Defining Species When There is Gene Flow

XIYUN JIAO AND ZIHENG YANG*

Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
*Correspondence to be sent to: Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK; E-mail: z.yang@ucl.ac.uk

Received 27 January 2020; reviews returned 23 June 2020; accepted 23 June 2020

Associate Editor: Matthew Hahn

Abstract.—Whatever one’s definition of species, it is generally expected that individuals of the same species should be genetically more similar to each other than they are to individuals of another species. Here, we show that in the presence of cross-species gene flow, this expectation may be incorrect. We use the multispecies coalescent model with continuous-time migration or episodic introgression to study the impact of gene flow on genetic differences within and between species and highlight a surprising but plausible scenario in which different population sizes and asymmetrical migration can make use of those expectations explicitly. First, DNA errors (Meyer and Paulay 2005; Puillandre et al. 2012). Estimated from a database by minimizing assignment threshold may be arbitrary (Hebert et al. 2003) or from a database by minimizing assignment errors (Meyer and Paulay 2005; Puillandre et al. 2012). The use of one barcoding threshold for different species in the database may lead to errors of identification when different species have very different population sizes and divergence times (e.g., Hudson and Turelli 2003; Meyer and Paulay 2005; DasMahapatra et al. 2010; Yang and Rannala 2005). Here, we emphasize the fact that barcoding methods rely on a distance threshold, with the expectation that within-species sequence divergence is smaller than between-species divergence, \(E(l_{ab}) < E(l_{aa}) \). Second, the recently developed genealogical divergence index or \(gdi \) (Jackson et al. 2017) is a simple method for fast species delimitation, useful for generating hypotheses of species status for systematic evaluations integrating different sources of information. The \(gdi \) is a linear transform on \(P(G_1) \). Two populations are considered distinct species if \(P(G_1) > 0.8 \) or one single species if \(P(G_1) < 0.47 \), with the species status undecided if \(P(G_1) \) falls between the two limits. It is expected that \(P(G_1) > \frac{1}{2} P(G_2) = P(G_3) \).

Two expectations, \(E(l_{ab}) < E(l_{aa}) \) and \(P(G_1) > P(G_2) \), are correct if isolation is complete and there is no cross-species gene flow (Fig. 1A). When we trace the genealogical history of sequences \(a_1, a_2, \) and \(b \) backwards in time, there is the possibility that sequences \(a_1 \) and \(a_2 \) coalesce before reaching the common ancestor \(R \) (Fig. 1A). If this happens, the gene tree will be \(G_1 \); otherwise the three possible gene trees will occur with equal probability. Thus \(P(G_1) > P(G_2) = P(G_3) \). Similarly, if sequences \(a_1 \) and \(a_2 \) coalesce in species \(A \), they will have a shorter expected distance than between species; otherwise their distance will be the same as between species. Thus, we expect \(E(l_{ab}) < E(l_{aa}) \).

However, it is not so clear whether the expectations are correct when there is cross-species gene flow. In this article, we study the impact of gene flow on genetic divergences within and between species, by using the Markov chain characterization of the process of coalescent and migration developed in the structured coalescent framework in population genetics (Notohara 1990; Wilkinson-Herbots 2008). We demonstrate that
with different population sizes (and thus coalescent rates) and asymmetrical migration rates, it is possible for a gene sequence to be on average more distant from another sequence of the same species than from a sequence randomly sampled from another species. We refer to the region of the parameter space in which \(P(G_1) < P(G_2)\) or \(E(t_{AB}) > E(t_{AB})\) as the species-definition anomaly zone, similar to the species-tree anomaly zone discussed by Degnan and Rosenberg (2006). Our results highlight the complexity of defining and delimiting species in the presence of gene flow: for example, in the anomaly zone, application of any barcoding criterion or the gdi index may lead to incorrect inference of one species when two exist.

We note that in the past decade, analyses of genomic sequence data have detected cross-species gene flow in a variety of species including Arabidopsis (Arnold et al. 2016), corals (Mao et al. 2018), mosquitoes (Fontaine et al. 2015; Thavornwattana et al. 2018), butterflies (Martin et al. 2013), birds (Ellegren et al. 2012), cats (Li et al. 2019), bears (Liu et al. 2014), cattle (Wu et al. 2018), gibbons (Chan et al. 2013), and hominins (Nielsen et al. 2017). Empirical studies suggest very high proportions of species that hybridize with at least one other species (Mallet 2005, 2008). It is thus of great importance to examine the impact of cross-species gene flow on the definition and identification of species. Here, we formulate our results in the context of using genomic sequence data to infer the history of species divergences and gene flow and to delimit species boundaries. We focus on the continuous-time migration model (the IM model, Hey 2010) (Fig. 1B) but will show that the same behavior occurs under the episodic introgression model or the multispecies coalescent with introgression (MSCi) model (Yu et al. 2014; Flouri et al. 2020) (Fig. 1C), which may be more realistic for some biological systems.

THE IM MODEL FOR TWO SPECIES AND THREE SEQUENCES

Consider two diploid species \(A\) and \(B\), which diverged time \(\tau = \tau_0\) ago and have since been undergoing migration from species \(B\) to species \(A\), at the rate of \(m = m_{BA}\) per generation (Fig. 1B). We formulate our theory in the context of analyzing genomic sequence data, so that time is scaled by mutations and both \(\theta\) and \(\tau\) are measured in the number of mutations per site. For each species, the population size parameter is defined as \(\theta = 4N\mu\), where \(N\) is the effective population size and \(\mu\) is the mutation rate per site per generation. We define the migration rate \(m_{BA}\) as the proportion of \(B \rightarrow A\) migrants in the receiving population \(A\), so that \(M_{BA} = m_{BA}N_A\) is the expected number of \(B \rightarrow A\) migrants per generation. The parameters in the IM model (Hey 2010) include \(\theta_A, \theta_B, \theta_{AB},\) and \(m_{BA}\) (Fig. 1B). The IM model of Figure 1B is a special case of the model of Long and Kubatko (2018, Fig. 1B), which allows migration in both directions.

