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Abstract.—The phylogenetic bootstrap is the most commonly used method for assessing statistical confidence in estimated
phylogenies by non-Bayesian methods such as maximum parsimony and maximum likelihood (ML). It is observed that
bootstrap support tends to be high in large genomic data sets whether or not the inferred trees and clades are correct. Here,
we study the asymptotic behavior of bootstrap support for the ML tree in large data sets when the competing phylogenetic
trees are equally right or equally wrong. We consider phylogenetic reconstruction as a problem of statistical model selection
when the compared models are nonnested and misspecified. The bootstrap is found to have qualitatively different dynamics
from Bayesian inference and does not exhibit the polarized behavior of posterior model probabilities, consistent with the
empirical observation that the bootstrap is more conservative than Bayesian probabilities. Nevertheless, bootstrap support
similarly shows fluctuations among large data sets, with no convergence to a point value, when the compared models are
equally right or equally wrong. Thus, in large data sets strong support for wrong trees or models is likely to occur. Our
analysis provides a partial explanation for the high bootstrap support values for incorrect clades observed in empirical data
analysis. [Bootstrap; model selection; star-tree paradox; support value.]

INTRODUCTION

Recently, Yang and Zhu (2018) characterized the
asymptotic behaviors of Bayesian model selection in
large data sets. When two models are both right or
are equally wrong and indistinct, the posterior model
probability varies among data sets according to a
statistical distribution such as U(0,1), whereas one might
expect it to converge to the point value 1

2 . Even more
disturbingly, when the two models are equally wrong
and distinct, the posterior model probability approaches
∼100% in some data sets and 0% in others. This polarized
behavior may be a major reason for the observation
that in Bayesian analysis of large phylogenetic data sets,
posterior probabilities for trees or clades are often close
to 100%, whether or not the relationships are correct.
Note that in this article, we take the view that phylogeny
reconstruction is a problem of statistical model selection,
rather than one of parameter estimation under a well-
specified model: different tree topologies are different
statistical models while branch lengths on a given tree
topology are parameters in the model (Yang 1996, 1997,
2000).

For non-Bayesian methods including maximum parsi-
mony (Fitch 19710, neighbor joining (Saitou and Nei
1987), and maximum likelihood (ML, Felsenstein 1981),
confidence for inferred trees or clades is most often
assessed using Felsenstein’s (1985) phylogenetic boot-
strap. An interesting question is whether bootstrap
exhibits similar behaviors as the posterior model probab-
ilities. In modern phylogenomic studies, both posterior
probabilities and bootstrap support values are often very
high, whether or not the clades or trees are correct. Such

results lead to widespread mistrust for such support
values in large data sets. For example, Chan et al. (2020)
wrote that “high bootstrap support did not necessarily
reflect congruence or support for the correct topology.
This study reiterates findings of some previous studies,
which demonstrated that traditional bootstrap values
can produce positively misleading measures of support
in large phylogenomic data sets.”

Bootstrap was originally developed by Efron (1979)
to calculate the standard error for a parameter, by
resampling the original data and studying the variation
among the bootstrap resample data sets. It has since
been used to conduct all sorts of analyses in Frequentist
statistics, such as correction for bias, calculation of
standard errors, construction of confidence intervals,
and performing significance tests (Efron and Tibshirani
1993; Davison and Hinkley 1997). In phylogenetics,
bootstrap was introduced by Felsenstein (1985) to assess
the confidence in estimated phylogenetic trees. Although
it follows the same operational procedure of resampling
data points from the observed data set, bootstrap in
phylogenetics differs from its use in bias correction or
in confidence interval construction, in that a statist-
ical interpretation has been illusory despite numerous
efforts (Zharkikh and Li 1992; Felsenstein and Kishino
1993; Hillis and Bull 1993; Berry and Gascuel 1996; Efron
et al. 1996; Holmes 2003; Susko 2009). Modifications
to the procedure have also been made, including the
complete-and-partial bootstrap (Zharkikh and Li, 1995),
correction for first-order biases (Susko, 2010), or adjust-
ment for short branches (Lemoine et al., 2018). These
correct for the perceived bias in the procedure or to make
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it agree better with standard ideas of confidence levels
and hypothesis testing. Its interpretation aside, phylo-
genetic bootstrap is the most widely used procedure
for assessing the confidence in estimated phylogenies
by non-Bayesian methods. Felsenstein’s 1985 paper is
a citation classic in all sciences. For Bayesian methods,
the posterior probability for the inferred tree provides
a natural measure of uncertainty (Rannala and Yang,
1996), and bootstrap is in theory not needed in Bayesian
inference. However, the sensitivity of Bayesian model
choice to the prior (O’Hagan and Forster, 2004) and
the polarized behavior of Bayesian model selection
under model misspecification (Yang and Zhu, 2018)
have prompted the application of bootstrap in Bayesian
model selection as well, leading to methods such as
Bayesian bagging (Rubin, 1981; Weng, 1989; Huggins and
Miller, 2020). It is important to study the asymptotic
behavior of phylogenetic bootstrap. Earlier simulation
studies suggest that the phylogenetic bootstrap may be
conservative, and that 70% (instead of 95%) means strong
support (e.g., Hillis and Bull, 1993). It has been noted
that bootstrap support is numerically less extreme than
posterior model probabilities (e.g., Huelsenbeck and
Rannala, 2004; Yang and Rannala, 2005).

In this article, we explore the asymptotic behavior
of phylogenetic bootstrap when the data size increases.
We consider phylogenetic reconstruction as a statistical
model selection problem, and treat phylogenetic trees as
nonnested statistical models (rather than different values
of a parameter in a well-specified model). We present an
asymptotic theory for bootstrap model probability under
different scenarios in the Appendix and in the main
paper illustrate the theory using canonical problems
that are analytically tractable. We discuss phylogenetic
reconstruction problems in the case of three or four taxa
to illustrate the general theory.

SUMMARY OF ANALYTICAL RESULTS

Following Felsenstein and Kishino (1993) and Efron
et al. (1996), we consider bootstrap as a general approach
to assessing the confidence in the selected model in a
model-selection problem.

