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Abstract
The multispecies coalescent (MSC) model accommodates both species divergences and within-species coalescent 
and provides a natural framework for phylogenetic analysis of genomic data when the gene trees vary across the gen-
ome. The MSC model implemented in the program BPP assumes a molecular clock and the Jukes–Cantor model, and is 
suitable for analyzing genomic data from closely related species. Here we extend our implementation to more general 
substitution models and relaxed clocks to allow the rate to vary among species. The MSC-with-relaxed-clock model 
allows the estimation of species divergence times and ancestral population sizes using genomic sequences sampled 
from contemporary species when the strict clock assumption is violated, and provides a simulation framework for 
evaluating species tree estimation methods. We conducted simulations and analyzed two real datasets to evaluate 
the utility of the new models. We confirm that the clock-JC model is adequate for inference of shallow trees with 
closely related species, but it is important to account for clock violation for distant species. Our simulation suggests 
that there is valuable phylogenetic information in the gene-tree branch lengths even if the molecular clock assump-
tion is seriously violated, and the relaxed-clock models implemented in BPP are able to extract such information. Our 
Markov chain Monte Carlo algorithms suffer from mixing problems when used for species tree estimation under the 
relaxed clock and we discuss possible improvements. We conclude that the new models are currently most effective 
for estimating population parameters such as species divergence times when the species tree is fixed.
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Introduction
The multispecies coalescent (MSC) model (Rannala and 
Yang 2003) combines the phylogenetic process of species 
divergence with the population genetic process of coales-
cent, providing a framework for phylogenetic analysis of 
population samples (single or multi-individual) of genomic 
sequence data from multiple species. The MSC naturally 
accommodates gene tree fluctuations across the genome 
and potential gene-tree vs. species-tree discordance 
caused by incomplete lineage sorting (ILS). ILS can occur 
when gene sequences from different species coalesce not 
in their most recent common ancestral species but in an 
older ancestor (Maddison 1997; Nichols 2001; Szollosi 
et al. 2015). MSC-based methods have proven useful for re-
solving challenging species phylogenies with short 
branches that arose from a rapid succession of speciation 
events (Edwards et al. 2016; Xu and Yang 2016). See 
Edwards (2009), Rannala et al. (2020) and Jiao et al. 
(2021) for recent reviews of the MSC and its use in species 
tree estimation.

Full-likelihood (maximum likelihood or ML and 
Bayesian) methods of inference under the MSC applied 
to multilocus sequence alignments average over the 
gene tree topologies and coalescent times (node ages in 
gene trees) underlying the data at each locus (Rannala 
and Yang 2003; Burgess and Yang 2008; Yang and 
Rannala 2014; Ogilvie et al. 2016; Rannala and Yang 2017; 
Douglas et al. 2022). The methods make full use of infor-
mation in the gene trees, whereas accommodating their 
uncertainties. Although such methods are computational-
ly far more demanding than heuristic methods using sum-
mary statistics, recent breakthroughs in MCMC proposal 
algorithms, especially those that make coordinated 
changes to the species tree and the gene trees at all loci 
(Rannala and Yang 2003, 2013; Yang and Rannala 2014; 
Jones 2017; Rannala and Yang 2017; Douglas et al. 2022), 
have improved the mixing efficiency considerably. As a re-
sult, the Bayesian MSC program BPP has been successfully 
applied to genome-scale datasets with more than 10,000 
loci, at least for a small number of species or sequences 
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per locus (Shi and Yang 2018; Thawornwattana et al. 2018, 
2022).

A limitation of the current MSC implementation in BPP 

is that it assumes a strict molecular clock and the simple 
Jukes–Cantor (JC; Jukes and Cantor 1969) model of nu-
cleotide substitution, making it best suited for use with 
data from closely related species. For such species, se-
quences are highly similar and a strict clock may be ap-
proximately correct, whereas the JC model may be 
adequate for accounting for multiple substitutions at the 
same site. For distantly related species, however, the mo-
lecular clock may be seriously violated, and the JC model 
may be too simplistic for multiple-hit corrections. It is im-
portant to note that ILS or coalescent is as relevant to deep 
phylogenies as it is to shallow trees: the issue has to do with 
the length rather than depth of internal branches in the 
species tree (Edwards et al. 2005).