We consider the genealogical relationships among three sequences: \(a_1\) and \(a_2\) from \(A\) and \(b\) from \(B\). In this setting, the gene trees and coalescent times are random variables, with distributions specified by the parameters in the model. The backward process of coalescence and migration during time interval \((0, \tau)\) is described by a Markov chain (Notohara 1990), where the state of the chain is specified by the number of sequences remaining in the sample, the populations in which they reside, the population IDs (\(A\) and \(B\)) and the sequence IDs (\(a_1, a_2,\) and \(b\)) (Zhu and Yang 2012; Andersen et al. 2014;
Tian and Kubatko 2016; Dalquen et al. 2017). For example, in the state $A_{12}A_{22}B_b$, abbreviated AAB, there are three sequences in the sample, and sequences a_1, a_2, and b are in populations A, A, and B, respectively. This is the initial state for the Markov chain as our sample consists of sequences a_1 and a_2 from A and b from B. Similarly, ABB is the state reached when sequence a_2 migrates (backwards in time) into population B. The state $A_{12}B_{12}B_b$, abbreviated ABb, means that two sequences remain in the sample, with the ancestor of a_1 and a_2 in population A, and sequence b in population B. This is the state reached when sequences a_1 and a_2 coalesce in species A. The generator matrix Q^A for the Markov chain is

$$
\begin{array}{cccccccc}
AAB & ABB & BAB & BBa & ABb & AaB & BBb & BAb & BbB
\end{array}
\begin{array}{cccccccc}
\hline
AAB & 2 + e & -c \\
ABB & -e & 2 + e & -c & -c & -c & -c & -c & -c \\
BAB & 0 & c & 0 & 0 & 0 & 0 & 0 & 0 \\
BBa & 0 & 0 & c & 0 & 0 & 0 & 0 & 0 \\
ABb & 0 & 0 & 0 & c & 0 & 0 & 0 & 0 \\
AaB & 0 & 0 & 0 & 0 & c & 0 & 0 & 0 \\
BBb & 0 & 0 & 0 & 0 & 0 & e & 0 & 0 \\
BAb & 0 & 0 & 0 & 0 & 0 & 0 & 2 + e & 0 \\
BbB & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 + e \\
\hline
\end{array}
$$

where $w_{AB} = \frac{4N\mu}{\theta}$ is the mutation-scaled migration rate, and $c_A = \frac{1}{\theta}$ and $c_B = \frac{1}{\theta}$ are the coalescent rates. Here, one time unit is the expected time taken to accumulate one mutation per site. In a species with a scaled population size $\theta = 4N\mu$, each pair of sequences coalesce at the rate $\frac{1}{\theta}$, with the average coalescent time to be $\frac{1}{\theta}$.

Probabilities of Gene Trees

We calculate the probabilities for the three gene trees: $G_1 = (a_1, a_2, b)$; $G_2 = (b, a_1, a_2)$; and $G_3 = (b, a_1, a_2)$, as functions of the parameters in the IM model (Fig. 1B). Note that the gene tree topology is determined by the first coalescent event, so that there is no need to follow the Markov chain any further after the first coalescent has occurred. Thus, we construct a simplified Markov chain in which all two-sequence states (such as AB_b and $A_{12}B_b$) are changed into absorbing states, and state b is unreachable and thus removed from the chain. Similarly as soon as the chain enters the state BBB, all three sequences in species B, the three gene trees occur with equal probabilities. Thus, we can use the Markov chain to calculate the probability of any gene tree, or the probability of any sequence pattern.

Let $P^A(t) = \exp(Q^A t)$ be the matrix of transition probabilities over time $t = \frac{1}{\theta}$. We have the probability for gene tree G_1 to be

$$P(G_1) = P_{12}^A(t) + P_{12}^A(t) + P_{12}^A(t) + P_{12}^A(t) + P_{12}^A(t)/3.$$ (1)

The different terms account for different scenarios that lead to gene tree G_1. First, sequences a_1 and a_2 may coalesce in population A, before reaching state t: this occurs with probability $P_{12}^A(t)$. Second, if both sequences a_1 and a_2 enter species B at any time during the time interval $(0, t)$, the chain will be in state $4 (BBB)$: each gene tree will then have probability $\frac{1}{3}$ when the coalescent events occur at random in species B or R (Fig. 1B). Finally, if no coalescent occurs over the time interval $(0, t)$ and if at most one of the A sequences enters species B, the chain will be in states $1, 2$, or 3 (for AAB, ABB or ABb) at time t: then all three sequences will enter the common ancestor R and each gene tree occurs with probability $\frac{1}{3}$

The eigenvectors of Q^A are on the diagonal: $\lambda_1 = -2 + 4\mu$ and $\lambda_2 = -\frac{4\mu}{2}$. The are all real, as are the eigenvectors. We derive $P^A(t)$ using Mathematica, but the expression is tedious and not presented here. Let $\epsilon_1 = e^{\lambda_1}$ and $\epsilon_2 = e^{\lambda_2}$. Then equation 1 can be simplified, to give

$$P(G_1) = \left[(2 - 4\mu)e_1 - 3e_2^4 + (3 - 8\mu^2 - 2 + 8\mu^2)e_1
+ 4\mu(1 + 4\mu)e_2\right]/\left(3(1 + 4\mu)e_1 + 2\mu e_2\right).$$ (2)

Similarly, the probability for gene tree G_2 is

$$P(G_2) = P_{12}^A(t) + P_{12}^A(t) + P_{12}^A(t) + P_{12}^A(t) + P_{12}^A(t)/3.$$ (3)

From equations 1 and 3, we can see that $P(G_2) - P(G_1)$ and only if $P_{12}^A(t) > P_{12}^A(t)$. Indeed which of gene trees G_1, G_2, and G_3 is more probable depends on the relative likelihoods of three scenarios (Fig. 1B):

(i) a_1 and a_2 coalesce in A, which occurs with probability $P_{12}^A(t)$ and leads to G_1;

(ii) a_1 migrates (backwards in time) to B and coalesces with b, with probability $P_{12}^A(t)$ for G_2;

(iii) a_2 migrates (backwards in time) to B and coalesces with b, with probability $P_{12}^A(t)$ for G_3.

In all other scenarios, the tree genes trees occur with equal probability. When the coalescent rate is much lower in species B than in A (or when $\theta_A > \theta_B$) and the migration rate from B to A is high, case (i) may be less probable than (ii) or (iii). The anomaly in gene tree probabilities identified here is similar to the species-tree anomaly analyzed by (Long and Kubatko, 2018). The assumption of unidirectional migration in our model allows us to obtain simpler or more expressive analytical results than is possible.
under the model of bidirectional migration of Long and Kubatko (2018).