Bootstrap in Model Selection
The data are an independently and identically distrib-

uted (i.i.d.) sample of size n, x= {x1,...,xn}, from the true
data-generating model g(X). We compare K models, Hj,
j=1,...,K. Model Hj specifies the density fj(X|�j) with
parameters �j. Let �̂j be the MLE of �j under model Hj

given data x. When n→∞, �̂j →�j∗, where �j∗ minimizes
the Kullback–Leibler (K–L) divergence from model Hj to
the true model,

Dj =
∫

g(X)log
g(X)

fj(X|�j∗)
dX. (1)

If Hj is correct, �j∗ will be the true parameter values, with
Dj =0. Otherwise if Hj is wrong, �j∗ will be the best-fitting
or pseudo-true parameter values, with Dj >0. In this article,
we focus on the case where all K models have the same
K–L divergence to the true model. Two models f1 and f2
are said to be equally right if D1 =D2 =0, and equally
wrong if D1 =D2 >0. If two models are unidentifiable at
their pseudo-true parameter values, that is, if

f1(X|�1∗)= f2(X|�2∗) for almost every X, (2)

they are said to be indistinct. This can occur when both
models are right (with D1 =D2 =0) or when both are
wrong (with D1 =D2 >0). Otherwise if equation (2) does
not hold for some X of nonzero measure, the models are
said to be distinct. This can occur only if both models are
wrong (with D1 =D2 >0).

The model selected by ML is the one that achieves
the greatest log likelihood, �j(�̂j) = logfj(x|�̂j). To assess
the confidence on the selected model, we calculate the
bootstrap probability. Let x∗

b ={x∗
b1,...,x

∗
bn} be a bootstrap

sample, formed by resampling with replacement n times
from the original data x. Let �̂∗

b be the MLE from a
bootstrap sample x∗

b . Here, we follow the convention of
using the superscript ∗ to indicate a bootstrap sample,
and the subscript ∗ for the true or pseudotrue parameter
values. We assume that �j∗, �̂j, and �̂∗

j are inner points
in the parameter space. The proportion of bootstrap
replicates in which model j is the optimal model is the
bootstrap probability or bootstrap support Pj for model
j. For example, in the case of two models, the bootstrap
probability for model H1 is

P1(x)=P

{
logf1(x∗|�̂∗

1)> logf2(x∗|�̂∗
2)
∣∣x}

≈ 1
B

∑
b

I
�1(�̂∗

1)>�2(�̂∗
2), (3)

where �j(�̂∗
j )= logfj(x∗|�̂∗

j ) is the log likelihood value

for model j, calculated at the MLE (�̂∗
j ) and where the

indicator function IA is 1 if A is true or 0 otherwise. Note
that P1 is a function of x and is a random variable. We
are interested in the asymptotic distribution of P1 when
x varies.

In phylogenetics, the models under comparison are
the tree topologies for the given set of taxa, while
each data point corresponds to one site or one column
in the alignment. While the bootstrap is applicable as
long as the inference method is statistically consistent
(Felsenstein, 1985), we focus on ML in this article. In
phylogenetics, bootstrap is commonly used to attach
support values for clades or splits on the phylogeny,
calculated as the proportion of bootstrap trees that
contain the splits. Here, we focus on the bootstrap
probability for the whole model. In the case of simple
trees with three or four species with only one internal
branch, the two measures are equivalent. We assume
that the number of bootstrap replicates B is large so that
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the sampling errors due to limited number of bootstrap
replicates is negligible.

The Asymptotic Behavior of Bootstrap Model Selection
Under Different Scenarios

We develop an asymptotic theory of bootstrap model
selection in the Appendix. In general, when equally
right or equally wrong models are compared, bootstrap
model probabilities have a nondegenerate distribution.
In the case of two equally wrong and distinct models,
the bootstrap model probability P1 has the distribution
U(0,1).

The case of two equally wrong and distinct models
with no parameters provides valuable insights into the
differences between bootstrap and Bayesian methods.
The log-likelihood ratio between the two models is

�≡ log
f1(x)
f2(x)

, �∗ ≡ log
f1(x∗)
f2(x∗)

, (4)

for the original data x and the bootstrap resample data x∗,
respectively. Each of these is a sum of n i.i.d. terms. Thus
E(�)=nElogf1(X)−nElogf2(X)=n(D2 −D1)=0 (Equa-
tion 1). Let

�2 =V

{
log

f1(X)
f2(X)

}
=
∫

g(X)
[

log
f1(X)
f2(X)

]2
dX. (5)

When n→∞, �∼N(0,n�2) and �∗|x∼N(�,n�2),
according to the central limit theorem. Thus

P1 =P{�∗ >0|x}≈�
(

�√
n�

)→U(0,1), (6)

where � is the cumulative distribution function (CDF)
for N(0,1).

In Bayesian comparison of two equally wrong models
with no parameters, � is the log Bayes factor. With equal
prior probabilities ( 1

2 for each model), this is related to
the posterior model probability through �= log P1

1−P1
or

P1 = e�

e�+1 . As � behaves like a random walk when n
increases, it is nearly impossible for � to be in a small
interval around 0, say, −5<�<5 which corresponds
to 0.007<P1 <0.993. In other words, for large n, the
posterior probability will be 0 in half of the data sets and
1 in the other half. This polarized behavior also occurs
when the compared models, equally wrong and distinct,
have parameters as the Bayes factor is dominated by
the random-walk term (Yang and Zhu, 2018). The
analysis here suggests that bootstrap probability has a
qualitatively different behavior, as it contrasts �∗ for the
bootstrap sample with � for the original data.

ILLUSTRATIVE EXAMPLES

We present several simple examples to illustrate the
asymptotic behavior of bootstrap model probability
under different scenarios when the data size n→∞. In

the first two examples, two models are equally wrong
and distinct, and the bootstrap probability P1 varies
among data sets like a random number, P1 ∼U(0,1)
(Equation 6).

Problem 1 Fair-coin paradox, with equally wrong
models and no parameters. Suppose a coin is fair with
the true probability of heads to be p=0.5, and we flip
the coin n times to compare two models H1 :p=0.4
and H2 :p=0.6. The data set is x={x1,...,xn}, where xi
takes the value 1 for heads and 0 for tails, and has
the Bernoulli distribution. The data can be summarized
as the proportion of heads in n tosses, x̄, which is
approximately normal N( 1

2 , 1
4n ). H1 is favored if x̄< 1

2 ,
and this happens in half of the data sets.

