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Abstract.—Whatever one’s definition of species, it is generally expected that individuals of the same species should be
genetically more similar to each other than they are to individuals of another species. Here, we show that in the presence of
cross-species gene flow, this expectation may be incorrect. We use the multispecies coalescent model with continuous-time
migration or episodic introgression to study the impact of gene flow on genetic differences within and between species and
highlight a surprising but plausible scenario in which different population sizes and asymmetrical migration rates cause a
genetic sequence to be on average more closely related to a sequence from another species than to a sequence from the same
species. Our results highlight the extraordinary impact that even a small amount of gene flow may have on the genetic history
of the species. We suggest that contrasting long-term migration rate and short-term hybridization rate, both of which can be
estimated using genetic data, may be a powerful approach to detecting the presence of reproductive barriers and to define
species boundaries.[Gene flow; introgression; migration; multispecies coalescent; species concept; species delimitation.]

INTRODUCTION

The concept of species is a controversial one, with
a number of definitions proposed in the literature
(Mallet 2013; Zachos 2016). The biological species
concept emphasizes reproductive isolation, although
low levels of cross-species gene flow are tolerated
in modern versions of the concept (Coyne and Orr
2004). The lineage species concept considers species
as independently evolving lineages (De Queiroz 2007).
Despite the differences in species definitions, it is
generally expected that an individual is genetically more
closely related to an individual of the same species than
to an individual of a different species. Here, we may
measure genetic relatedness in two ways. First, if we
sample two sequences a1 and a2 from species A and
one sequence b from species B, we expect the average
sequence distances to satisfy E(taa)< E(tab). Second,
we expect gene tree G1 = ((a1,a2),b) to occur with a
higher probability than gene trees G2 = ((b,a1),a2) or
G3 = ((b,a2),a1).

Two approaches to identifying and delimiting species
make use of those expectations explicitly. First, DNA
barcoding is a fast approach to species identification
and is occasionally applied to species delimitation as
well (Hebert et al. 2003). A genetic-distance threshold
or “barcoding gap” based on a universal marker (such
as mitochondrial cytochrome oxidase 1 or cytochrome
b) is used to distinguish within- and between-species
divergences. A query specimen is assigned to an existing
species in the database if the sequence distance between
the query and the sequences in the library is smaller than
the threshold. Otherwise, the specimen is considered
a new species not yet represented in the library. The
threshold may be arbitrary (Hebert et al. 2003) or
estimated from a database by minimizing assignment
errors (Meyer and Paulay 2005; Puillandre et al. 2012).
The use of one barcoding threshold for different species
in the database may lead to errors of identification when

different species have very different population sizes
and divergence times (e.g., Hudson and Turelli 2003;
Meyer and Paulay 2005; Dasmahapatra et al. 2010; Yang
and Rannala 2017). Here, we emphasize the fact that
barcoding methods rely on a distance threshold, with the
expectation that within-species sequence divergence is
smaller than between-species divergence, E(taa)< E(tab).
Second, the recently developed genealogical divergence
index or gdi (Jackson et al. 2017) is a simple method
for fast species delimitation, useful for generating
hypotheses of species status for systematic evaluations
integrating different sources of information. The gdi
is a linear transform on P(G1). Two populations are
considered distinct species if P(G1)>0.8 or one single
species if P(G1)<0.47, with the species status undecided
if P(G1) falls between the two limits. It is expected that
P(G1)> 1

3 >P(G2) = P(G3).
The two expectations, E(taa)< E(tab) and P(G1)>

P(G2), are correct if isolation is complete and there is
no cross-species gene flow (Fig. 1A). When we trace the
genealogical history of sequences a1,a2, and b backwards
in time, there is the possibility that sequences a1 and
a2 coalesce before reaching the common ancestor R
(Fig. 1A). If this happens, the gene tree will be G1;
otherwise the three possible gene trees will occur with
equal probability. Thus P(G1)> P(G2) = P(G3). Similarly,
if sequences a1 and a2 coalesce in species A, they will
have a shorter expected distance than between species;
otherwise their distance will be the same as between
species. Thus, we expect E(taa)< E(tab).

However, it is not so clear whether the expectations
are correct when there is cross-species gene flow. In
this article, we study the impact of gene flow on
genetic divergences within and between species, by
using the Markov chain characterization of the process
of coalescent and migration developed in the structured
coalescent framework in population genetics (Notohara
1990; Wilkinson-Herbots 2008). We demonstrate that
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FIGURE 1. A) The multispecies coalescent (MSC) model for two species (A and B) with four parameters shown in the inset (species divergence
time �R =�AB =� and three population size parameters: �A, �B, and �R). Both � and � are measured in the number of mutations per site. Two gene
trees for three sequences (a1 and a2 from A and b from B) are shown inside the species tree. If sequences a1 and a2 coalesce in species A, the gene
tree will be G1 = ((a1,a2),b); otherwise all three sequences will enter species R and the three gene trees G1, G2 = ((b,a1),a2) and G3 = ((b,a2),a1) will
occur with equal probability ( 1

3 each). B) The MSC model with migration (the IM model) and C) the MSC model with introgression (the MSci
model), with 5 and 8 parameters, respectively, shown in the inset. Under the IM model, the migration rate M=MBA =NAmBA is the expected
number of B→A migrants in species A per generation, with mBA =m to be the proportion of immigrants (from species B) in species A. Under
the MSci model, �H =�S while ϕ is the introgression probability. Under both the IM and MSci models, there are multiple scenarios under which
gene tree G1 may occur. For example, in the dashed red tree, a1 and a2 coalesce in species A, while in the solid green tree, a1 and a2 migrate
(backwards in time) into species B and then coalesce in species B.

with different population sizes (and thus coalescent
rates) and asymmetrical migration rates, it is possible
for a gene sequence to be on average more distant
from another sequence of the same species than from
a sequence randomly sampled from another species.
We refer to the region of the parameter space in which
P(G1)<P(G2) or E(taa)>E(tab) as the species-definition
anomaly zone, similar to the species-tree anomaly zone
discussed by Degnan and Rosenberg (2006). Our results
highlight the complexity of defining and delimiting
species in the presence of gene flow: for example, in
the anomaly zone, application of any barcoding criterion
or the gdi index may lead to incorrect inference of one
species when two exist.