As an example, consider \(P(G_1) \) as a function of \(M \), with other parameters fixed at \(t = 0.02, \theta_1 = 0.025, \) and \(\theta_B = 0.001 \) (Fig. 1B). When \(M = 0 \), the IM model of Figure 1B reduces to the simple MSC model of Figure 1A, and the gene tree probabilities are \(P(G_1) = 1 - \frac{1}{2}e^{-2t/\theta_A} = 0.865402 \) and \(P(G_2) = P(G_3) = \frac{1}{2}e^{-2t/\theta_A} = 0.067299 \). Here, \(t/\theta_A \) is the branch length of branch \(A \) in coalescent units (as the average coalescent time in population \(A \) is \(1/\theta_A \) mutations per site), and \(e^{-2t/\theta_A} \) is the probability that two sequences \((a_1, a_2) \) do not coalesce along branch \(A \) or over the time interval \((0, t) \). At the threshold value \(M^* = 0.521361 \), \(P(G_1) = P(G_2) = \frac{1}{2} \). When \(M = 0.8 \), the probabilities for the three scenarios described above are \(P_{AA}^D(t) = 0.23781 \) and \(P_{BB}^D(t) = P_{BB}^D(t) = 0.35753, \) with \(P(G_1) = 0.25352 < P(G_1) = P(G_2) = 0.37324 \). In the limit of \(M = \infty \), sequences \(a_1 \) and \(a_2 \) will immediately migrate (backwards in time) into \(B \) and the three sequences will coalesce at random, with \(P(G_1) \to \frac{1}{4} \).

To verify the analytical results, we used the simulate option of TIP (Flouri et al. 2018) to generate 10^5 gene trees at those parameter values. The estimates of \(P(G_1) \) are 0.865374, 0.333393, and 0.253542, for \(M = 0, 0.521361, \) and 0.8, respectively, which differ from the above analytical calculations by less than 10^{-4}.

Supplementary Figure S1A,B available on Dryad at http://dx.doi.org/10.5061/dryad.xwdbrv1b5 examines the impact of the divergence time (\(t_R \)) and the ratio of the population sizes (\(\theta_A/\theta_B \)) on gene tree probabilities, when other parameters are fixed at the values of Figure 2. Those two parameters similarly partition the parameter space into two zones, with the anomaly \(P(G_1) < P(G_2) \) occurring for large \(t_R \) (with \(t_R > 0.0019461 \)) and for very different population sizes (with \(\theta_A/\theta_B > 2.66667 \)). Nevertheless, \(t_R \) and \(\theta_A/\theta_B \) appear to have less impact than the migration rate \(M \) (Fig. 2A).

![Figure 2](https://example.com/figure2.png)

Figure 2. A) Probabilities of gene trees \(G_1 = (a_1, a_2), b \) and \(G_2 = (b, a_1, a_2) \) as functions of the migration rate \(M \) when the other parameters in the IM model (Fig. 1B) are fixed: \(t = 0.02, \theta_1 = 0.025, \) and \(\theta_B = 0.001 \). Note that when \(M > M^* = 0.521361 \) immigrants per generation, \(P(G_1) < P(G_2) \). B) Partition of the parameter space for the IM model (Fig. 1B) according to probabilities for gene trees. Below the outer tent, \(P(G_1) < P(G_2) \), while below the inner tent \(P(G_1) < 0.2 \) and \(P(G_2) = P(G_3) > 0.4 \).

Average Coalescent Times

Next, we consider the average coalescent times or sequence distances within and between species. One could in principle use the Markov chain \(Q^3 \) constructed earlier for the process of coalescence and migration for the three sequences in the sample \((a_1, a_2, b) \). However, it is far simpler to use a reduced Markov chain with fewer states for two sequences only. To derive the density of the coalescent time between sequences \(a_1 \) and \(b_2 \), that is, \(l_{a_1b_2} \), we consider a Markov chain with 4 states. We abbreviate states like \(A_1A_2 \), \(A_1b_2 \), as \(AA \), and merge states \(A \) and \(B \) (which are states reached when the two sequences have coalesced with the ancestral sequence in either \(A \) or \(B \)) into one absorbing state, \(AB \) (for "\(A \) or \(B \)") (Andersen et al. 2014). The generator matrix \(Q^3 \) is

\[
\begin{align*}
&\begin{array}{c|ccc|}
& AA & AB & BB & AB \\
\hline
AA & -2 \theta_A c_A & 2 \theta_B c_A & 0 & c_A \\
AB & 0 & -\theta_B c_A & c_B & 0 \\
BB & 0 & -\theta_A c_A & 0 & 0 \\
AB & 0 & 0 & 0 & 0 \\
\end{array}
\end{align*}
\]

The eigenvalues of \(Q^3 \) are on the diagonal: \(\lambda_1 = -\frac{8M}{\theta_A} - \frac{1}{2}, \lambda_2 = -\frac{8M}{\theta_B} - \frac{1}{2}, \lambda_3 = -\frac{1}{2}, \) and \(\lambda_4 = 0 \). Let the transition probability matrix over time \(t \) be \(P(t) = \exp(Q^3 t) \), which is a function of \(e^{\lambda t}, k = 1, 2, 3 \). Like \(t_\tau \), \(t \) is measured in the expected number of mutations per site. Thus

\[
\begin{align*}
\tau_{\text{int}} &= \frac{1}{P(0, 0, 0, 0)} \\
\tau_{\text{out}} &= \frac{1}{P(0, 0, 0, 0)} \\
\end{align*}
\]

\[
\begin{align*}
\begin{cases}
P_{AA,AA}(l_{a_1b_2}) &= e^{-\frac{2 \theta_A c_A l_{a_1b_2}}{\theta_A}} \\
P_{AA,AB}(l_{a_1b_2}) &= e^{-\frac{2 \theta_B c_A l_{a_1b_2}}{\theta_B}} \\
P_{BB,AB}(l_{a_1b_2}) &= e^{-\frac{2 \theta_B c_B l_{a_1b_2}}{\theta_B}} \\
P_{BB,BB}(l_{a_1b_2}) &= e^{-\frac{2 \theta_A c_B l_{a_1b_2}}{\theta_A}} \\
1 - P_{AA,AB}(l_{a_1b_2}) &= e^{-\frac{2 \theta_A c_B l_{a_1b_2}}{\theta_A}}
\end{cases}
\end{align*}
\]

\[
\begin{align*}
\begin{cases}
\end{align*}
\]

\[
\begin{align*}
\end{align*}
\]

\[
\begin{align*}
\end{align*}
\]