Given x, the bootstrap sample x∗
b ={x∗

b1,··· ,x∗
bn}, where

x∗
bi is a Bernoulli variable with probability x̄, can be

summarized as the bootstrap sample mean x̄∗, which
is approximately normal, with x̄∗|x∼N(x̄,

x̄(1−x̄)
n ) ≈

N(x̄, 1
4n ). The bootstrap sample x∗

b favors model H1 if and
only if x̄∗ <1/2. Thus,

P1 =P{x̄∗ < 1
2
∣∣x}≈�

(
1/2−x̄√

1/(4n)

)
→U(0,1), as n→∞.

(7)
Thus P1 varies like a random number among data
sets (Fig. 1a). Alternatively, we have �= �1 −�2 =
2n(x̄− 1

2 )log 0.4
0.6 ∼N(0,n�2) and �∗|x∼N(�,n�2), with

�= log 0.4
0.6 , so that Equation 6 gives P1 ∼U(0,1).

Problem 2 Normal distribution, equally wrong and
distinct models with free parameters. Suppose the true
model is N(0,1) and we consider H1 :N(�,1/�1) and
H2 :N(�,1/�2), where � is a free parameter while the
precisions �1 and �2 are given with log(�2/�1)= �2 −�1
so that the two models are equally wrong (D1 =D2 >0)
(Yang and Zhu, 2018). We use �1 = 0.25 and �2 = 2.58666.
Under each model, the pseudo-true parameter value
is �∗ = 0 and H1 and H2 are two equally wrong and
distinct models. Note that H1 is overdispersed and H2 is
underdispersed. Under the model N(�,1/�) with known
�, the log likelihood is

�=−n
2

log(2	)+ n
2

log�− �

2

n∑
i=1

(xi −�)2, (8)

with �̂= x̄. Thus, �1 >�2 if and only if (�2 −�1)
∑n

i=1(xi −
x̄)2 > nlog(�2/�1) or if and only if s2 = 1

n
∑n

i=1(xi − x̄)2 >1.
We have ns2 ∼
2

n−1 ≈N(n−1,2(n−1)).
Given x, the bootstrap sample x∗ favors H1 if the

sample variance s2∗ >1. We have ns2∗/s2∣∣x∼
2
n−1 ≈

N(n−1,2(n−1)). For large n, re-sampling from the
empirical distribution represented by the observed data
x is approximately equivalent to sampling from the
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a) b)

c) d)

FIGURE 1. Histogram/density of bootstrap model probability P1 in problems that involve comparisons of two models. The insets next to
the density plots illustrate the type of the inference problem represented by the example, where the black circle represents the true model, the
two empty circles represent the best-fitting parameter values under the two models, and the two lines represent the parameter space for the two
models (see Yang and Zhu, 2018, Fig. 2). a) Problem 1 (the fair-coin paradox) in which a fair coin (with p=0.5) is tossed n times to compare two
models: p=0.4 and p=0.6. Here the two models are equally wrong and distinct and have no free parameters. b) Problem 2 in which the true
model is N(0,1) while the two compared models, N(�,1/�1) and N(�,1/�2) with �1 <1<�2, are equally wrong and distinct, and each has one
free parameter. c) Problem 3 (the fair-balance paradox) where the true model is N(0,1) and the two compared models, N(�,1/�), �<0 versus
N(�,1/�), �>0, are equally right (if �=1) or equally wrong and indistinct (if � 	=1). d) Problem 4 (equally right models). The true model is N(0,1)
while the two compared models, N(�,1) versus N(0,1/�), are both right. Black dashed line is for the expensive simulation generating x and x∗,
the red dashed line is for simulation generating x̄ and s2, while blue solid line is for the analytical approximation by Equation 14. The insets
characterize the problems, with the true models represented as filled circles and the pseudo-true parameter values as empty circles, while the
lines represent the parameter space for each model. The settings are n=105,B=3×104, and R=105 for problem 1, n=104,B=3×104, and R=104

for problem 2, n=104,B=3×104, and R=104 for problem 3, and n=104,B=103, and R=104 for problem 4.

continuous distribution N(x̄,s2). Thus,

P1 =P{s2∗ >1
∣∣x}≈�

(
((n−1)/n)s2 −1√

2(n−1)/n2

)

→U(0,1), as n→∞. (9)

This is confirmed in Figure 1b.
Alternatively, we have �=�1 −�2 = n

2 (�2 −�1)(s2 −1)
∼N(0,n�2) and �∗∣∣�∼ N(�,n�2), with �= 1√

2
(�2 −�1),

so that P1 =P{�∗ >0
∣∣x}∼U(0,1).

If the two compared models are both right (with D1 =
D2 =0) or are equally wrong and indistinct (with D1 =

D2 >0), then P1 varies among data sets according to a
nondegenerate distribution, which may and may not be
U(0,1)), as illustrated in the next two examples.

Problem 3 Fair-balance paradox with two equally right
or equally wrong and indistinct models. The true
model is N(0,1) and the two compared models are
N(�,1/�), �<0 and N(�,1/�), �>0, with � given. If
� = 1, the two models are equally right. If � 	= 1, the
two models are equally wrong (because of the assumed
incorrect variance) and indistinct (because the pseudo-
true parameter value �∗ = 0 under each model). Model
1 is favored if and only if the sample mean x̄<0. As
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x̄∼N(0,1/(n�)) and x̄∗|x∼N(x̄,1/(n�)), we have

P1 =P{x̄∗ <0|x}=�(−√
n�x̄)→U(0,1), as n→∞.

(10)
This is confirmed in Figure 1c.

Problem 4 Normal-distribution example with an infin-
ite spike at 1

2 in the P1 distribution. The true model
is N(0,1) and the two compared models are N(�,1)
and N(0,1/�). In H1, �∗ = 0 while in H2, �∗ = 1, so
the two models are equally right. The data x may be
summarized as the sample mean x̄ and sample variance
s2 = 1

n
∑

i(xi − x̄)2. The MLE of the parameter is �̂= x̄
under H1 and �̂=n/

∑
x2

i =1/(s2 + x̄2) under H2. The
log-likelihood values are

�1(�̂)=− 1
2

∑
(xi − x̄)2 =− 1

2 ns2,

�2(�̂)=−n
2 log

(
1
n

∑
x2

i

)
− n

2 =−n
2 log(s2 + x̄2)− n

2 .
(11)

Thus, �1 >�2 if and only if

x̄2 >es2−1 −s2 ≈1+(s2 −1)+ 1
2 (s2 −1)2 −s2 = 1

2 (s2 −1)2,
(12)

or if and only if

|x̄|> 1√
2
|s2 −1|. (13)

A large deviation of x̄ from 0 supports H1, whereas a
large deviation of s2 from 1 favors H2. Also x̄∼N(0, 1

n )
and s2 ∼ 1

n
2
n−1 ≈N( n−1

n ,
2(n−1)

n2 ) or 1√
2

(s2 −1)∼N(0, 1
n ),

and x̄ and s2 are independent. Thus, Equation 13 holds
and H1 is the selected model in half of the data sets.