Over the past two decades, a number of relaxed-clock 
models have been developed for dating divergence events 
on phylogenies, allowing the substitution rate to change 
over time and among branches of the phylogeny; see 
Yang (2014, Chapter 10) and Ho (2022) for comprehensive 
reviews. Thorne et al. (1998) and Kishino et al. (2001) de-
veloped the earliest models, using geometric Brownian 
motion (GBM) to describe the evolution in the rate of mo-
lecular evolution; in other words, the logarithm of the rate 
drifts over time like Brownian motion. Evidence from the 
fossil recorded is incorporated as bounds on node ages 
to calibrate the tree. “Soft bounds” and arbitrary fossil- 
calibration densities were implemented by Yang and 
Rannala (2006) and Drummond et al. (2006). The 
independent-rates model is implemented by Drummond 
et al. (2006) and Rannala and Yang (2007) (see also 
Lepage et al. 2007), which describes the variation in rate 
among lineages empirically without a mechanistic basis 
like the GBM. Later developments include the use of dated 
fossils and joint analysis of morphological characters and 
molecular alignments in the so-called tip-dating or 
total-evidence dating analyses (e.g., Ronquist et al. 2012; 
Heath et al. 2014; Zhang et al. 2016; Alvarez-Carretero 
et al. 2019). See dos Reis et al. (2016), Lee and Ho (2016)
and Ho (2022) for recent reviews.

In this paper, we implement relaxed-clock models in the 
MSC framework. We explicitly model the process of the 
evolution in the evolutionary rate among species, treating 
evolutionary rates and sequence divergence times as latent 
variables and averaging over them in the MCMC algo-
rithm. We note two major differences between the 
MSC-relaxed clock models and the traditional phylogenet-
ic relaxed-clock models. First, under the MSC, different 
genes or genomic regions may have different gene-tree 
topologies and coalescent times, with their distribution 
specified by the MSC model (Rannala and Yang 2003). In 
contrast, relaxed-clock methods used in phylogenetic dat-
ing do not accommodate genealogical fluctuations among 
genes and assume that all gene trees share a common top-
ology, leading to potentially biased divergence time esti-
mates (dos Reis et al. 2016; Ogilvie et al. 2016). Second, 

in the MSC-relaxed clock models, the rates are assigned 
to branches on the species tree (which represent different 
species), rather than branches on the gene tree (Xu and 
Yang 2016; Rannala and Yang 2017) (fig. 1a), whereas in 
the phylogenetic relaxed-clock models there is no such dis-
tinction between the species tree and the gene tree.

We accommodate variation in evolutionary rate both 
among species and among loci. The among-loci rate vari-
ation applies to both strict-clock and relaxed-clock mod-
els. Under the relaxed-clock models, we allow among-loci 
variation both in the overall rate and in the degree of 
rate variation among species: some loci may have limited 
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FIG. 1. (a) A species tree (S) for three species (A, B, C) with a gene 
tree for six sequences (a1, a2, b1, b2, c1, c2) inside to illustrate the 
parameters in the MSC+relaxed clock model. At any locus each 
population on the species tree has its own rate so that rates are as-
signed to species-tree branches, indicated by different colors. A 
branch on the gene tree may pass several populations, consisting 
of segments with different rates, and the branch length is the sum 
of the segments. For instance, branch su in the gene tree consists 
of two segments with rates rA and rAB , and has the length 
(τAB − tu)rA + (ts − τAB)rAB . (b) Another species tree S′ after an 
NNI/SPR perturbation of S, illustrating the mapping of branch rates 
at an example locus. In the NNI/SPR move under the MSC+clock 
model (Yang and Rannala 2014; Rannala and Yang 2017), MSC para-
meters (τ and θ) as well as the ages of ‘affected nodes’ on the gene 
trees (ts) are transferred from S to S′ without modification. For ex-
ample, τAB in S becomes τAC in S′ , θAB in S becomes θAC in S′ , and 
ts in the gene tree becomes ts in the new gene tree. Here in the 
MSC+relaxed clock model, rates for (species-tree) branches at 
each locus are mapped onto the new species tree without modifica-
tion as well (for example, rAB in S becomes rAC in S′ for the locus).
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among-species rate variation and nearly satisfy a strict 
clock model, whereas others may have serious rate vari-
ation that violates the clock. Important parameters of 
the MSC model such as species divergence times and 
population sizes may be estimated jointly. This is the full- 
likelihood approach, which extracts information available 
from both gene tree topologies and coalescent times, 
whereas accommodating their uncertainties due to finite 
sequence length at each locus and allowing rate variation 
among species (clock violations).