\[
\begin{align*}
\end{align*}
\]
Note that according to the definition of the probability density function, \(f(t_{ab}) \Delta t \) is the probability that the coalescent time falls in the interval \((t_{ab}, t_{ab} + \Delta t) \). When \(t_{ab} < t_{R} \), this is the sum of two terms, as the coalescent event can occur in either species A or B. The first term, \(P_{A,A,B}^{p} \frac{1}{2} \Delta t \), is the probability that sequences \(a_1 \) and \(a_2 \) are both in species A right before time \(t_{ab} \), multiplied by the probability, \(\frac{2}{\theta_{A}} \Delta t \), that they coalesce during the time interval \((t_{ab}, t_{ab} + \Delta t) \). The second term, \(P_{A,A,B}^{p} \frac{1}{2} \Delta t \), is the probability for the coalescent to occur in species B. Similarly, in the case \(t_{ab} > t_{R} \), both \(a_1 \) and \(a_2 \) enter \(R \), with probability \(1 - P_{A,A,B}^{p}(t_{R}) \), and then coalesce in \(R \) in the time interval \((t_{ab}, t_{ab} + \Delta t) \), with probability \(\frac{2}{\theta_{A}} \Delta t \). The expectation of \(t_{ab} \) is given by averaging over the three cases of equation 4 in which \(a_1 \) and \(a_2 \) coalesce in \(A, B, \) and \(R \):

\[
\mathbb{E}(t_{ab}) = \int_{0}^{t_{R}} t P_{A,A,B}^{p}(t) \frac{2}{\theta_{A}} + \int_{0}^{t_{R}} t P_{A,A,B}^{p}(t) \Delta t \frac{2}{\theta_{B}} + \int_{0}^{t_{R}} t P_{A,A,B}^{p}(t) \Delta t \frac{2}{\theta_{A}}
\]

Thus the transition probability matrix is \(P^{p}(t) = \exp(tQ^{p}) \), and

\[
f(t_{ab}) = \left\{ \begin{array}{ll}
p_{AB}^{p} \frac{1}{2} \Delta t, & \text{if } 0 < t_{ab} < t_{R}, \\
\left[1 - p_{AB}^{p}(t_{R}) \right] \frac{2}{\theta_{A}} e^{-\frac{t_{ab}}{\theta_{A}}}, & \text{if } t_{ab} > t_{R}. \end{array} \right.
\]

The expectation of \(t_{ab} \) is given by averaging over the two cases:

\[
\mathbb{E}(t_{ab}) = \int_{0}^{t_{R}} t P_{A,A,B}^{p}(t) \frac{2}{\theta_{A}} + \int_{0}^{t_{R}} t P_{A,A,B}^{p}(t) \Delta t \frac{2}{\theta_{B}} + \int_{0}^{t_{R}} t P_{A,A,B}^{p}(t) \Delta t \frac{2}{\theta_{A}}.
\]

We plot \(\mathbb{E}(t_{ab}) \) and \(\mathbb{E}(t_{ab}) \) against the migration rate \(M \) in Figure 3A, with other parameters in the model fixed at \(\tau = 0.02, \theta_A = 0.025, \theta_B = 0.001, \) and \(\theta_Y = 0.01 \). In the extreme case of \(M = 0 \), the IM model becomes a model of complete isolation (or the MSC model, Fig. 1A), in which case \(\mathbb{E}(t_{ab}) = t_{R} + \frac{\theta_Y}{2} \). When \(M = 0.05 \) and \(\theta_Y = 0.02 \), \(\mathbb{E}(t_{ab}) \) is 0.1099, with \(P_A = \exp(-\frac{1}{2}t) \cdot 0.2019 \) to be the probability that \(a_1 \) and \(a_2 \) do not coalesce in species \(A \). Here, \(\mathbb{E}(t_{ab}) \) is given by the approach of "iterated corrections", since the coalescent process between \(a_1 \) and \(a_2 \) occurs at different rates (determined by \(\theta_A \) and \(\theta_B \)) before and after \(t_{R} \) (Burgess and Yang, 2008, eq. 7). If \(\theta_A \) and \(\theta_B \) were equal, the mean coalescent time would be \(\frac{\theta_A}{2} \). Thus applying a correction for different population sizes, which affects a proportion \(P_A \) of the coalescent times, leads to \(\mathbb{E}(t_{ab}) = t_{R} + \frac{\theta_A}{4} \). In the other extreme case with \(M \rightarrow \infty \), both \(a_1 \) and \(a_2 \) will migrate (backwards in time) into \(B \) immediately and then coalesce with \(b \) at random, so that \(\mathbb{E}(t_{ab}) = \mathbb{E}(t_{ab}) + \frac{\theta_B}{4} \). When \(M \) is greater than a threshold value, \(M^* = 0.5254101 \), \(\mathbb{E}(t_{ab}) > \mathbb{E}(t_{ab}) \).

We used 10^7 to simulate 10^7 gene trees at the parameter values of Figure 3A to verify the equations. At \(M^* = 0.5254101 \), the estimates of \(\mathbb{E}(t_{ab}) \) and \(\mathbb{E}(t_{ab}) \) are 0.010556 and 0.010550, in comparison with 0.010557 and 0.010557 from equations 5 and 7. At \(M = 0.8 \) they are 0.00902285 and 0.00808021 in comparison with 0.00902284 and 0.00808021 from equations 5 and 7.

Supplementary Figure S1C,D available on Dryad examines the impact of the divergence time \(t_{R} \) and the ratio of population sizes \(\theta_A/\theta_B \) on the average coalescent times, with other parameters fixed at the values of Figure 3. The anomaly \(\mathbb{E}(t_{ab}) > \mathbb{E}(t_{ab}) \) occurs when \(t_{R} \) is large and when \(\theta_A \) is much greater than \(\theta_B \).

Figure 3B shows a partition of a 3D parameter space. The anomaly \(\mathbb{E}(t_{ab}) > \mathbb{E}(t_{ab}) \) occurs more easily for large \(M \) and when \(\theta_A \) is much greater than \(\theta_B \).
THE MSCI MODEL FOR TWO SPECIES WITH THREE SEQUENCES

Consider the introgression (MSCI) model for two species A and B, with $B \rightarrow A$ introgression at time $\tau_M = \tau_B$ and introgression probability ψ (Fig. 1C). Again consider a sample of three sequences, a_1 and a_2 from A and b from B. We derive the probabilities for the three gene trees: $G_1 = ((a_1, a_2), b)$, $G_2 = ((b, a_1), a_2)$, and $G_3 = ((b, a_2), a_1)$, as well as the expected within-species and between-species coalescent times: $E(t_{aa})$ and $E(t_{ab})$.