Given x, we have x̄∗|x∼N(x̄,s2/n)≈N(x̄, 1
n ) and

1√
2

(s2∗−1)
∣∣∣x∼N

( 1√
2

(s2 −1), 1
n
)

and x̄∗ and s2∗ are condi-

tionally independent. Let z1 =√
nx̄ and z2 =

√
n
2 (s2 −1),

with z1 and z2 from N(0,1). Let z∗
1 =√

nx̄∗ and z∗
2 =√

n
2 (s2∗−1), with z∗

1|x∼ N(z1,1) and z∗
2|x∼ N(z2,1) to be

conditionally i.i.d. Then,

P1 =P{|z̄∗
1|> |z̄∗

2|∣∣x}. (14)

This problem is analyzed in the Supplementary
information text available on Dryad at
https://doi.org/10.5061/dryad.7m0cfxprw. The
limiting distribution of P1 when n→∞ is

f (P1)=−log|2P1 −1|. (15)

The density is symmetrical around 1
2 , is 0 at 0 and

1, and has an infinite spike at 1
2 , with the mean 1

2 and
variance 1

36 . This is confirmed by simulation in Figure 1d.
The simulation is done in two ways. In the first, data x
is sampled from N(0,1), and given x bootstrap samples
x∗

b are generated, with x̄∗ and s2∗ calculated to apply
Equation 14. In the second approach, x̄∼N(0,1/n) and
ns2 ∼
2

n−1 are sampled, and then x̄∗ ∼N(x̄,s2/n) and

ns2∗/s2 ∼ 
2
n−1 are generated to select the model for the

bootstrap sample using Equation 14. Both approaches
produce the same results as Equation 15.

Problem 5 Multivariate normal-distribution example.
The true model is the (K−1)-variate normal distribution
N(�,�), with mean vector �= (�1, ..., �K−1) where �1 =
···= �K−1 = 0 and variance matrix � which has 1 on the
diagonal and−1/(K−1) on the off-diagonal. The data are
an i.i.d. sample of size n, x={xij}, i=1,...,n;j=1,...,K−
1. Also let xiK = −(xi1 +···+xi,K−1) and �K =−(�1 +···+
�K−1). We use the data to compare K models. Model Hj,
j=1,...,K, assumes �j >�k for any k 	= j. The model has
K−1 free parameters: �1,...,�K with the constraint �1 +
···+�K = 0. The variance is assumed to be known, c�.
The models are equally right if c=1 and equally wrong
if c 	=1. An alternative formulation of the problem is to
have only one parameter in model Hj: �j >�k with �k =
−�j/(K−1) for all k 	= j.

Let x̄={x̄j} and x̄∗ ={x̄∗
j }, with

x̄j = 1
n

∑
i

xij, x̄∗
j = 1

n

∑
i

x∗
ij, j=1,··· ,K, (16)

be the sample means from data set x and from bootstrap
sample x∗, respectively. Then x̄∼N(�, 1

n�) and approx-
imately x̄∗|x∼N(x̄, 1

n�). Without the constraint under
each model Hj: �j >�k , the MLEs of � are the sample
means. With the constraint, Hj is the selected model if x̄j
is the greatest among x̄1,...,x̄K . The bootstrap probability
for model H1 given data x is

P1 =P(x̄∗
1 > x̄∗

2,...,x̄∗
1 > x̄∗

K |x). (17)

Now for any j 	=k,

�2
jk =V(x̄j − x̄k)= 2

n −2· 1
n ·(− 1

K−1 )= 2
n · K

K−1 . (18)

Let z= (z2,...,zK)T and z∗ = (z∗
2,...,z∗

K)T , with zj = x̄1−x̄j
�1j

and z∗
j = x̄∗

1−x̄∗
j

�1j
,j=2,...K. We have

V(zj)=1,

Cor(zj,zk)=Cov(x̄1 − x̄j,x̄1 − x̄k)/(�1j�1k)

=[V(x̄1)−2Cov(x̄1,x̄j)+Cov(x̄i,x̄j)]/(�1j�1k)

= 1
n (1+ 1

K−1 )
/

( 2
n

K
K−1 ) = 1

2 .

(19)
Thus, z∼N(0,�0) and z∗|x∼N(z,�0), where �0 is a (K−
1)×(K−1) variance matrix with 1 on the diagonal and 1

2
on the off-diagonal. Thus,

P1 =P(z∗
2 >0,...,z∗

K >0|x)=�(z2,...,zK). (20)
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TABLE 1. Proportions of data replicates with very high bootstrap
probability (P1) in the multivariate normal example (Problem 5)

K 2 3 4 5

P{P1 >0.90} 0.100 0.023 0.008 0.004
P{P1 >0.95} 0.050 0.008 0.003 0.001
P{P1 >0.99} 0.010 0.001 0.000 0.000

As x̄∗
j − x̄∗

k = (x̄∗
1 − x̄∗

k )−(x̄∗
1 − x̄∗

j ), the bootstrap probab-
ilities for all K models given data x are⎡

⎢⎢⎣
P1
P2
...

PK

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

�(z2,z3,...,zK)
�(−z2,z3 −z2,...,zK −z2)

...
�(−zK,z2 −zK,...,zK−1 −zK)

⎤
⎥⎥⎦ (21)

For example, in the case of K =3, a fast way of
simulating the limiting distribution of (P1,P2,P3) is thus
to generate (z2,z3)∼ N

((0
0
)
,
( 1 0.5

0.5 1
))

and then calculate
(P1,P2,P3) by Equation 21. This is confirmed by the
slow simulation of generating x and then x∗ in Figure 2.
The joint distribution of (P1,P2,P3) has peaks at the
three corners, and is nearly flat around the center. By
symmetry P1 has mean 1

3 , and by numerical integration
using Equation 20, P1 has SD = 0.25904. The probability
that one of the models is strongly supported is close to
0 (Table 1). Figure 3a,b shows the marginal distribution
of P1 when K = 3 and 6.