We note that in the past decade, analyses of genomic
sequence data have detected cross-species gene flow in
a variety of species including Arabidopsis (Arnold et al.
2016), corals (Mao et al. 2018), mosquitoes (Fontaine et al.
2015; Thawornwattana et al. 2018), butterflies (Martin
et al. 2013), birds (Ellegren et al. 2012), cats (Li et al.
2019), bears (Liu et al. 2014), cattle (Wu et al. 2018),
gibbons (Chan et al. 2013), and hominins (Nielsen et al.
2017). Empirical studies suggest very high proportions
of species that hybridize with at least one other species
(Mallet 2005, 2008). It is thus of great importance
to examine the impact of cross-species gene flow on
the definition and identification of species. Here, we
formulate our results in the context of using genomic
sequence data to infer the history of species divergences
and gene flow and to delimit species boundaries. We
focus on the continuous-time migration model (the IM
model, Hey 2010) (Fig. 1B) but will show that the same
behavior occurs under the episodic introgression model
or the multispecies coalescent with introgression (MSci)

model (Yu et al. 2014; Flouri et al. 2020) (Fig. 1C), which
may be more realistic for some biological systems.

THE IM MODEL FOR TWO SPECIES AND THREE SEQUENCES

Consider two diploid species A and B, which diverged
time �=�R ago and have since been undergoing
migration from species B to species A, at the rate of
m=mBA per generation (Fig. 1B). We formulate our
theory in the context of analyzing genomic sequence
data, so that time is scaled by mutations and both �
and � are measured in the number of mutations per
site. For each species, the population size parameter is
defined as �=4N�, where N is the effective population
size and � is the mutation rate per site per generation.
We define the migration rate mBA as the proportion of
B→A immigrants in the receiving population A, so that
MBA =mBANA is the expected number of B→A migrants
per generation. The parameters in the IM model (Hey
2010) include �R, �A, �B, �R, and MBA (Fig. 1B). The IM
model of Figure 1B is a special case of the model of Long
and Kubatko (2018, Fig. 1B), which allows migration in
both directions.

We consider the genealogical relationships among
three sequences: a1 and a2 from A and b from B. In this
setting, the gene trees and coalescent times are random
variables, with distributions specified by the parameters
in the model. The backward process of coalescence and
migration during time interval (0,�R) is described by a
Markov chain (Notohara 1990), where the state of the
chain is specified by the number of sequences remaining
in the sample, the populations in which they reside,
the population IDs (A and B) and the sequence IDs (a1,
a2, and b) (Zhu and Yang 2012; Andersen et al. 2014;
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Tian and Kubatko 2016; Dalquen et al. 2017). For example,
in the state Aa1Aa2Bb, abbreviated AAB, there are three
sequences in the sample, and sequences a1, a2, and b
are in populations A, A, and B, respectively. This is the
initial state for the Markov chain as our sample consists of
sequences a1 and a2 from A and b from B. Similarly, ABB is
the state reached when sequence a2 migrates (backwards
in time) into population B. The state AaaBb, abbreviated
ABb, means that two sequences remain in the sample,
with the ancestor of a1 and a2 in population A, and
sequence b in population B. This is the state reached
when sequences a1 and a2 coalesce in species A. The
generator matrix Q① for the Markov chain is

AAB ABB BAB BBB ABb Aa1 B Aa2 B BBb Ba1 B Ba2 B B
AAB −2wBA −cA wBA wBA 0 cA 0 0 0 0 0 0
ABB 0 −wBA −cB 0 wBA 0 cB 0 0 0 0 0
BAB 0 0 −wBA −cB wBA 0 0 cB 0 0 0 0
BBB 0 0 0 −3cB 0 0 0 cB cB cB 0
ABb 0 0 0 0 −wBA 0 0 wBA 0 0 0
Aa1 B 0 0 0 0 0 −wBA 0 0 wBA 0 0
Aa2 B 0 0 0 0 0 0 −wBA 0 0 wBA 0
BBb 0 0 0 0 0 0 0 −cB 0 0 cB
Ba1 B 0 0 0 0 0 0 0 0 −cB 0 cB
Ba2 B 0 0 0 0 0 0 0 0 0 −cB cB
B 0 0 0 0 0 0 0 0 0 0 0

where wBA = mBA
� = 4MBA

�A
is the mutation-scaled

migration rate, and cA = 2
�A

and cB = 2
�B

are the coalescent
rates. Here, one time unit is the expected time taken to
accumulate one mutation per site. In a species with a
scaled population size �=4N�, each pair of sequences
coalesce at the rate 2

� , with the average coalescent time
to be �

2 .

Probabilities of Gene Trees
We calculate the probabilities for the three gene trees:

G1 = ((a1,a2),b); G2 = ((b,a1),a2); and G3 = ((b,a2),a1), as
functions of the parameters in the IM model (Fig. 1B).
Note that the gene tree topology is determined by the
first coalescent event, so that there is no need to follow
the Markov chain any further after the first coalescent
has occurred. Thus, we construct a simplified Markov
chain in which all two-sequence states (such as ABb and
Aa1B) are changed into absorbing states, and state B is
unreachable and thus removed from the chain. Similarly
as soon as the chain enters the state BBB, with all three
sequences in species B, the three gene trees occur with
equal probabilities. Thus we make BBB an absorbing
state as well, with BBb, Ba1B, and Ba2B unreachable and
removed. The modified Markov chain then has seven
states, with the generator Q②

AAB ABB BAB BBB ABb Aa1 B Aa2 B
(1) AAB −2wBA −cA wBA wBA 0 cA 0 0
(2) ABB 0 −wBA −cB 0 wBA 0 cB 0
(3) BAB 0 0 −wBA −cB wBA 0 0 cB
(4) BBB 0 0 0 0 0 0 0
(5) ABb 0 0 0 0 0 0 0
(6) Aa1 B 0 0 0 0 0 0 0
(7) Aa2 B 0 0 0 0 0 0 0

Let P②(�)=exp(Q②�) be the matrix of transition
probabilities over time �=�R. We have the probability
for gene tree G1 to be

P(G1)=P②
15(�)+[P②

11(�)+P②
12(�)+P②

13(�)+P②
14(�)]/3. (1)