Probabilities of Gene Trees

The gene tree topology depends on whether sequences a_1 and a_2 coalesce in species A (i.e., over the time interval $0 - \tau_M$), and if they do not, on whether they migrate into population S, and so on (Fig. 1C). Note that in population A, sequences a_1 and a_2 coalesce according to a Poisson process at the rate $\frac{1}{2\tau_B}$. Thus, the probability that a_1 and a_2 do not coalesce in A before reaching time τ_M is

$$P_A = e^{-\frac{1}{2\tau_B} \tau_M}.$$ \hspace{1cm} (8)

Similarly, we define

$$P_H = e^{-\frac{1}{2\tau_B} (\tau_B - \tau_H)}$$ and $$P_S = e^{-\frac{1}{2\tau_B} (\tau_B - \tau_S)}$$ \hspace{1cm} (9)

to be the probabilities that two sequences entering populations H or S, respectively, do not coalesce in that population (Fig. 1C). Then the probabilities for the three gene trees are

$$P(G_1) = (1 - P_A) + P_A(1 - \psi)^2 (1 - P_H) + \frac{1}{3} P_A(1 - \psi)^2 P_H + \frac{2}{3} P_A \psi (1 - \psi) P_S + \frac{1}{3} P_A \psi^2,$$ \hspace{1cm} (10)

with $P(G_1) + 2P(G_2) = 1$. Here $P(G_1)$ is a sum of five terms, corresponding to different scenarios in which the first coalescent event is between a_1 and a_2. The first term, $1 - P_A$, is the probability that a_1 and a_2 coalesce in population A. The second term, $P_A(1 - \psi)^2 (1 - P_H)$, is the probability that a_1 and a_2 do not coalesce in population A, they both enter population H (branch RH in the species tree, Fig. 1C) and coalesce in H. The third term, $P_A(1 - \psi)^2 P_H$, is the probability that a_1 and a_2 do not coalesce in population A, they both enter population H, where the three sequences coalesce in random order. The fourth term, $P_A \psi (1 - \psi) P_S$, is the probability that a_1 and a_2 do not coalesce in A and one of them enters S but does not coalesce with b in S, so that all three sequences enter R and coalesce in random order. The fifth term, $P_A \psi^2$, is the probability that a_1 and a_2 do not coalesce in A and they both enter S, so that all three sequences enter S and coalesce at random in S or R.

Similarly $P(G_2)$ is a sum of three terms, corresponding to three different scenarios in which sequences a_1 and b coalesce first. The first term, $P_A(1 - \psi)^2 P_H$, is for a_1 and a_2 not to coalesce in A but to enter H and then R, and then for a_1 and b to coalesce in R. The second term, $P_A \psi (1 - \psi) \left(P_S \cdot \frac{1}{2} + (1 - P_S) \cdot \frac{1}{2} \right)$, is for one of a_1 and a_2 to enter H and the other to enter S. If a_1 enters H, and a_2 enters S and does not coalesce with b in S, then a_1 and b can coalesce in R. If a_2 enters H and a_1 enters S, then a_1 and b may coalesce in S or R. Lastly the third term, $P_A \psi^2$, is for both a_1 and a_2 to enter S and then for the three sequences to coalesce at random in S or R.

Figure 3. A) The expected coalescent times, $E(t_{aa})$ and $E(t_{ab})$, as functions of the migration rate M under the IM model (Fig. 1B). The two curves cross at $M^* = 0.525401$, and when $M > M^*$, $E(t_{ab}) > E(t_{aa})$. Other parameters are fixed at $\tau = 0.02$, $\mu_2 = 0.025$, $\theta_1 = 0.001$, and $\theta_2 = 0.01$. B) Partition of the parameter space defined by μ_2, θ_1, and M under the IM model according to whether $E(t_{aa}) > E(t_{ab})$. Inside the inner pentagon $E(t_{ab}) > E(t_{aa})$. Inside the outer pentagon $E(t_{ab}) > E(t_{aa})$. Other parameters are fixed at $\tau = 0.02$ and $\theta_1 = 0.01$.

Downloaded from https://academic.oup.com/sysbio/article/70/1/108/5866754 by guest on 17 December 2020
We have \(P(G_1) < P(G_2) = P(G_3) \) if and only if

\[
P_A(1 - \psi)(1 - P_S) > 1 - P_A + P_A(1 - \psi)^2(1 - P_I)
\]

(11)

or

\[
P_A(2 - P_H - P_S)^2 - P_A(3 - 2P_H - P_S)\psi + 1 - P_AP_H < 0.
\]

(12)

While the MSci model of Figure 1C has seven parameters (we do not count \(\theta_B \) since it is not needed to simulate sequence data of \(a_1, a_2 \), and \(b \)), the gene tree probabilities depend on only four: the introgression probability \(\psi \) and the three branch lengths in coalescent units for branches \(A, H, \) and \(S \) (Fig. 1C). Note that \(P_A, P_H, \) and \(P_S \) are simply functions of the respective branch lengths (in coalescent units). We plot \(P(G_1) \) and \(P(G_2) \) against \(\psi \) in Figure 4A, with \(P_A = P_H = 0.9 \) and \(P_S = 0.1 \) fixed. Note that when \(\psi = 0 \) or 1, the MSci model reduces to the simple MSC model for two species with changing population sizes but without introgression. At \(\psi = 0 \), we have \(P(G_1) = 1 - \frac{1}{2}P_A P_H = 0.46 \) while at \(\psi = 1 \), \(P(G_1) = 1 - \frac{1}{2}P_A = 0.4 \). The anomaly \(P(G_1) < P(G_2) \) occurs in the zone \(0.247694 < \psi < 0.852306 \). When \(\psi \) is close to 1 (or > 0.852306), \(a_1 \) and \(a_2 \) either coalesce in \(A \) or both will very likely enter species \(S \) and coalesce with \(b \) at random, so that \(P(G_1) > P(G_2) \). Note that \(P(G_1) \) is not a monotonic function of \(\psi \) when introgression is either very rare or virtually guaranteed there is an increased chance for \(a_1 \) and \(a_2 \) to be in the same population and coalesce. Supplementary Figure S2A–C available on Dryad examines the impact of \(\theta_B, \theta_H, \theta_S, \) and \(\rho_I \) (Fig. 1C) on gene tree probabilities. The anomaly \(P(G_1) < P(G_2) \) occurs when \(\theta_R \) is in a certain range, when \(\theta_B \) is much greater than \(\theta_R \), and when \(\theta_S \) is small.