Even though (P1,P2,P3) do not converge to the point
value ( 1

3 , 1
3 , 1

3 ), extreme bootstrap support values are not
highly frequent. Bootstrap probabilities are thus qualit-
atively different from Bayesian model probabilities.

BOOTSTRAP IN PHYLOGENETICS

We consider ML reconstruction of phylogenies of three
or four species (Fig. 4), under the JC model (Jukes and
Cantor, 1969). We simulate data to verify the asymptotic
theory and compare with Bayesian results from Yang
and Zhu (2018).

Case A (Fig. 5A and A′) involves equally right models.
This is the star-tree paradox analyzed previously (Lewis
et al., 2005; Yang and Rannala, 2005; Yang, 2007a; Susko,
2008). We use the rooted star tree T0 for three species
with t=0.2 (Fig. 4a) to generate data sets to compare the
three binary trees. The JC model (Jukes and Cantor, 1969)
is used both to generate and to analyze the data. The
molecular clock (rate constancy over time) is assumed
as well, so that the parameters in each binary tree are
the two node ages (t0 and t1), measured by the expected
number of nucleotide changes per site. The best-fitting
parameter values are t0∗ =0 and t1∗ =0.2 for each of
the three binary trees, so that the three binary trees are
equally right models.

Case B (Fig. 5B and B′) involves equally wrong models
that are indistinct. This is similar to case A except that
the JC+� model (Jukes and Cantor, 1969; Yang, 1993)
is used to generate data, with different sites in the

sequence evolving at variable rates according to the
gamma distribution with shape parameter 
=1. The
data are then analyzed using JC (equivalent to JC+� with

=∞), giving t0∗ =0 and t1∗ =0.16441 as the pseudo-
true parameter values for each binary tree. The binary
trees are equally wrong and indistinct models (D1 =D2 =
D3 >0).

Case C (Fig. 5C&C’) involves equally wrong and
distinct models. Like case B, the simulation model is
JC+� with 
=1 and the analysis model is JC. However,
the molecular clock is not assumed and unrooted trees
are used. The true tree is the unrooted star tree T0 of
Fig. 4B, with t1 = t2 = t3 = t4 =0.2, with t0∗ =0.01037 and
ti∗ =0.16409, i=1,··· ,4 for the binary trees (Fig. 4B). As
t0∗ >0, the three binary trees are equally wrong and
distinct models (D1 = D2 = D3 > 0).

In cases A and B, the data for the three species
have a multinomial distribution with five categories
corresponding to the five site patterns xxx, xxy, xyx, yxx,
and xyz, where x,y,z are any distinct nucleotides. Let the
frequencies of the informative site patterns xxy, xyx, yxx
be x̄1, x̄2, and x̄3, while that for the two uninformative
patterns xxx and xyz be x̄0. With the star tree being the
true tree, the probabilities for the three informative site
patterns are identical, with p1 =p2 =p3. Tree 1 specifies
p1 >p2 =p3. Given data x, tree j is the ML tree if x̄j is
the greatest among x̄1,x̄2, and x̄3 (Yang, 2000). Then x̄=
(x̄1,x̄2,x̄3) is approximately normal, with mean (p,p,p),
and variance p(1−p)/n and covariance −p2/n. Applying
a multivariate normal approximation to the multinomial
distribution, we see that the problem has the same
mathematical structure as problem 5. Thus the bootstrap
distribution for cases A and B should be identical to that
in problem 5. We wrote a C program to simulate and
analyze data for cases A and B. Given branch lengths
t0 and t1, the probabilities for the five site patterns
are calculated according to the JC model (Yang, 1994),
and the data x are then generated by sampling from
the multinomial distribution. Given data x, bootstrap
dataset x∗ is sampled using the observed site-pattern
frequencies in x. Then tree j is the ML tree for data x∗
if x̄∗

j is the largest among (x̄∗
1,x̄∗

2,x̄∗
3).

In case C for four species, the informative site patterns
are xxyy, xyxy and xyyx while there are 11 uninformative
patterns. The binary tree has only five parameters, such
that the model achieves a better fit to the observed data
by having a positive internal branch length. As a result,
the three binary trees are distinct models (with t0∗ >0).
Case C thus differs from problem 5, but has a similar
symmetry in that the K-L distance between any pair
of models is the same. From the general theory, the
distribution of bootstrap probabilities (P1,P2,P3) is the
same as that in problem 5. We simulated data using
EVOLVER, and generated bootstrap resample data using
SEQBOOT. The data are then analyzed using BASEML
in PAML (Yang, 2007b).

Our theory predicts that the limiting distribution is the
same in all three cases, with the mean 1/3 and SD 0.25904.
This is confirmed by the simulation (Fig. 5), which gave
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a) b)

FIGURE 2. Marginal and joint distributions of P1,P2,P3 for Problem 5 (the multivariate normal example with K =3). The three corners in the
plots correspond to points (1, 0, 0), (0, 1, 0), and (0, 0, 1), while the center is ( 1

3 , 1
3 , 1

3 ). The number of replicates is R=106, with n=106 and B=103.

a) b) c)

FIGURE 3. Marginal distribution of P1 in comparisons of K equally right or equally wrong and indistinct models based on the normal
distribution of Problem 5 (K =3 in a and 6 in B). The sample size is n=104. The number of simulated replicates is R=104, with B=103, but the
“theoretical” distribution is based on simulating 106 replicates and using Equation 21.

the mean of P1 as 1/3 and the SD as 0.259. The bootstrap
probabilities have modes at the corners, and roughly
uniformly distributed around the center. While in case
C, the Bayesian posterior probabilities show extreme
polarized behavior, concentrated on three points: (1, 0, 0),
(0, 1, 0), and (0, 0, 1) (Yang and Zhu, 2018, Fig. 4C&4C’),
bootstrap probabilities are much more moderate and
have a nondegenerate distribution.