An alternative approach to accommodating violations 
of the molecular clock in an MSC framework is to infer un-
rooted gene trees using phylogenetic methods without as-
suming a clock and then to use the inferred gene trees as 
data to estimate the species tree (with internal branch 
lengths in coalescent units), using an outgroup to root 
the tree. This is the two-step summary approach, used in 
MP-EST (Liu et al. 2010), NJst (Liu and Yu 2011), and 
ASTRAL (Mirarab and Warnow 2015).

The two-step methods are computationally efficient but 
they ignore information in the branch lengths (coalescent 
times) in gene trees. They often treat inferred gene trees as 
observations without properly accommodating phylogen-
etic reconstruction errors, although some efforts have been 
made to account for uncertainties in gene tree topologies 
(Sayyari and Mirarab 2016). The full-likelihood MSC ap-
proach is computationally demanding. Furthermore, 
when the clock is seriously violated, temporal information 
from the coalescent times may be eroded even when 
among-species variations of clock rates are accounted for 
in the model. One may thus expect the full-likelihood ap-
proach to have an advantage over two-step methods 
when the clock holds or is violated only slightly, but the 
benefit may diminish with increasing violations of the 
clock. An advantage of the full-likelihood approach over 
heuristic two-step methods is that it additionally provides 
estimates of species divergence times (measured in units of 
the expected number of substitutions per site), which may 
be converted to estimates of absolute geological times 
when the tree is calibrated using information from the fossil 
record (Angelis 2015; dos Reis et al. 2016). Two-step meth-
ods using gene tree topologies can identify internal branch 
lengths in coalescent units on the species tree but these 
cannot be directly translated into geological time units. 
Important parameters in the MSC model, such as external 
branch lengths on the species tree (or species divergence 
times) and population sizes for modern and ancestral spe-
cies are simply not identifiable by those methods (Xu and 
Yang 2016; Zhu and Yang 2021).

In this paper, we extend the models implemented in BPP 

to allow deep phylogenetic trees to be analyzed. We incorp-
orate two major changes to the program. First, we imple-
ment the GTR+Γ substitution model (Yang 1994a, 
1994b) and its special cases, in addition to JC. Second, we 
relax the strict clock assumption by adapting the relaxed- 
clock models developed in Bayesian phylogenetics for di-
vergence time estimation (Rannala and Yang 2007) to 
the MSC framework. We validate our implementation of 

the methods in BPP and explore the impacts of clock as-
sumptions on estimates of the species tree and MSC 
model parameters using simulations. We analyze two em-
pirical datasets, one of gibbons (Carbone et al. 2014; Shi 
and Yang 2018) and another of the flightless birds ratites 
(Cloutier et al. 2019). The gibbon dataset represents a 
shallow species tree, with an approximately constant 
rate of evolution, so we expect that relaxed clocks with 
GTR+Γ should produce similar results to the early ana-
lyses under the clock+JC model (Shi and Yang 2018). 
The ratite tree represents a deep phylogeny with far 
more distantly related species and with the molecular 
clock assumption seriously violated. In such a case, we ex-
pect the use of a strict clock could lead to seriously biased 
estimates, whereas the relaxed clock may be a major 
improvement.