Figure 4B shows the zone of parameters in which \(P(G_1) < P(G_2) \) in a 3D space. When \(P_A \) and \(P_H \) are large and \(P_S \) is small (or when \(\theta_A \) and \(\theta_H \) are large and \(\theta_S \) is small), the anomaly \(P(G_1) < P(G_2) \) may occur even with \(\psi < 0.5 \).
Figure 5. A) The expected coalescent times, $E(t_{ab})$ and $E(t_{ba})$, as functions of the introgression probability ϕ under the MSci model (Fig.1C). Other parameters are fixed at $\theta_A = \theta_H = 0.05$, $b_0 = 0.01$, and $t_{H} = 0.0025$. B) Partition of the parameter space defined by θ_A, b_0, and ϕ under the MSci model (Fig.1C). Inside the tent, $E(t_{ab}) > E(t_{ba})$ while outside it the opposite is true. Other parameters are fixed at $\theta_H = 0.05$, $b_0 = 0.01$, $t_{H} = 0.0025$.

$$E(t_{ab}) = \frac{\theta_A}{2} - P_A(\tau_H + \frac{\theta_A}{2})$$

$$+ P_A(1 - \phi)^2 \left[\tau_H + \frac{\theta_A}{2} - 2P_A(\tau_H + \frac{\theta_A}{2}) \right]$$

$$+ P_A \phi^2 \left[\tau_H + \frac{\theta_A}{2} - P_A(\tau_H + \frac{\theta_A}{2}) \right]$$

$$+ P_A [P_A(1 - \phi)^2 + 2P_A \phi^2 + 2(1 - \phi)][(\tau_H + \frac{\theta_A}{2})]$$

Similarly, the density of the coalescent time between sequences a_1 and b is

$$f(t_{ab}) = \begin{cases} \frac{2}{\pi} e^{-\frac{t_{ab}^2}{\pi/(\tau_H - \tau_R)}} & \text{if } \tau_H < t_{ab} < \tau_R, \\ (1 - \phi) + P_A(1 - \phi) & \text{if } t_{ab} = \tau_R. \end{cases}$$

When $\tau_H < t_{ab} < \tau_R$, the coalescent occurs in species S, and $f(t_{ab}) \Delta t$ is given by the probability, ψ, that sequence a_1 enters species S times the probability, $\frac{2}{\pi} e^{-\frac{t_{ab}^2}{\pi/(\tau_H - \tau_R)}} \Delta t$, that a_1 and b coalesce in S in the time interval $(t_{ab}, t_{ab} + \Delta t)$. In the case of $t_{ab} < \tau_S$, the coalescent occurs in species R. The probability that both a_1 and b enter R is $(1 - \phi) + \psi P_S$, and the probability that they coalesce in R in the time interval $(t_{ab}, t_{ab} + \Delta t)$ is $\frac{2}{\pi} e^{-\frac{t_{ab}^2}{\pi/(\tau_H - \tau_R)}} \Delta t$.

The expectation of t_{ab} is given by

$$E(t_{ab}) = \int_0^{\tau_H} \int_0^{\tau_R} \frac{2}{\pi} e^{-\frac{t_{ab}^2}{\pi/(\tau_H - \tau_R)}} \Delta t$$

This is a weighted average depending on whether sequence a enters S (with probability ϕ) or H (with probability $1 - \phi$). If a enters S, the mean coalescent time is $\tau_H + \frac{\theta_A}{2} + P_S(\frac{\theta_A}{2} - \frac{\theta_H}{2})$. The argument of iterated corrections. Similarly, with probability $1 - \phi$, sequence a enters H and coalesces with b in R, with the mean coalescent time to be $\tau_R + \frac{\theta_R}{2}$.

Thus

$$E(t_{ab}) > E(t_{ba}) \text{ if and only if}$$

$$\frac{\theta_A}{2} - P_A(\tau_H + \frac{\theta_A}{2}) + P_A(1 - \phi)^2 \left[\tau_H + \frac{\theta_A}{2} - 2P_A(\tau_H + \frac{\theta_A}{2}) \right]$$

$$+ P_A \phi^2 \left[\tau_H + \frac{\theta_A}{2} - P_A(\tau_H + \frac{\theta_A}{2}) \right] + (P_A)(1 - \phi)^2$$

$$+ P_S(1 - \phi)(2P_A(1 - \phi) - 1) > 0.$$

We plot $E(t_{ab})$ and $E(t_{ba})$ against ϕ in Figure 5A, with other parameters in the MSci model fixed: $\theta_A = \theta_H = 0.05$, $b_0 = 0.01$, $t_{H} = 0.0025$. Note that the coalescent times depend on all seven parameters of the MSci model except θ_A (Fig. 1C). The cases $\phi = 0$ and 1 correspond to MSC (complete isolation) models for two species with changing population sizes. With $\phi = 0$, sequences a_1 and a_2 coalesce at different rates determined by population sizes θ_A, θ_H, and b_0, so the approach of iterated corrections gives $E(t_{ab}) = \frac{b_0}{2} + P_A(\frac{\theta_A}{2} - \frac{\theta_H}{2}) + P_A(\frac{\theta_H}{2} - \frac{b_0}{2}) = 0.00857716$. Also at $\phi = 0$, sequences a_1 and b_2 can coalesce in R only, with $E(t_{ab}) = \tau_R + \frac{b_0}{2} = 0.0105$. At $\phi = 1$, sequences a_1 and a_2 can coalesce in A, S, or R, so that $E(t_{ab}) = \frac{b_0}{2} + P_A(\frac{\theta_A}{2} - \frac{\theta_H}{2}) + P_A(\frac{\theta_H}{2} - \frac{b_0}{2}) = 0.00283148$ while sequences a_1 and b_2 can coalesce in S or R, with $E(t_{ab}) = \tau_H + \frac{b_0}{2} + P_A(\frac{\theta_A}{2} - \frac{\theta_H}{2}) = 0.003$. When ϕ is close to 1, either a_1 and a_2 coalesce in A or they both enter S and coalesce with b at random, so that $E(t_{ab}) < E(t_{ba})$, when $0.252962 < \phi < 0.971179$, we have the anomaly $E(t_{ab}) > E(t_{ba})$. If species A has a much larger population size than S, it may be more likely for sequence a_1 or a_2 to migrate into species S and coalesce with b than...
for \(a_1 \) to coalesce with \(a_2 \), causing \(E(t_{ab}) > E(t_{ab}) \). Such anomaly may occur even if \(\psi \) is much smaller than \(\frac{1}{2} \).