We calculated the proportions of data sets in which
the bootstrap and posterior probabilities for the three
binary trees are extremely low or extremely high (Table
2). As the three trees are equally right or equally wrong,
both extremely low and extremely high support values
are undesirable. Overall posterior probabilities are much
more extreme, with extremely low and extremely high
values to be commonly observed. In contrast, bootstrap
probabilities are much more moderate, with extreme

values to be rare. For example, at the sequence length
n=105, E(Pmax) = 0.647 using bootstrap method and
0.964 for the Bayesian method. If Pmax >0.95, one of the
models is strongly favored, and this occurs in 2.9% of
data sets for the bootstrap and 85.3% for the Bayesian.
It is much less likely to see high bootstrap support for
equally wrong models than high posterior probabilities
for them.

We conducted another simulation generating
sequence data on a four-species tree under JC+� with

 = 1 and analyzing them under JC, as in case C above
(Fig. 5C&C’), but instead of the star tree, we used the
binary unrooted tree T1 with a very short internal
branch: ((a: 0.2, b: 0.2) : 0.002, c: 0.2, d: 0.2) (see Fig. 4B).
In this case one of the binary trees is correct while the
other two are wrong. The results are summarized in
Table 3. In large but finite data sets, the Bayesian method
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a)

b)

FIGURE 4. The star tree T0 and three binary rooted trees T1,T2, and T3 for a) three or b) four species. Branch length parameters, shown next
to the branches, are measured by the expected number of changes per site. The star tree is used to generate data, which are analyzed by ML to
compare the three binary trees.

FIGURE 5. The joint distribution of the bootstrap model probabilities in the star-tree problem. The star tree T0 of Fig. 4 is used to simulate
data (sequence alignments of n=103 or 105 sites), and ML is used to compare the three binary trees T1,T2, and T3 to calculate their bootstrap
probabilities (P1,P2,P3). In (A) and (A′), the true tree is the star tree T0 for the three species of Fig. 4A, with t=0.2. Both the simulation and
analysis models are JC, and the three binary trees are equally right models. In (B) and (B′), the true tree is the star tree T0 for three species of
Fig. 4A, with t=0.2. The simulation model is JC+� (with 
 = 1), and the analysis model is JC. The three binary trees represent equally wrong and
indistinct models. In (C) and (C′), the true tree is the star tree T0 for four species of Fig. 4B, with t1 = t2 = t3 = t4 = 0.2. The simulation model is
JC+� (
 = 1) and the analysis model is JC. The three binary trees represent equally wrong and distinct models. The number of bootstrap samples
B=1000 and the number of replicates is R=106 for three-species trees and 105 for four-species trees. Our theoretical analysis predicts the same
limiting distribution (when n→∞) for the three cases, which is also the same distribution as in problem 5 (Fig. 2A).
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TABLE 2. Proportions of data sets with extreme bootstrap or posterior (in parentheses) probabilities for the three binary trees in the star-tree
simulation
n P{Pmin <1%} P{Pmin <5%} P{Pmax >95%} P{Pmax >99%} E(Pmin) E(Pmax)

103 0.119 (0.234) 0.391 (0.550) 0.028 (0.205) 0.001 (0.079) 0.094 (0.067) 0.644 (0.754)
104 0.123 (0.812) 0.386 (0.931) 0.030 (0.606) 0.002 (0.450) 0.093 (0.011) 0.653 (0.897)
105 0.113 (0.979) 0.383 (0.992) 0.029 (0.853) 0.004 (0.773) 0.093 (0.001) 0.647 (0.964)

Notes: Pmin = min(P1,P2,P3) and Pmax = max(P1,P2,P3). Data are generated under JC+� with 
 = 1, using the star tree for four species ((a: 0.2,
b: 0.2) : 0.002, c: 0.2, d: 0.2), and analyzed under JC. The number of replicates is R=103 and the number of bootstrap samples is B=103. The
probability density of (P1,P2,P3) is shown in Fig. 5C&C′ for n=103 and 105, respectively. Posterior tree probabilities from the Bayesian analysis
are shown in parentheses, from Yang and Zhu (2018, Supplementary Table S1 available on Dryad).

was noted to produce strong support for the wrong
trees frequently (Yang and Zhu, 2018, table S2), but this
is found to be rare for the bootstrap method (table 3).

DISCUSSION

As mentioned in the Introduction, the interpretation
of bootstrap in model selection in general and in
phylogenetics in particular is controversial. A number
of studies have attempted to give bootstrap a Bayesian
interpretation, that is, the bootstrap probability for a tree
is the probability that the tree is correct. For example,
Hastie et al. (2009, p.272) wrote that “[i]n this sense,
the bootstrap distribution represents an (approximate)
nonparametric, noninformative posterior distribution
for our parameter.” The plug-in principle for bootstrap
appears to support this interpretation: bootstrap probab-
ility P{�∗ >0|x} is an estimate of P{�>0}, which is the
probability that the ML tree is correct. In phylogenetics,
such an interpretation was suggested by Efron et al.
(1996), although the prior for the corresponding Bayesian
analysis assumes infinite branch lengths and appears to
be implausible biologically (Yang, 2014, p.176).

Our analysis suggests qualitatively different asymp-
totic behaviors between bootstrap and posterior probab-
ilities for models or trees. The greatest difference occurs
in the case of comparing equally wrong and distinct
models. In that case, the posterior model probabilities
show extreme polarized behavior, with ∼100% for one
model and 0 for others. This behavior occurs because
the log marginal likelihood ratio for two models (or
the log Bayes factor) (�) is dominated by a random-
walk term that deviates from 0 at the rate of

√
n when

n increases (Yang and Zhu, 2018), so that for large
n there is a vanishingly small probability for the log
marginal likelihood ratio to stay in the neighborhood
of 0 (or for the posterior model probability to stay in the
neighborhood of 1

2 away from both 0 and 1). Bootstrap
probabilities show a different behavior. While the log
likelihood ratio for the bootstrap data set (�∗) also
increases like a random walk when n increases, this is
compared with the log likelihood ratio for the original
data set (�) when the bootstrap model probability is
calculated. As a result, whether the models are distinct
or indistinct does not matter anymore.