Theory
Overview of MSC+relaxed Clock Model
We develop MCMC algorithms for Bayesian inference un-
der the MSC model with relaxed clocks for sampling from 
the joint posterior distribution of species trees, species di-
vergence times, and other parameters of interest. The 
parameters of the MSC+relaxed clock model are illu-
strated in figure 1a. The model is specified using two vari-
ables (locusrate and clock) in the BPP control file 
(fig. 2).

Let Ψ = {T, τ, θ} represent the species tree for s species, 
with T to be the species tree topology, τ the species diver-
gence times, and θ the (effective) population sizes for 
all populations on the species tree. Both τ and θ are mea-
sured in the expected number of substitutions per site. 
Let X = {Xi} be the multilocus sequence data, with Xi to 
be a matrix of aligned sequences for the sampled indivi-
duals at locus i, with i = 1, . . . , L. The sequences may be 
unphased diploid sequences (Flouri et al. 2018; Huang 
et al. 2022). Let G = {Gi, ti} be the gene trees at the L loci, 
where Gi is the gene tree topology and ti the set of coales-
cence times at locus i. The gene tree (Gi, ti) specifies the 
probability distribution of the sequence alignment at locus 
i but is not observed.

We assume that substitution rate varies both among 
loci and, for each locus, across species-tree branches 
(fig. 1). Let μi be the overall (mean) rate for locus i, and 
νi be the rate variance parameter for locus i, with μ = 
{μi} and ν = {νi}. Parameter νi specifies how fast the rate 
changes or evolves over time, with a larger νi representing 
faster evolution of the rate or more serious violation of the 
clock. Given μi and νi for locus i, the rate evolves among 
species-tree branches, thus relaxing the clock assumption. 
Furthermore, we assume that the rates are changing inde-
pendently among loci (fig. 1). Let rij be the rate at locus i for 
species-tree branch j, with R = {rij}.

We assign a prior on the locus rates μ with parameters 
Ωμ = {αμ, αμ̅, βμ̅}, and a prior on the rate variance para-
meters ν with parameters Ων = {αν, αν̅, βν̅}. Let Θ include 
parameters in the prior for MSC model parameters (τ and 
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θ). Ωμ, Ων and Θ are parameters in the priors or hyper- 
priors, specified by the user. The MCMC samples from 
the joint posterior density

f (Ψ, μ, ν, R, G | X, Ωμ, Ων, Θ)

∝ f(X |G, R) f (G |Ψ) f (R |Ψ, μ, ν)

× f (Ψ |Θ) f (μ | μ̅, αμ) f (μ̅ | αμ̅, βμ̅)

× f (ν | ν̅, αν) f (ν̅ | αν̅, βν̅),

(1) 

where f(X |G, R) is the probability of the sequence align-
ments given the gene trees and branch lengths or the so- 
called phylogenetic likelihood (Felsenstein 1981), f(G |Ψ) 
is the density of the gene tree under the MSC (Rannala 
and Yang 2003), f(R |Ψ, μ, ν) is the probability density of 
branch rates, and the remaining terms are priors (and 
hyper-priors) in the rate-evolution model. The conditional 
independence of components in the model is illustrated in 
figure 3.

Overall Rate Parameter for a Locus
We implemented two choices for the prior probability dis-
tribution of the overall substitution rates, μ = {μi}, at the L 
loci: the gamma-Dirichlet (dir) prior (Burgess and Yang 
2008; dos Reis et al. 2014) and the conditional i.i.d. (iid, 
for identically and independently distributed) prior (Zhu 
and Yang 2015) (table 1). Both prior models make use of 
the mean overall rate across all loci, μ̅, which is treated 
in two ways. If there are fossil calibrations on the species 
tree, to allow estimation of absolute species divergence 
times and absolute substitution rates, we assign a gamma 
hyper-prior, μ̅ ∼ G(αμ̅, βμ̅), with density

f (μ̅ | αμ̅, βμ̅) =
βαμ̅

μ̅

Γ(αμ̅)
μ̅αμ̅−1 e−βμ̅μ̅. (2) 

Alternatively, if no fossil calibrations are available, in which 
case the rates are relative and species divergence times are 
measured in the expected number of substitutions, we fix 
μ̅ = 1 (specified by αμ̅ = βμ̅ = 0; fig. 2). Analysis in this pa-
per use this second formulation.