The different terms account for different scenarios that
lead to gene tree G1. First, sequences a1 and a2 may
coalesce in population A, before reaching time �: this
occurs with probability P②

15(�). Second, if both sequences
a1 and a2 enter species B any time during the time interval
(0,�), the chain will be in state 4 (BBB): each gene tree
will then have probability 1

3 when the coalescent events
occur at random in species B or R (Fig. 1B). Finally, if no
coalescent occurs over the time interval (0,�) and if at
most one of the A sequences enters species B, the chain
will be in states 1, 2, or 3 (for AAB, ABB or BAB) at time �:
then all three sequences will enter the common ancestor
R and each gene tree occurs with probability 1

3 .
The eigenvalues of Q② are on the diagonal: �1 =

−2+8M
�A

, �2 = �3 =− 4M
�A

− 2
�B

, and �4 = ···= �7 = 0. These
are all real, as are the eigenvectors. We derive P②(�)
using Mathematica, but the expression is tedious and not
presented here. Let e1 =e�1� and e2 =e�2�. Then equation
1 can be simplified, to give

P(G1)=
[
((2−4M)e1 −3)�2

A +(3−8M2 −(2+8M2)e1

+4M(1+4M)e2)�A�B +2M(1+2M)(3+4M−2e1)�2
B

]
/

[3(1+4M)(�A +2M�B)(−�A +�B +2M�B)] . (2)

Similarly, the probability for gene tree G2 is

P(G2)=P②
17(�)+[P②

11(�)+P②
12(�)+P②

13(�)+P②
14(�)]/3. (3)

From equations 1 and 3, we can see that P(G2)> P(G1)
if and only if P②

17(�)>P②
15(�). Indeed which of gene trees

G1, G2, and G3 is more probable depends on the relative
likelihoods of three scenarios (Fig. 1B):

(i) a1 and a2 coalesce in A, which occurs with
probability P②

15(�) and leads to G1;

(ii) a1 migrates (backwards in time) to B and coalesces
with b, with probability P②

17(�) for G2;

(iii) a2 migrates (backwards in time) to B and coalesces
with b, with probability P②

16(�) for G3.

In all other scenarios, the three gene trees occur with
equal probability. When the coalescent rate is much
lower in species A than in B (or when �A ��B) and the
migration rate from B to A is high, case (i) may be less
probable than (ii) or (iii).

The anomaly in gene tree probabilities identified here
is similar to the species-tree anomaly analyzed by (Long
and Kubatko, 2018). The assumption of unidirectional
migration in our model allows us to obtain simpler
or more expressive analytical results than is possible
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FIGURE 2. A) Probabilities of gene trees G1 = ((a1,a2),b) and G2 = ((b,a1),a2) as functions of the migration rate M when the other parameters in
the IM model (Fig. 1B) are fixed: �=0.02,�A =0.025, and �B =0.001. Note that when M>M∗ = 0.521361 immigrants per generation, P(G1)<P(G2).
B) Partition of the parameter space for the IM model (Fig. 1B) according to probabilities for gene trees. Below the outer tent, P(G1)<P(G2), while
below the inner tent P(G1)< 0.2 and P(G2) = P(G3)> 0.4.

under the model of bidirectional migration of Long and
Kubatko (2018).

As an example, consider P(G1) as a function of M, with
other parameters fixed at �=0.02,�A =0.025, and �B =
0.001 (Fig. 2B). When M=0, the IM model of Figure 1B
reduces to the simple MSC model of Figure 1A, and
the gene tree probabilities are P(G1) = 1− 2

3 e−2�/�A =
0.865402 and P(G2)= P(G3) = 1

3 e−2�/�A = 0.067299. Here,
�/�A

2 is the branch length of branch A in coalescent
units (as the average coalescent time in population A is
1
2�A mutations per site), and e−2�/�A is the probability
that two sequences (a1 and a2) do not coalesce along
branch A or over the time interval (0,�). At the threshold
value M∗ = 0.521361, P(G1)=P(G2)= 1

3 . When M = 0.8,
the probabilities for the three scenarios described above
are P②

15(�) = 0.23781 and P②
16(�)=P②

17(�) = 0.35753, with

P(G1) = 0.25352 <P(G2) = P(G3) = 0.37324. In the limit
of M=∞, sequences a1 and a2 will immediately migrate
(backwards in time) into B and the three sequences will
coalesce at random, with P(G1)→ 1

3 .
To verify the analytical results, we used the simulate

option of bpp (Flouri et al. 2018) to generate 107 gene trees
at those parameter values. The estimates of P(G1) are
0.865374, 0.333393, and 0.253542, for M= 0, 0.521361, and
0.8, respectively, which differ from the above analytical
calculations by less than 10−4.

Supplementary Figure S1A,B available on Dryad at
http://dx.doi.org/10.5061/dryad.xwdbrv1b5 examines
the impact of the divergence time (�R) and the ratio of
the population sizes (�A/�B) on gene tree probabilities,
when other parameters are fixed at the values of Figure 2.
Those two parameters similarly partition the parameter
space into two zones, with the anomaly P(G1)<P(G2)
occurring for large �R (with �R >0.00119461) and for
very different population sizes (with �A/�B > 2.66667).
Nevertheless, �R and �A/�B appear to have less impact
than the migration rate M (Fig. 2A).

Figure 2B shows a partition of the 3D parameter space
into two zones: when the parameters are inside the outer
tent, we have the anomaly P(G1)<P(G2).

Average Coalescent Times
Next, we consider the average coalescent times or

sequence distances within and between species. One
could in principle use the Markov chain Q① constructed
earlier for the process of coalescence and migration
for the three sequences in the sample (a1, a2, and b).
However, it is far simpler to use a reduced Markov chain
with fewer states for two sequences only. To derive the
density of the coalescent time between sequences a1
and a2, that is, taa, we consider a Markov chain with 4
states. We abbreviate states like Aa1Aa2 as AA, and merge
states A and B (which are states reached when the two
sequences have coalesced with the ancestral sequence in
either A or B) into one absorbing state, A|B (for “A or B”)
(Andersen et al. 2014). The generator matrix Q③ is

AA AB BB A|B
AA −(2wBA +cA) 2wBA 0 cA
AB 0 −wBA wBA 0
BB 0 0 −cB cB
A|B 0 0 0 0

The eigenvalues of Q③ are on the diagonal: �1 =− 8M
�A

− 2
�A

, �2 =− 4M
�A

, �3 =− 2
�B

, and �4 =0. Let the transition
probability matrix over time t be P③(t)=exp(Q③t), which
is a function of e�kt, k =1,2,3. Like �, time t is measured
in the expected number of mutations per site. Thus

f (taa)=
⎧⎨
⎩

P③
AA,AA(taa)· 2

�A
+P③

AA,BB(taa)· 2
�B

, if 0< taa <�R,[
1−P③

AA,A|B(�R)
]

2
�R

e− 2
�R

(taa−�R)
, if taa >�R.