We confirmed our derivations by simulating 100 gene trees using BiPop (Flouri et al. 2018). With \(\psi = 0.4 \) in Figure 5A, the estimates are 0.00815726 for \(E(t_{ab}) \) and 0.00749984 for \(E(t_{ab}) \), compared with 0.008157341 and 0.0075 from equations 14 and 16.

Supplementary Figure S2D–F available on Dryad examines the impact of \(\theta_k \), \(\theta_k \), and \(\theta_f \) (Fig. 1C) on the average coalescent times, when other parameters are fixed at the values of Figure 5. \(E(t_{ab}) > E(t_{ab}) \) when \(\theta_k \) is in a certain range, when \(\theta_k \) is much greater than \(\theta_{fg} \), and when \(\theta_f \) is small.

Figure 5B shows the anomaly zone with \(E(t_{ab}) > E(t_{ab}) \) in the 3D space of parameters \(\theta_k \), \(\theta_f \), and \(\psi \), with other parameters fixed.

Discussion

The Nature of the Anomaly

The species-definition anomaly zone, in which the within-species divergence is greater than the between-species divergence, with divergence measured by either the gene tree probability or the average genetic distance, is very similar to the species-tree anomaly zone (Degnan and Rosenberg 2006). In the species-tree anomaly zone, the use of the most common gene tree topology as the species tree estimate will be statistically inconsistent, although it should be emphasized that the problem disappears if one takes a likelihood approach and uses the likelihood (i.e., the probability of the gene trees) to compare different species trees (Xu and Yang 2016). The models considered in this article (Fig. 1B,C) involve only two species with only one simple species tree: \((A, B) \).

However, one may consider the gene tree \(G_1 = ((a_1, a_2), b) \) to match the species tree, and gene trees \(G_2 = ((b, a_1), a_2) \) and \(G_3 = (b, (a_2), a_1) \) to be the mismatching trees. Then the anomaly \(P(G_1) < P(G_2) \) means that the matching gene tree has a smaller probability than either mismatching gene tree, a situation very similar to the anomaly zone in species tree estimation. Nevertheless, the anomaly zone for species tree estimation is due to polymorphism in ancestral species and the resulting deep coalescence, while the anomaly discussed in this paper is due to cross-species gene flow and different population sizes. In the context of phylogenetic network (i.e., MScI) models, Zhu et al. (2016) defined an anomalous gene tree as one that has a higher probability than any gene tree that matches a displayed species tree—displayed species trees are binary trees that remain when one of the two parental branches at each hybridization node in the species network is removed (Zhu et al. 2016; Zhu and Degnan 2017). All such anomalies share the feature that the most probable gene tree under the data-generating model does not match one’s intuitive expectation. Here, we stress that the “counter-intuitive” results do not imply that genetic sequence data contain misleading information about the history of species divergences.

The species-definition anomaly does not occur in the MScI model without gene flow (Fig. 1A). Nor does it occur in simple models of population subdivision in population genetics. For example, under the islands and stepping-stones models, the expected coalescent time between sequences sampled from the same population must be smaller than that between sequences sampled from two different populations (Li 1978; Strobeck 1987; Slatkin 1987, 1991). Those models assume symmetry in the population size and migration rate: the different populations are assumed to have the same size and the migration rate is assumed to be the same between any two populations in the islands model or between any two adjacent populations in the stepping-stones model. In the IM and MScI models considered here, cross-species gene flow and large differences in population size are the main causes for the anomaly. We note that the anomaly described in this article can occur in more general settings than we considered. For example, we have assumed unidirectional migration (from \(B \) to \(A \) only) in the IM model, but the same behavior should occur in a more general model of bidirectional migration (Long and Kubatko 2018), as long as there is sufficient asymmetry in the population size and in the migration rate.

In our analysis, we have assumed a simple neutral coalescent model (with and without gene flow) and have not considered the effects of natural selection or population structure. Selection may distort the distribution of the gene tree topologies and coalescent times, especially when the population sizes and thus the efficacy of purifying selection differs between species (He et al. 2020). Previously coding loci were found to produce highly consistent species-tree and parameter estimates with the noncoding parts of the genome (Shi and Yang 2018; Thawornwattana et al. 2018; Flouri et al. 2020), suggesting that the effects may be minor if purifying selection operates in similar ways in different species. However, species-specific selection, as expected for gene loci responsible for ecological adaptation of the species (Turner et al. 2005; Pardo-Diaz et al. 2012), will likely have major impacts on the gene tree distribution. Furthermore, our analysis has assumed that each species is a population of panmixia. Population subdivision may lead to an inflated effective population size for the species, and may create a scenario that is similar to the model studied here. Suppose species \(A \) has a wide-ranging geographical distribution with population subdivision, while species \(B \) has a very limited distribution and is close to one of the geographical populations of species \(A \). Our analysis suggests that such gene flow can easily create a species-definition anomaly zone, with two sequences randomly sampled from species \(A \) to be on average more distantly related than two sequences from the two different species.
How Common is the Species-Definition Anomaly?

While our theoretical calculations suggest that the species-definition anomaly is possible in large zones of the parameter space, it is not known how often it occurs in nature. This empirical question can be addressed by estimating the relevant parameters (in particular the migration rate) under the IM and MSci models using genomic sequence data. Currently, such estimates are rare and mostly based on small data sets, while it may be necessary to use hundreds or thousands of loci to get reliable estimates. Nevertheless, available estimates (e.g., Pinho and Hey 2010; Dalquen et al. 2017, Table S1) suggest that population sizes can differ by orders of magnitude even between closely related species, and migration is often asymmetrical, providing opportunities for the anomaly to occur.