In the gamma-Dirichlet (dir) prior, the total rate Lμ̅ = 
i μi is partitioned into rates for loci (μi) according to 

a Dirichlet distribution with concentration parameter αμ. 
Smaller values of αμ mean greater variation in rates 
among loci. The joint density of the L locus rates, 
μ = (μi), is

f(μ | αμ̅, βμ̅, αμ) =
(βμ̅/L)αμ̅

Γ(αμ̅)
·

Γ(Lαμ)

Γ(αμ)L

×
L

i=1

μi

 αμ̅−Lαμ

×e−βμ̅


μi/L

L

i=1

μi

 αμ−1 (3) 

(dos Reis et al. 2014, eq. 5; see also Burgess and Yang 2008). 
In the conditional i.i.d. (iid) prior the overall rate μi for 
locus i has a gamma distribution G(αμ, αμ/μ̅) with 
shape parameter αμ and mean μ̅, so that the joint prior 
for μ is

f (μ | μ̅, αμ) =
L

i=1

f(μi | αμ, αμ/μ̅). (4) 

In this model, the rates μi at the L loci are parameters, so 
the distribution is L-dimensional (table 1).

Note that in both the gamma-Dirichlet and conditional 
i.i.d. models, αμ and αμ̅ are distinct parameters: αμ̅ specifies 
how certain we are about the average rate (μ̅), with a larger 
αμ̅ meaning more confidence, whereas αμ specifies how 
similar the overall rates (μi) are among loci, with a larger 
αμ meaning highly similar rates among loci.

locusrate = 0                      # (0: One rate for all loci, default)

locusrate = 1 10 10 5 iid    # (1: estimate locus rates mui)

locusrate = 1 0 0 5 iid         # (1: estimate locus rates mui)

locusrate = 1 a_mubar b_mubar a_mu <prior>

locusrate = 2 LocusRateFileName # (2: locus rates from file)

clock = 1                                           # (1: strict clock, default)

clock = 2 10 100 5 iid G           # (2: independent-rates)

clock = 2 a_vbar b_vbar a_v <prior> <distribution> # (2: independent-rates)

clock = 3 10 100 5 iid G            # (3: correlated-rates)

clock = 3 a_vbar b_vbar a_v <prior> <distribution> # (3: correlated-rates)

FIG. 2. The relaxed-clock models are specified using two control variables in BPP: (i) locusrate concerning the overall rate μi for locus i and (ii) 
clock concerning the rate variance parameter νi for locus i. The locusrate variable is used with any of the three clock models (clocks 1, 2, 3). In 
the example αμ̅ = 10 and βμ̅ = 10 specify the mean overall rate μ̅ ∼ G(αμ̅, βμ̅). When there are no fossil calibrations on the species tree, μ̅ = 1 is 
fixed, specified using αμ̅ = βμ̅ = 0. Given the mean overall rate μ̅, the overall rates for loci (μi) are generated from the conditional-independence 
model (iid) or the gamma-Dirichlet model (dir), with the shape parameter αμ (= 5 in the example) specifying how similar μi are among loci. The 
clock variable specifies the three clock models: clock 1 (strict clock), clock 2 (independent-rates model), and clock 3 (correlated-rates model). 
Under both clock 2 and clock 3, the average rate variance parameter is specified as ̅ν ∼ G(αν̅ , βν̅); in the example αν̅ = 10 and βν̅ = 100 with mean 
0.1. Given ̅ν, the variance νi for locus i is similarly generated from the iid or dir models. Given the overall rate μi and the rate variance parameter 
νi for locus i, rates for branches at locus i are specified for clock 2 and clock 3 using either the gamma (G) or log-normal (LN) distributions.
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Rate Variance Parameter for a Locus
We also implemented two prior distributions for the vari-
ance parameter νi for locus i: the gamma-Dirichlet (dir) 
prior and the conditional i.i.d. (iid) prior. For both priors, 
the average variance parameter across all loci ν̅ is assigned 
a gamma hyper-prior, ν̅ ∼ G(αν̅, βν̅), with density

f(ν̅ | αν̅, βν̅) =
βαν̅

ν̅
Γ(αν̅)