(4)

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/70/1/108/5866754 by guest on 17 D

ecem
ber 2020

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syaa052#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syaa052#supplementary-data
http://dx.doi.org/10.5061/dryad.xwdbrv1b5


Copyedited by: YS MANUSCRIPT CATEGORY: Systematic Biology

[17:54 30/11/2020 Sysbio-OP-SYSB200053.tex] Page: 112 108–119

112 SYSTEMATIC BIOLOGY VOL. 70

Note that according to the definition of the probability
density function, f (taa)�t is the probability that the
coalescent time falls in the interval (taa,taa +�t). When
taa <�R, this is the sum of two terms, as the coalescent
event can occur in either species A or B. The first term,
P③

AA,AA(taa)· 2
�A

�t, is the probability that sequences a1
and a2 are both in species A right before time taa,
multiplied by the probability, 2

�A
�t, that they coalesce

during the time interval (taa,taa +�t). The second term,
P③

AA,BB(taa)· 2
�B

�t, is the probability for the coalescent to
occur in species B. Similarly, in the case taa >�R, both
a1 and a2 enter R, with probability 1−P③

AA,A|B(�R), and
then coalesce in R in the time interval (taa,taa +�t), with

probability 2
�R

e− 2
�R

(taa−�R)
�t.

The expectation of taa is given by averaging over the
three cases of equation 4 in which a1 and a2 coalesce in
A, B, and R:

E(taa) =
∫ �R

0
tP③

AA,AA(t)dt · 2
�A

+
∫ �R

0
tP③

AA,BB(t)dt · 2
�B

+
[
1−P③

AA,A|B(�R)
](

�R + �R

2

)

=
[

e1 − 4M(e1 −e2)
1+2M

− 8e3M2�2
B

(�A −�B −4M�B)(2M�B −�A)

− 8e2M2�B

(1+2M)(2M�B −�A)

− 8e1M2�B

(1+2M)(�A −�B −4M�B)

](
�R + �R

2

)

+�A [1−e1(1−�1�R)]

2(1+4M)2 − �2
A [1−e2(1−�2�R)]

(1+2M)(2M�B −�A)

+ 4M2�2
A

(1+4M)2(2M�B −�A)[
1

1+2M
+ �B

�A −�B −4M�B

]
[1−e1(1−�1�R)]

− 4M2�3
B[1−e3(1−�3�R)]

(2M�B −�A)(�A −�B −4M�B)
, (5)

where ek =e�k�R , k =1,2,3.
To derive the density of the coalescent time tab

between sequences a1 and b, we consider a Markov chain
with three states describing the backward process of
coalescence and migration during time interval (0,�R).
We abbreviate states like Aa1Bb as AB here. The generator
matrix Q④ is

AB BB B
AB −wBA wBA 0
BB 0 −cB cB
B 0 0 0

Thus the transition probability matrix is P④(t)=
exp(Q④t), and

f (tab)=
⎧⎨
⎩

P④
AB,BB(tab)· 2

�B
, if 0< tab <�R,[

1−P④
AB,B(�R)

]
2
�R

e− 2
�R

(tab−�R)
, if tab >�R.

(6)
The expectation of tab is given by averaging over the two
cases:

E(tab)=
∫ �R

0
tP④

AB,BB(t)dt · 2
�B

+
[
1−P④

AB,B(�R)
](

�R + �R

2

)

= 4M2�2
B [1−e3(1−�3�R)]−�2

A [1−e2(1−�2�R)]
4M(2M�B −�A)

+
[

e2 − 2M�B(e2 −e3)
2M�B −�A

](
�R + �R

2

)
. (7)

We plot E(taa) and E(tab) against the migration rate
M in Figure 3A, with other parameters in the model
fixed at �=0.02, �A =0.025,�B =0.001, and �R =0.01. In
the extreme case of M=0, the IM model becomes a model
of complete isolation (or the MSC model, Fig. 1A), in
which case E(tab) = �R + 1

2�R = 0.025 and E(taa)= 1
2�A +

PA · 1
2 (�R −�A) = 0.01099, with PA = exp(− 2

�A
�) = 0.2019 to

be the probability that a1 and a2 do not coalesce in species
A. Here, E(taa) is given by the approach of “iterated
corrections”, since the coalescent process between a1
and a2 occurs at different rates (determined by �A and
�R) before and after �R (Burgess and Yang, 2008, eq. 7).
If �A and �R were equal, the mean coalescent time
would be �A

2 . Thus applying a correction for different
population sizes, which affects a proportion PA of the
coalescent times, leads to E(taa) = 1

2�A +PA · 1
2 (�R −�A). In

the other extreme case with M→∞, both a1 and a2 will
migrate (backwards in time) into B immediately and then
coalesce with b at random, so that E(taa) = E(tab) = 1

2�B +
PB · 1

2 (�R −�B) = 0.0005, where PB = exp(− 2
�B

�). When
M is greater than a threshold value, M∗ =0.5254101,
E(taa)>E(tab).

We used bpp to simulate 107 gene trees at the
parameter values of Figure 3A to verify the equations.
At M∗ =0.5254101, the estimates of E(taa) and E(tab) are
0.0110556 and 0.0110550, in comparison with 0.0110557
and 0.0110557 from equations 5 and 7. At M=0.8 they
are 0.00902285 and 0.00808002, in comparison with
0.00902284 and 0.00808021 from equations 5 and 7.

Supplementary Figure S1C,D available on Dryad
examines the impact of the divergence time �R and the
ratio of population sizes �A/�B on the average coalescent
times, with other parameters fixed at the values of
Figure 3. The anomaly E(taa)>E(tab) occurs when �R is
large and when �A is much greater than �B.