Here, we briefly review a few recent studies which generated estimates of migration rates from genomic data, from fruit flies, mosquitoes, butterflies, and gibbons. Several studies have found significant evidence for gene flow from Drosophila simulans to D. melanogaster, at the rate of \(M_{S \rightarrow A} = 0.02-0.04 \) migrant individuals per generation, but no migration in the opposite direction \((M_{A \rightarrow S} = 0)\) (Wang and Hey 2010; Dalquen et al. 2017, Tables 9 and 10). Population sizes were around \(N_S = 0.013 \) and \(N_A = 0.005 \), with the divergence time \(T_{S \rightarrow A} \approx 0.012-0.014 \) (Dalquen et al. 2017, Tables 9 and 10). In the Anopheles gambiae species complex of African mosquitoes, hybridization occurs between several pairs of nonister species. Gene flow from A. arabiensis to A. gambiae (or A. coluzzii) occurs so frequently for the autosomes that the gene trees reflect the migration history rather than the history of species divergences (Fontaine et al. 2015; Thawornwattana et al. 2018).

Estimates from the genomic data are in the order of \(M_{A \rightarrow A} = 0.02 \text{ migrants per generation while } M_{C \rightarrow A} = 0 \) (Thawornwattana et al. 2018, Table S3; Flouri et al. 2020, Table 1), in agreement with crossing experiments, which showed that introgressed alleles from A. arabiensis to A. gambiae persisted over many generations, while it was not possible to maintain an introgression colony in the opposite \(G \rightarrow A \) direction (Slotman et al. 2005). Other parameters were around \(t_A = 0.014, t_C = 0.02-0.03 \), and \(t_{AC} = 0.007 \) (Thawornwattana et al. 2018, Table S3). Heliconius butterflies constitute one of the best studied groups for cross-species hybridization/introgression, involving many sister- and nonsister-species pairs, and involving both recent and ancient gene flow (Bull et al. 2006; Kronforst et al. 2006; Mallet et al. 2007; Sainz et al., 2006; Pardo-Diaz et al. 2012; Martin et al. 2013). A recent study (Van Belleghem et al. 2020) applied coalescent-based simulation to joint site-frequency spectrum data to estimate the migration rates and population sizes between two incipient species: \(H. erato \) and \(H. himera \), finding strong evidence for highly asymmetrical introgression, predominantly from \(H. erato \) to \(H. himera \), at the rate of \(M = 0.5-0.6 \) migrants per generation, with \(t = 0.002, t_E = 0.01 \), and \(t_{HE} = 0.0008 \). In an analysis of genomic sequences from five species of gibbons (which belong to four different genera), gene flow was inferred between two species of the same genus: \(H. moloch \) and \(H. pileatus \), but not between species of different genera. The migration rates were estimated to be \(M_{P \rightarrow F} \approx 0.008 \) migrants per generation, while \(M_{F \rightarrow P} \approx 0 \), with \(t_{PF} = 0.0014, t_P = 0.0005, \) and \(t = 0.0017 \) (Shi and Yang 2018, Fig. 1).

The parameter estimates suggest that those species pairs are not in the species-definition anomaly zone as discussed in this article. Nevertheless, they do suggest large differences in population size and in the migration rate in the two directions. They also indicate that the parameter values used in our example calculations (Figs. 2, 3, 4, 5) are representative of real biological systems. We leave it to future genomic analyses to determine how common the anomaly is in the real world. As more and more genomes are sequenced, and as analytical methods are improved to handle large data sets, we see exciting opportunities for using genomic data to infer the evolutionary history of species divergence and gene flow.

The Impact of Gene Flow on the Definition and Identification of Species

It is noteworthy that the migration rate required for the species-definition anomaly to occur may be much less than one migrant per generation. For a species like the mosquitoes the population size may well be larger than a million, which means that a proportion of migrants less than one in a million is sufficient to change the apparent genetic history of the species. In population genetic models of population subdivision, migration rates of \(M \ll 1 \) are low enough so that the populations will be differentiated or isolated (as measured by \(F_{ST} \)) (Wright 1931). However, in the IM model, such low levels of gene flow can have a dramatic impact on the history of the species as represented in gene genealogies or genetic distances. Similarly (Jiao et al., 2020) found that even a small amount of migration per generation can have a huge impact on species tree estimation under the simple MSC model (see also Long and Kubatko 2018).

The dramatic impact of gene flow on the genetic history of the species suggests that one has to consider this effect when defining and identifying species. In the species-definition anomaly zone, simple application of DNA barcoding or the gdi will lump genuinely distinct species into the same species. Thus, if those methods suggest one species but there is evidence for asymmetrical gene flow between the populations and drastically different population sizes, the results from those methods should be re-examined for the impact of gene flow. We suggest that estimating and contrasting the long-term migration rate and the short-term hybridization rate as an effective approach to establishing the existence of reproductive barriers and evidence for species status. Note that genomic sequence data may contain rich information concerning evolutionary parameters such as species
divergence times, population sizes, and migration rates or introgression probabilities, which may be invaluable for delimiting species boundaries (Fujita et al. 2012; Leaché et al. 2019). The migration rate estimated from genomic data under the IM model reflects the long-term impact of gene flow and genetic drift, as well as natural selection against introgressed alleles (Martin and Jiggins 2017). Genomic sequence data can also be used to identify recent hybridization/admixture events (Anderson and Thompson 2002; Anderson 2008; Veller et al. 2019). A greatly reduced migration rate relative to the hybridization rate (e.g., a migration rate of \(m = 10^{-6}\) per generation relative to a proportion of \(F_1\) hybrids of 0.1%) may be strong evidence that introgressed alleles are deleterious and removed from the receiving population by natural selection and that reproductive barriers exist between the species. While genomic data may be currently lacking for many species groups, this approach may become feasible in the near future with advancements in genome sequencing technologies and development of reduced-representation data sets (Lemmon et al. 2012; Edwards et al. 2017), as well as advancements of analytical methods that accommodate both coalescent and gene flow (Dalquen et al. 2017; Hey et al. 2018; Wen and Nakahide 2018; Zhang et al. 2018; Flouri et al. 2020).

SUPPLEMENTARY MATERIAL

Data available from the Dryad Digital Repository: http://dx.doi.org/10.5061/dryad.xwdbrv1b5.

ACKNOWLEDGMENTS

We thank James Mallet and Yuttapong Thawornwattana for many discussions and comments. We are grateful to three anonymous reviewers, Matthew Hahn and Bryan Carstens for many constructive comments.

FUNDING

This study has been supported by Biotechnology and Biological Sciences Research Council grant [BB/P006493/1 to Z.Y.] and a BBSRC equipment grant [BB/R01356X/1].

REFERENCES

Willerslev E. 2017. Tracing the peopling of the world through ancient DNA. bioRxiv 84647.