This property of the bootstrap probability, that it does
not exhibit the polarized behavior in comparisons of

TABLE 3. Proportions of data sets with strong bootstrap or posterior
(in parentheses) support for wrong trees in simulated data sets for four
species

n P{P1 < 1%} P{P1 < 5%} P{P23 > 95%} P{P23 > 99%}

103 0.031 (0.083) 0.109 (0.225) 0.019 (0.113) 0.002 (0.038)
104 0.009 (0.250) 0.044 (0.337) 0.005 (0.266) 0.000 (0.166)
105 0.000 (0.102) 0.001 (0.120) 0.000 (0.115) 0.000 (0.097)

Note: P1 is the probability for the true tree, while P2 and P3 are for the
two wrong trees, with P23 =max{P2,P3}. Data were generated under
JC+� with 
 = 1 on the unrooted tree T1 for four species: ((a :0.2,b :0.2) :
0.002,c :0.2,d :0.2), and analyzed under JC. The number of simulated
replicates is R=103, with B=103. Posterior tree probabilities from the
Bayesian analysis are shown in parentheses, from Yang and Zhu (2018,
Supplementary Table S2 available on Dryad).

equally wrong and distinct models (or trees) and that it
does not often produce strong support for wrong models
in large but finite data sets, should be considered an
advantage over Bayesian posterior probability. However,
neither bootstrap nor posterior probabilities for models
converge to a point value when equally wrong or
equally right models are compared. Given that our
models of sequence evolution must always be wrong and
simplistic, those results suggest that caution is needed
to interpret strong support values (in particular, high
posterior probabilities) for trees or clades in analyses
of phylogenomic data sets. For the present, it is not so
clear how the problems discussed in (Yang and Zhu,
2018) and in this paper can be mitigated. We note that
robust model selection, in particular Bayesian selection
of misspecified models or Bayesian nonparametrics, is a
very active area of research in statistics, and several ideas
have been suggested to make the inference less sensitive
to misspecification of the likelihood model, including
bootstrap resampling combined with Bayesian model
selection (Huggins and Miller 2020) and flattening of the
likelihood function (Watson and Holmes 2016). Further
research is needed to assess the utility of those ideas to
our problem of phylogeny reconstruction.

SUPPLEMENTARY DATA

Data available from the Dryad Digital Repository:
https://doi.org/10.5061/dryad.7m0cfxprw.
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APPENDIX. ASYMPTOTIC THEORY FOR BOOTSTRAP

PROBABILITY IN MODEL SELECTION

We use ML to compare K models, Hj :X ∼ fj(X|�j),j=
1,...,K. The data set, x= {x1,...,xn}, is an i.i.d. sample
of from the true model g(X). Given x, we generate
a bootstrap sample x∗ and analyze it using ML. The
bootstrap probability for model H1 is the probability that
model H1 has higher log likelihood than other models
in the bootstrap sample.

The case of two equally wrong and distinct models.
We decompose the log-likelihood ratio between models
H1 and H2 for the bootstrap data set x∗ into several
components, and study their dynamics when n→∞.

�∗ ≡ log
f1(x∗|�̂∗

1)

f2(x∗|�̂∗
2)

= log
f1(x∗|�̂∗

1)

f1(x∗|�̂1)
−log

f2(x∗|�̂∗
2)

f2(x∗|�̂2)

+log
f1(x∗|�̂1)

f2(x∗|�̂2)
≡�A1 −�A2 +�∗∗. (A1)

Model H1 is the selected model in the bootstrap sample
if and only if �∗ >0, so that the bootstrap probability for
H1 given data x is P1 ≡P{�∗ >0|x}. We are interested in
the distribution of P1 when x varies. First we consider the
case where H1 and H2 are equally wrong and distinct. We
show that �A1 and �A2 are Op(1) while �∗∗ is Op(n1/2),
so that �∗ is dominated by �∗∗.

Taking the same approach as in Dawid (2011) and
Yang and Zhu (2018), we apply Taylor expansion to the
log likelihood, logf1(x∗|�1), for the bootstrap data set x∗
around the MLE �̂∗

1 and then let �1 = �̂1. We have

�A1 = logf1(x∗|�̂∗
1)−logf1(x∗|�̂1)

≈ 1
2 {(�̂∗

1 − �̂1)}T(nJ1(�̂∗
1)){(�̂∗

1 − �̂1)}
≈ 1

2 {√n(�̂1 −�1∗)}TJ1(�1∗){√n(�̂1 −�1∗)},
(A2)

where J1(�1)=E{−∇2 logf1(X|�1)} and ∇2 is the second
derivatives with respect to �1. From the plug-in principle,

x∗ varies given �̂ as does x given �∗ (Efron and Tibshirani,

1993). We have
√

n(�̂∗
1 − �̂1)

d−→ √
n(�̂1 −�1∗) (Bickel and

Freedman, 1981; Cheng and Huang, 2010, Theorem 2),
and

√
n(�̂1 −�1∗)∼N

(
0,[J1(�1∗)−1]TI1(�1∗)J1(�1∗)−1

)
, (A3)

where I1(�1)=E{∇ logf1(X|�1)·∇ logf1(X|�1)T} (White,
1982, Theorem 3.2). Thus �A1 is a quadratic form of
normal variates and is Op(1). If H1 is the true model,
�A1 ∼ 1

2
2
d where d is the number of parameters in H1.

Similarly �A2 =Op(1).
We write the third term in Equation A1 as

�∗∗ ≡ log
f1(x∗|�̂1)

f2(x∗|�̂2)
=

n∑
i=1

log
f1(x∗

i |�̂1)

f2(x∗
i |�̂2)

≡
n∑

i=1

r∗
i (x). (A4)

Define two log-likelihood ratios based on the original
data x,

�∗ ≡ log
f1(x|�1∗)
f2(x|�2∗)

,

�≡ log
f1(x|�̂1)

f2(x|�̂2)
=

n∑
i=1

log
f1(xi|�̂1)

f2(xi|�̂2)
≡

n∑
i=1

ri.

(A5)

Note that �∗ is a sum of n i.i.d. terms, so that when
n→∞,�∗ ∼N(0,n�2), with E(�∗)=n(D1 −D2)=0 (eq. 1)
and V(�∗)=n�2, where

�2 ≡Vg

{
log

f1(X|�1∗)
f2(X|�2∗)

}
=
∫

g(X)
[

log
f1(X|�1∗)
f2(X|�2∗)

]2
dX.