Figure 3B shows a partition of a 3D parameter space.
The anomaly E(taa) > E(tab) occurs more easily for large
M and when �A is much greater than �B.
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FIGURE 3. A) The expected coalescent times, E(taa) and E(tab), as functions of the migration rate M under the IM model (Fig. 1B). The two curves
cross at M∗ =0.5254101, and when M>M∗, E(taa)>E(tab). Other parameters are fixed at �=0.02, �A =0.025,�B =0.001, and �R =0.01. B) Partition
of the parameter space defined by �A,�B, and M under the IM model according to whether E(taa)>E(tab). Inside the outer tent, E(taa)>E(tab).
Inside the inner tent E(taa)>E(tab)+0.001. Other parameters are fixed at �=0.02 and �R =0.01.

THE MSCI MODEL FOR TWO SPECIES WITH THREE SEQUENCES

Consider the introgression (MSci) model for two
species A and B, with B→A introgression at time �H =�S
and introgression probability ϕ (Fig. 1C). Again consider
a sample of three sequences, a1 and a2 from A and b from
B. We derive the probabilities for the three gene trees:
G1 = ((a1,a2),b), G2 = ((b,a1),a2), and G3 = ((b,a2),a1), as
well as the expected within-species and between-species
coalescent times: E(taa) and E(tab).

Probabilities of Gene Trees
The gene tree topology depends on whether sequences

a1 and a2 coalesce in species A (i.e., over the time interval
0–�H), and, if they do not, on whether they migrate into
population S, and so on (Fig. 1C). Note that in population
A, sequences a1 and a2 coalesce according to a Poisson
process at the rate 2

�A
. Thus, the probability that a1 and

a2 do not coalesce in A before reaching time �H is

PA =e− 2
�A

�H
. (8)

Similarly, we define

PH =e− 2
�H

(�R−�H ) and PS =e− 2
�S

(�R−�H ) (9)

to be the probabilities that two sequences entering
populations H or S, respectively, do not coalesce in that
population (Fig. 1C). Then the probabilities for the three
gene trees are

P(G1)= (1−PA)+PA(1−ϕ)2(1−PH)+ 1
3

PA(1−ϕ)2PH

+ 2
3

PAϕ(1−ϕ)PS + 1
3

PAϕ2, (10)

P(G2)=P(G3)= 1
3

PA(1−ϕ)2PH

+PAϕ(1−ϕ)
(

1− 1
3

PS

)
+ 1

3
PAϕ2,

with P(G1)+2P(G2) = 1. Here P(G1) is a sum of five
terms, corresponding to different scenarios in which
the first coalescent event is between a1 and a2. The first
term, 1−PA, is the probability that a1 and a2 coalesce in
population A. The second term, PA(1−ϕ)2(1−PH), is the
probability that a1 and a2 do not coalesce in population
A, they both enter population H (branch RH in the
species tree, Fig. 1C) and coalesce in H. The third term,
PA(1−ϕ)2PH · 1

3 , is the probability that a1 and a2 do not
coalesce in A, and they both enter H and then R, where
the three sequences coalesce in random order. The fourth
term, PA ·2ϕ(1−ϕ)PS · 1

3 , is the probability that a1 and a2
do not coalesce in A and one of them enters S but does
not coalesce with b in S, so that all three sequences enter
R and coalesce in random order. The fifth term, PAϕ2 · 1

3 ,
is the probability that a1 and a2 do not coalesce in A and
they both enter S, so that all three sequences enter S and
coalesce at random in S or R.

Similarly P(G2) is a sum of three terms, corresponding
to three different scenarios in which sequences a1 and
b coalesce first. The first term, PA(1−ϕ)2PH · 1

3 , is for a1
and a2 not to coalesce in A but to enter H and then R,
and then for a1 and b to coalesce in R. The second term,
PAϕ(1−ϕ) ·

(
PS · 1

3 +(1−PS)+PS · 1
3

)
, is for one of a1 and

a2 to enter H and the other to enter S. If a1 enters H, and
a2 enters S and does not coalesce with b in S, then a1 and
b can coalesce in R. If a2 enters H and a1 enters S, then
a1 and b may coalesce in S or R. Lastly the third term,
PAϕ2 · 1

3 , is for both a1 and a2 to enter S and then for the
three sequences to coalesce at random in S or R.
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FIGURE 4. A) Probabilities of gene trees G1 and G2 as functions of the introgression probability ϕ in the MSci model (Fig. 1C) when PA =PH =0.9
and PS =0.1 are fixed. B) Partition of the parameter space according to gene tree probabilities: P(G1)<P(G2) if and only if the parameter values
are inside the tent. The inner and outer tents correspond to PA =0.90 and 0.95, respectively.

We have P(G1)<P(G2)=P(G3) if and only if

PAϕ(1−ϕ)(1−PS)>1−PA +PA(1−ϕ)2(1−PH) (11)

or

PA(2−PH −PS)ϕ2 −PA(3−2PH −PS)ϕ+1−PAPH <0.
(12)

While the MSci model of Figure 1C has seven
parameters (we do not count �B since it is not needed
to simulate sequence data of a1,a2, and b), the gene
tree probabilities depend on only four: the introgression
probability ϕ and the three branch lengths in coalescent
units for branches A,H, and S (Fig. 1C). Note that PA,PH ,
and PS are simply functions of the respective branch
lengths (in coalescent units). We plot P(G1) and P(G2)
against ϕ in Figure 4A, with PA =PH =0.9 and PS = 0.1
fixed. Note that when ϕ = 0 or 1, the MSci model reduces
to the simple MSC model for two species with changing
population sizes but without introgression. At ϕ = 0, we
have P(G1) = 1− 2

3 PAPH = 0.46 while at ϕ = 1, P(G1)
= 1− 2

3 PA = 0.4. The anomaly P(G1)<P(G2) occurs in
the zone 0.247694 <ϕ< 0.852306. When ϕ is close to 1
(or > 0.852306), a1 and a2 either coalesce in A or both
will very likely enter species S and coalesce with b at
random, so that P(G1)> P(G2). Note that P(G1) is not
a monotonic function of ϕ: when introgression is either
very rare or virtually guaranteed there is an increased
chance for a1 and a2 to be in the same population
and coalesce. Supplementary Figure S2A–C available on
Dryad examines the impact of �R, �H/�S, and �H (Fig. 1C)
on gene tree probabilities. The anomaly P(G1)<P(G2)
occurs when �R is in a certain range, when �H is much
greater than �S, and when �H is small.

