for longer in the envir-
onment than DNA under certain conditions (Schweitzer
et al. 2007; Wadsworth and Buckley 2014; Cappellini et al.
2019), enabling phylogenetic inferences to be made based
on substantially older specimens such as dinosaurs and
other extinct organisms (Schroeter et al. 2017; Schweitzer
et al. 2019; Welker et al. 2019). Our methods permit
the use of a mixture of all available DNA and protein
sequences to maximize signal, extending analyses that
are normally only possible with DNA sequences to
incorporate additional data sources. In the absence of
any compelling available ancient protein data sets, we
do not attempt to provide a benchmark here.

The proof of principle described here using two
relatively simple models should not be taken as a sub-
stitute for carefully stress-testing the ambiguity coding
approach for specific applications. As is the case with
all models, with or without ambiguous inputs, making
overly simple assumptions about the data can lead to
misspecification and therefore inaccurate results. We
recommend performing appropriate benchmarks and
specifying models accordingly. As illustrated by our rate
heterogeneity model violation scenario, we expect model
misspecifications to have similar effects with ambiguity
coding as they would in general: Estimates will become
more noisy. Due to the information loss inherent to rely-
ing on the aggregated state-space, a somewhat greater
decline is naturally to be expected. However, we note
that our empirical analysis, which demonstrates that
rotamer states can be reconstructed using real sequences
as input, suggests that more complex scenarios can be
captured. One could conceive of a variety of extensions
to our implementations, including gamma-distributed
rate variation or mixture models of codon evolution.
Assessing them all thoroughly is beyond the scope of
this manuscript.
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In this work, we have shown that ambiguity coding
allows evolutionary inference from partially “hidden”
data under phylogenetic models with both sparse
(e.g., mechanistic) and nonsparse (e.g., empirical)
exchangeability matrices. Thus, the principles underly-
ing likelihood analysis of missing data (Felsenstein, 2004;
Yang, 2014) and covariotide models (Huelsenbeck 2002)
can be applied more broadly, allowing us to estimate
selection and reconstruct aspects of protein structure
given input data that are not fully resolved. Finally,
ambiguity coding could conceivably be applied to other
state-spaces beyond amino acids, codons, and rotamer
states, provided there is reason to believe that movement
through the aggregated space contains info about the
separate space.

SUPPLEMENTARY MATERIAL

Data available from the Dryad Digital Repository:
http://dx.doi.org/10.5061/dryad.tx95x69sm.
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MODEL AVAILABILITY

The M5 codon model is available as model 5 in
codeml (PAML version 4.9h) (Yang, 2007) and is run
with the sequence type set to amino acids (seqtype =
2). The program overrides the codon frequency setting
specified in the control file and resets the CodonFreq
variable to 0 (1/61). Rotamer sequence simulation and
ancestral sequence reconstruction code is available at
https://bitbucket.org/uperron/ambiguity_coding.
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