(A6)
When n→∞, r̄= 1

n
∑n

i=1ri →D2 −D1 =0 and s2 =
1
n
∑n

i=1(ri − r̄)2 →�2, so that �∼N(0,n�2).
Given data x, {r∗

i } are conditionally independent, with
expectation and variance

E(�∗∗|x)=nE

{
log

f1(x∗
1|�̂1)

f2(x∗
1|�̂2)

∣∣∣∣∣x
}

≈n· 1
n

n∑
i=1

log
f1(xi|�̂1)

f2(xi|�̂2)

=
n∑

i=1

ri =�,

V(�∗∗|x)=nV

{
log

f1(x∗
1|�̂1)

f2(x∗
1|�̂2)

∣∣∣∣∣x
}

=nE{(r∗
i −E(r∗

i ))2∣∣x}≈n�2.
(A7)

Thus �∗∗|x∼N(�,n�2). The bootstrap probability for H1
is

P1 =P{�∗ >0|x}=P{�A1 −�A2 +�∗∗ >0|x}
≈P{�∗∗ >0|x}≈�( �√

n�
)∼U(0,1).

(A8)

P1 varies among data sets like a random number.
The case where there are no free parameters in the

compared models has been discussed in the main paper.
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We have

�=�∗ = log
f1(x)
f2(x)

, �∗ =�∗∗ = log
f1(x∗)
f2(x∗)

, (A9)

with �∼N(0,n�2) and �∗|�∼N(�,n�2), as n→∞. Thus

P1 =P{�∗ >0|x}=�
(

�√
n�

)→U(0,1). (A10)

The case where the two models are equally right or
are equally wrong and indistinct, that is, with f1(X|�∗

1)=
f2(X|�∗

2) for almost every X. We have �∗ =0 in Equation
A5, and �=Op(1). As a result, �∗∗ =Op(1), as well as
�A1 =Op(1) and �A2 =Op(1). From Equation A2, �A1
and �A2 have the same distribution, with E(�A1 −
�A2|x)= 0. Thus E(�∗|x) = E(�∗∗|x) =�. Let F be the
CDF of �, which has mean 0. Then

P1 =P{�∗ >0|x}=1−F(−�). (A11)

Thus with n→∞, P1 converges to a non-degenerate
distribution, which is U(0,1) if and only if �∗−� has
the same distribution as −�.

DasGupta (2008, Chapter 29) discusses regularity
conditions under which T∗−T and T−E(T) have the
same distribution, so that the bootstrap plugin principle
can be applied, where T is a statistic or function of
data x. If those conditions are not satisfied, the standard
bootstrap will fail as T∗−T will not approximate T−
E(T). Problem 4 is one such case, and �∗−� and � have
different distributions, and the limiting distribution of
P1 is not uniform. As indistinct models are more similar
to each other than distinct models and as P1 ∼U(0,1)
when the two models are distinct (and equally wrong),
we conjecture that V(P1)≤ 1

12 , the variance of U(0,1).
Problems 3 and 4 are examples of equally right or

equally wrong but indistinct models. Problem 3 shows
the U(0,1) distribution, while problem 4 shows a non-
uniform distribution.

The case of K models. Let the K models be H1,··· ,HK , all
of which have the same K-L distance to the true model.
Define

�∗jk ≡ log
fj(x|�j∗)

fk(x|�k∗)
, �jk ≡

n∑
i=1

log
fj(xi|�̂j)

fk(xi|�̂k)
(A12)

for data set x and

�∗
∗jk ≡

n∑
i=1

log
fj(x∗

i |�̂j)

fk(x∗
i |�̂k)

, �∗
jk ≡

n∑
i=1

log
fj(x∗

i |�̂∗
j )

fk(x∗
i |�̂∗

k )
(A13)

for bootstrap data set x∗.
First consider the case where the K models are

equally wrong and distinct. As in the case of two
models, �∗

jk is dominated by �∗
∗jk so that �∗

jk ≈�∗
∗jk

while �jk ∼ N(0,n�2
jk) and �∗

∗jk ∼ N(�jk,n�2
jk), with �2

jk ≡
V

{
log

fj(X|�j∗)
fk(X|�k∗)

}
(see Equation A6). Given x, there will be

a set of bootstrap probabilities (P1, ···, PK). For example

P1 =P{�∗
12 >0,...,�∗

1K >0
∣∣x}≈P{�∗∗12 >0,...,�∗

∗1K >0
∣∣x}.

(A14)
Let z={z2,··· ,zK−1} and z∗ ={z∗

2,··· ,z∗
K−1}, where zj =

�1j√
n�1j

and z∗
j = �∗

1j√
n�1j

. Let

�jk =Cor(zj,zk)=Cor(�1j,�1k)

= 1
�1j�1k

Cov

(
log

f1(X|�1∗)
fj(X|�j∗)

, log
f1(X|�1∗)
fk(X|�k∗)

)
. (A15)

Thus z∼N(0,�0) and z∗|x∼N(z,�0), where �0 is a (K−
1)×(K−1) variance matrix with 1 on the diagonal and
�jk on the off-diagonal. We have

P1 =P(z∗
2 >0,··· ,z∗

K >0
∣∣x)=�(−z2,··· ,−zK), (A16)

where � is the (K−1)-variate CDF of N(0,�0). Bootstrap
probabilities for the other models, P2,··· ,PK , are given
similarly.

When there is strong symmetry in the problem so that
the K-L distance between any two models is the same,
the variance matrix �0 will have 1 on the diagonal and
�jk = 1

2 on the off-diagonal, and further simplifications
are possible. The joint distribution of bootstrap model
probabilities (P1, ···, PK) can be simulated as follows (see
Problem 5). Sample z= {z2,··· ,zK}∼ N(0,�0) where �0
is (K−1)×(K−1), with 1 on the diagonal and 1

2 on the
off-diagonal. Let z1 =−(z2 +···+zK). Then calculate⎡

⎢⎢⎣
P1
P2
...

PK

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

�(z2,z3,··· ,zK)
�(−z2,z3 −z2,··· ,zK −z2)

...
�(−zK,z2 −zK,··· ,zK−1 −zK)

⎤
⎥⎥⎦. (A17)

If the K models under comparison are equally right
or equally wrong and indistinct, �∗

jk =Op(1). Then the
bootstrap probabilities (P1,··· ,PK) have a nondegenerate
distribution.

In the case where some of the K models are equally
wrong and distinct while others are indistinct, the
dynamics of bootstrap model probabilities may be
complex. A few representative cases which involve com-
parison of three models are analyzed in Supplementary
Table S1 available on Dryad, with the distributions of
bootstrap probabilities in Supplementary Figures S1–S3
available on Dryad.
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