Figure 4B shows the zone of parameters in which
P(G1)<P(G2) in a 3D space. When PA and PH are large
and PS is small (or when �A and �H are large and �S is
small), the anomaly P(G1)<P(G2) may occur even with
ϕ<0.5.

Average Coalescent Times
The density of the coalescent time between sequences

a1 and a2 is

f (taa)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
�A

e− 2
�A

taa
,

if 0< taa <�H,

PA

[
(1−ϕ)2 2

�H
e− 2

�H
(taa−�H )+ϕ2 2

�S
e− 2

�S
(taa−�H )

]
,

if �H < taa <�R,

PA[(1−ϕ)2PH +ϕ2PS +2ϕ(1−ϕ)] 2
�R

e− 2
�R

(taa−�R)
,

if taa >�R.
(13)

First, the probability, f (taa)�t, that sequences a1 and
a2 coalesce during the time interval (taa,taa +�t), with

taa <�H , is given by the probability, e− 2
�A

taa , that they
do not coalesce before time taa, multiplied by the
probability, 2

�A
�t, that they coalesce during the time

interval (taa, taa +�t). Second, for �H < taa <�R, f (taa)�t
is the sum of two terms, as the coalescent event
can occur in either species H or S. The first term,

PA(1−ϕ)2 2
�H

e− 2
�H

(taa−�H )
�t, is the probability that a1

and a2 do not coalesce in species A, but both enter
species H and coalesce there. Similarly, the second term,

PAϕ2 2
�S

e− 2
�S

(taa−�H )
�t, is the probability that a1 and a2

do not coalesce in species A, but both enter species S and
coalesce there. Finally, in the case taa >�R, both a1 and
a2 enter R with probability PA[(1−ϕ)2PH +ϕ2PS +2ϕ(1−
ϕ)], and coalesce in R in the time interval (taa, taa +�t)

with probability 2
�R

e− 2
�R

(taa−�R)
�t.

The expectation of taa is given by averaging over the
four cases of equation 13 in which a1 and a2 coalesce in
A, H, S, and R.
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FIGURE 5. A) The expected coalescent times, E(taa) and E(tab), as functions of the introgression probability ϕ under the MSci model (Fig. 1C).
Other parameters are fixed at �A =�H =0.05, �S =�R =0.001, �R =0.01, and �H = 0.0025. B) Partition of the parameter space defined by �A,�S, and
ϕ under the MSci model (Fig. 1C): inside the tent, E(taa) >E(tab) while outside it the opposite is true. Other parameters are fixed at �H =0.05,
�R =0.001, �R =0.01, and �H =0.0025.

E(taa)= �A
2

−PA

(
�H + �A

2

)

+PA(1−ϕ)2
[
�H + �H

2
−PH(�R + �H

2
)
]

+PAϕ2
[
�H + �S

2
−PS

(
�R + �S

2

)]

+PA[PH(1−ϕ)2 +PSϕ2 +2ϕ(1−ϕ)]
(

�R + �R

2

)
.

(14)

Similarly the density of the coalescent time between
sequences a1 and b is

f (tab)=
⎧⎨
⎩ϕ 2

�S
e− 2

�S
(tab−�H )

, if �H < tab <�R,

[(1−ϕ)+PSϕ] 2
�R

e− 2
�R

(tab−�R)
, if tab >�R.

(15)
When �H < tab <�R, the coalescent occurs in species
S, and f (tab)�t is given by the probability, ϕ, that
sequence a1 enters species S times the probability,
2
�S

e− 2
�S

(tab−�H )
�t, that a1 and b coalesce in S in the

time interval (tab, tab +�t). In the case of tab >�R, the
coalescent occurs in species R. The probability that both
a1 and b enter R is (1−ϕ)+ϕPS, and the probability that
they coalesce in R in the time interval (tab, tab +�t) is
2
�R

e− 2
�R

(tab−�R)
�t.

The expectation of tab is given by

E(tab)=ϕ

[
�H + �S

2
+PS

(
�R

2
− �S

2

)]
+(1−ϕ)

(
�R + �R

2

)
.

(16)
This is a weighted average depending on whether
sequence a enters S (with probability ϕ) or H (with
probability 1−ϕ). If a enters S, the mean coalescent

time is �H + �S
2 +PS

(
�R
2 − �S

2

)
by the argument of iterated

corrections. Similarly with probability 1−ϕ sequence
a enters H and coalesces with b in R, with the mean
coalescent time to be �R + �R

2 .
Thus E(taa)>E(tab) if and only if

�A
2

−PA(�H + �A
2

)+PA(1−ϕ)2
[
�H + �H

2
−PH

(
�R + �H

2

)]

+(PAϕ2 −ϕ)
[
�H + �S

2
−PS

(
�R + �S

2

)]
+[PAPH(1−ϕ)2

+PSϕ(PAϕ−1)+(2PAϕ−1)(1−ϕ)]
(

�R + �R

2

)
>0.

(17)

We plot E(taa) and E(tab) against ϕ in Figure 5A, with
other parameters in the MSci model fixed: �A =�H =0.05,
�S =�R =0.001, �R =0.01, and �H = 0.0025. Note that the
coalescent times depend on all seven parameters of
the MSci model except �B (Fig. 1C). The cases ϕ = 0
and 1 correspond to MSC (complete isolation) models
for two species with changing population sizes. With
ϕ = 0, sequences a1 and a2 coalesce at different rates
determined by population sizes �A, �H , and �R, so the
approach of iterated corrections gives E(taa) = �A

2 +
PA[( �H

2 − �A
2 ) + PH( �R

2 − �H
2 )] = 0.00857716. Also at ϕ = 0,

sequences a1 and b can coalesce in R only, with E(tab)
= �R + �R

2 = 0.0105. At ϕ=1, sequences a1 and a2 can
coalesce in A, S, or R, so that E(taa) = �A

2 + PA[( �S
2 − �A

2 )
+ PS( �R

2 − �S
2 )] = 0.00283148 while sequences a1 and b can

coalesce in S or R, with E(tab) = �H + �S
2 + PS( �R

2 − �S
2 ) =

0.003. When ϕ is close to 1, either a1 and a2 coalesce in A or
they both enter S and coalesce with b at random, so that
E(taa) <E(tab). When 0.252962 <ϕ< 0.971179, we have
the anomaly E(taa)>E(tab). If species A has a much larger
population size than S, it may be more likely for sequence
a1 or a2 to migrate into species S and coalesce with b than

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/70/1/108/5866754 by guest on 17 D

ecem
ber 2020



Copyedited by: YS MANUSCRIPT CATEGORY: Systematic Biology

[17:54 30/11/2020 Sysbio-OP-SYSB200053.tex] Page: 116 108–119

116 SYSTEMATIC BIOLOGY VOL. 70

for a1 to coalesce with a2, causing E(taa)>E(tab). Such
anomaly may occur even if ϕ is much smaller than 1

2 .
We confirmed our derivations by simulating 107 gene

trees using bpp (Flouri et al. 2018). With ϕ=0.4 in
Figure 5A, the estimates are 0.00815726 for E(taa) and
0.007499884 for E(tab), compared with 0.008157341 and
0.0075 from equations 14 and 16.

Supplementary Figure S2D–F available on Dryad
examines the impact of �R, �H/�S, and �H (Fig. 1C) on
the average coalescent times, when other parameters are
fixed at the values of Figure 5. E(taa)>E(tab) when �R is
in a certain range, when �H is much greater than �S, and
when �H is small.

Figure 5B shows the anomaly zone with E(taa)>E(tab)
in the 3D space of parameters �A, �S, and ϕ, with other
parameters fixed.

DISCUSSION

The Nature of the Anomaly

The species-definition anomaly zone, in which the
within-species divergence is greater than the between-
species divergence, with divergence measured by either
the gene tree probability or the average genetic distance,
is very similar to the species-tree anomaly zone (Degnan
and Rosenberg 2006). In the species-tree anomaly zone,
the use of the most common gene tree topology as the
species tree estimate will be statistically inconsistent,
although it should be emphasized that the problem
disappears if one takes a likelihood approach and uses
the likelihood (i.e., the probability of the gene trees) to
compare different species trees (Xu and Yang 2016). The
models considered in this article (Fig. 1B,C) involve only
two species with only one simple species tree: (A,B).
However, one may consider the gene tree G1 = ((a1,a2),b)
to match the species tree, and gene trees G2 = ((b,a1),a2)
and G3 = ((b,a2),a1) to be the mismatching trees. Then
the anomaly P(G1)<P(G2) means that the matching gene
tree has a smaller probability than either mismatching
gene tree, a situation very similar to the anomaly zone
in species tree estimation. Nevertheless, the anomaly
zone for species tree estimation is due to polymorphism
in ancestral species and the resulting deep coalescence,
while the anomaly discussed in this paper is due to cross-
species gene flow and different population sizes. In the
context of phylogenetic network (i.e., MSci) models, Zhu
et al. (2016) defined an anomalous gene tree as one that
has a higher probability than any gene tree that matches
a displayed species tree—displayed species trees are binary
trees that remain when one of the two parental branches
at each hybridization node in the species network is
removed (Zhu et al. 2016; Zhu and Degnan 2017). All
such anomalies share the feature that the most probable
gene tree under the data-generating model does not
match one’s intuitive expectation. Here, we stress that
the “counter-intuitive" results do not imply that genetic

sequence data contain misleading information about the
history of species divergences.

The species-definition anomaly does not occur in the
MSC model without gene flow (Fig. 1A). Nor does it
occur in simple models of population subdivision in
population genetics. For example, under the islands and
stepping-stones models, the expected coalescent time
between sequences sampled from the same population
must be smaller than that between sequences sampled
from two different populations (Li 1976; Strobeck 1987;
Slatkin 1987, 1991). Those models assume symmetry in
the population size and migration rate: the different
populations are assumed to have the same size and the
migration rate is assumed to be the same between any
two populations in the islands model or between any
two adjacent populations in the stepping-stones model.
In the IM and MSci models considered here, cross-
species gene flow and large differences in population
size are the main causes for the anomaly. We note
that the anomaly described in this article can occur in
more general settings than we considered. For example,
we have assumed unidirectional migration (from B
to A only) in the IM model, but the same behavior
should occur in a more general model of bidirectional
migration (Long and Kubatko 2018), as long as there is
sufficient asymmetry in the population size and in the
migration rate.

In our analysis, we have assumed a simple neutral
coalescent model (with and without gene flow) and
have not considered the effects of natural selection
or population structure. Selection may distort the
distribution of the gene tree topologies and coalescent
times, especially when the population sizes and thus the
efficacy of purifying selection differs between species
(He et al. 2020). Previously coding loci were found to
produce highly consistent species-tree and parameter
estimates with the noncoding parts of the genome
(Shi and Yang 2018; Thawornwattana et al. 2018; Flouri
et al. 2020), suggesting that the effects may be minor if
purifying selection operates in similar ways in different
species. However, species-specific selection, as expected
for gene loci responsible for ecological adaptation of the
species (Turner et al. 2005; Pardo-Diaz et al. 2012), will
likely have major impacts on the gene tree distribution.
Furthermore, our analysis has assumed that each species
is a population of panmixia. Population subdivision
may lead to an inflated effective population size for
the species, and may create a scenario that is similar
to the model studied here. Suppose species A has a
wide-ranging geographical distribution with population
subdivision, while species B has a very limited
distribution and is close to one of the geographical
populations of species A. Our analysis suggests that
such gene flow can easily create a species-definition
anomaly zone, with two sequences randomly sampled
from species A to be on average more distantly related
than two sequences from the two different species.
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How Common is the Species-Definition Anomaly?
While our theoretical calculations suggest that the

species-definition anomaly is possible in large zones of
the parameter space, it is not known how often it occurs
in nature. This empirical question can be addressed by
estimating the relevant parameters (in particular the
migration rate M and the introgression probability ϕ)
under the IM and MSci models using genomic sequence
data. Currently, such estimates are rare and mostly based
on small data sets, while it may be necessary to use
hundreds or thousands of loci to get reliable estimates.
Nevertheless, available estimates (e.g., Pinho and Hey
2010, Table S1) suggest that population sizes can differ
by orders of magnitude even between closely related
species, and migration is often asymmetrical, providing
opportunities for the anomaly to occur.

Here, we briefly review a few recent studies which
generated estimates of migration rates from genomic
data, from fruit flies, mosquitoes, butterflies, and
gibbons. Several studies have found significant evidence
for gene flow from Drosophila simulans to D. melanogaster,
at the rate of MS→M = 0.02–0.04 migrant individuals per
generation, but no migration in the opposite direction
(MM→S ≈0) (Wang and Hey 2010; Dalquen et al. 2017,
Tables 9 and 10). Population sizes were around �S =
0.013 and �M =0.005, with the divergence time �SM ≈
0.012–0.014 (Dalquen et al. 2017, Tables 9 and 10).
In the Anopheles gambiae species complex of African
mosquitoes, hybridization occurs between several pairs
of nonsister species. Gene flow from A. arabiensis to
A. gambiae (or A. coluzzii) occurs so frequently for the
autosomes that the gene trees reflect the migration
history rather than the history of species divergences
(Fontaine et al. 2015; Thawornwattana et al. 2018).
Estimates from the genomic data are in the order of
MA→G ≈0.2 migrants per generation while MG→A =0
(Thawornwattana et al. 2018, Table S3; Flouri et al. 2020,
Table 1), in agreement with crossing experiments, which
showed that introgressed alleles from A. arabiensis to
A. gambiae persisted over many generations, while it
was not possible to maintain an introgression colony
in the opposite G→A direction (Slotman et al. 2005).
Other parameters were around �A = 0.014, �G = 0.02–0.03,
and �AG = 0.007 (Thawornwattana et al. 2018, Table S3).
Heliconius butterflies constitute one of the best studied
groups for cross-species hybridization/introgression,
involving many sister- and nonsister-species pairs, and
involving both recent and ancient gene flow (Bull
et al. 2006; Kronforst et al. 2006; Mallet et al. 2007;
Salazar et al. 2008; Pardo-Diaz et al. 2012; Martin
et al. 2013). A recent study (Van Belleghem et al.
2020) applied coalescent-based simulation to joint site-
frequency spectrum data to estimate the migration rates
and population sizes between two incipient species:
H. erato and H. himera, finding strong evidence for
highly asymmetrical introgression, predominantly from
H. erato favorinus to H. himera, at the rate of M= 0.5–0.6
migrants per generation, with �≈0.002, �E =0.01, and
�H =0.0008. In an analysis of genomic sequences from

five species of gibbons (which belong to four different
genera), gene flow was inferred between two species
of the same genus: Hylobates moloch and H. pileatus, but
not between species of different genera. The migration
rates were estimated to be MM→P ≈0.008 migrants per
generation, while MP→M ≈0, with �M =0.0014, �P =
0.0005, and �=0.0017 (Shi and Yang 2018, Fig. 1).

The parameter estimates suggest that those species
pairs are not in the species-definition anomaly zone as
discussed in this article. Nevertheless, they do suggest
large differences in population size and in the migration
rate in the two directions. They also indicate that the
parameter values used in our example calculations
(Figs. 2, 3, 4, 5) are representative of real biological
systems. We leave it to future genomic analyses to
determine how common the anomaly is in the real
world. As more and more genomes are sequenced,
and as analytical methods are improved to handle
large data sets, we see exciting opportunities for using
genomic data to infer the evolutionary history of species
divergence and gene flow.

The Impact of Gene Flow on the Definition and Identification
of Species

It is noteworthy that the migration rate required for the
species-definition anomaly to occur may be much less
than one migrant per generation. For a species like the
mosquitoes the population size may well be larger than
a million, which means that a proportion of migrants
less than one in a million is sufficient to change the
apparent genetic history of the species. In population
genetic models of population subdivision, migration
rates of M�1 are low enough so that the populations
will be differentiated or isolated (as measured by Fst)
(Wright 1931). However, in the IM model, such low levels
of gene flow can have a dramatic impact on the history of
the species as represented in gene genealogies or genetic
distances. Similarly (Jiao et al., 2020) found that even a
small amount of migration per generation can have a
huge impact on species tree estimation under the simple
MSC model (see also Long and Kubatko 2018).

The dramatic impact of gene flow on the genetic
history of the species suggests that one has to consider
this effect when defining and identifying species. In
the species-definition anomaly zone, simple application
of DNA barcoding or the gdi will lump genuinely
distinct species into the same species. Thus, if those
methods suggest one species but there is evidence
for asymmetrical gene flow between the populations
and drastically different population sizes, the results
from those methods should be re-examined for the
impact of gene flow. We suggest that estimating
and contrasting the long-term migration rate and
the short-term hybridization rate as an effective
approach to establishing the existence of reproductive
barriers and evidence for species status. Note that
genomic sequence data may contain rich information
concerning evolutionary parameters such as species
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divergence times, population sizes, and migration rates
or introgression probabilities, which may be invaluable
for delimiting species boundaries (Fujita et al. 2012;
Leaché et al. 2019). The migration rate estimated from
genomic data under the IM model reflects the long-
term impact of gene flow and genetic drift, as well
as natural selection against introgressed alleles (Martin
and Jiggins 2017). Genomic sequence data can also be
used to identify recent hybridization/admixture events
(Anderson and Thompson 2002; Anderson 2008; Veller
et al. 2019). A greatly reduced migration rate relative to
the hybridization rate (e.g., a migration rate of m=10−6

per generation relative to a proportion of F1 hybrids
of 0.1%) may be strong evidence that introgressed
alleles are deleterious and removed from the receiving
population by natural selection and that reproductive
barriers exist between the species. While genomic data
may be currently lacking for many species groups,
this approach may become feasible in the near future
with advancements in genome sequencing technologies
and development of reduced-representation data sets
(Lemmon et al. 2012; Edwards et al. 2017), as well as
advancements of analytical methods that accommodate
both coalescent and gene flow (Dalquen et al. 2017; Hey
et al. 2018; Wen and Nakhleh 2018; Zhang et al. 2018;
Flouri et al. 2020).
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