ν̅αν̅−1 e−βν̅ν̅. (5) 

In the gamma-Dirichlet prior the sum Lν̅ =


i νi is parti-
tioned into νi for loci according to a Dirichlet distribution 
with concentration parameter αν. Smaller values of αν 
mean greater variation in νi among loci (e.g., the clock is 
seriously violated at some loci but not at others). The joint 

density of the L locus-specific rate-evolution parameters is 
thus

f(ν | αν̅, βν̅, αν) =
(βν̅/L)αν̅

Γ(αν̅)
·

Γ(Lαν)
Γ(αν)L

×
L

i=1

νi

 αν̅−Lαν

×e−βν̅


νi/L

L

i=1

νi

 αν−1

.

(6) 

In the conditional i.i.d. model the rate variance parameter 
for locus i is assigned a gamma prior, νi | ν̅ ∼ G(αν, αν/ν̅) so 
the joint density is

f (ν | ν̅, αν) =
L

i=1

f(νi | αν, αν/ν̅). (7) 

In both priors for νi, αν̅ specifies our certainty about the 
average rate variation among lineages (ν̅). For closely re-
lated species, we expect the molecular clock to hold ap-
proximately for every locus, so we could specify a large 
αν̅ and a small mean αν̅/βν̅ (e.g., αν̅ = 10 and βν̅ = 1000 
with mean 0.01). Conversely, the concentration parameter 
αν specifies the degree of similarity among loci in terms of 
their clock violation. Larger αν (e.g., 10 or 100) may be used 
if clock violations are similar among loci, whereas small va-
lues (e.g., 1) may be used if the clock is seriously violated at 
some loci but not others.

(species tree)

(Gi, ti) 
(gene trees at locus i)

(rij) 
(branch rates at locus i)

(overall rates for loci)

(Xi) 
(Alignment at locus i)

(variance parameters for loci)

Mean variance (   )Mean rate (    )

FIG. 3. DAG (for directed acyclic graphical model) representation of the MSC+relaxed clock model implemented in this paper, illustrating the 
conditional independence of different components in the model. The species tree (Ψ) and the parameters on the species tree including species 
divergence times (τs) and population sizes (θs) specify the probability density of the gene trees at the multiple loci (gene tree topology Gi and 
coalescent times ti for locus i) (Rannala and Yang 2003). The relaxed-clock or rate-evolution model is specified by two components, the overall 
rates for loci (μi) and the rate variance parameters for loci (νi). The overall rates for loci (μi) are specified using either the gamma-Dirichlet or 
conditional i.i.d. priors conditioned on the mean overall rate (μ̅). Similarly the variance parameters for loci (νi) are specified using the 
gamma-Dirichlet or conditional i.i.d. priors conditioned on the mean variance parameter (ν̅). Given the overall rate μi and the variance param-
eter νi for locus i, the species-specific branch rates (rij for branch j at locus i) are specified using either the independent-rates model (clock 2) or 
the correlated-rates model, based on either a log-normal or gamma kernel. For each locus i, given the gene tree topology (Gi), the coalescent 
times (ti), and the branch rates (rij), the branch lengths on the gene tree are specified as the sum of the segments for each branch (fig. 1a). Finally, 
the gene tree topology (Gi) and branch lengths specify the phylogenetic likelihood (Felsenstein 1981) or allow a sequence alignment for the locus 
to be simulated.

Table 1. Parameters in the Prior Model for the Overall Locus Rates (μi) 
and Rate Variance Parameters (νi) for L Loci.

Model No. parameters Parameters

Gamma-Dirichlet (dir) 2L μ1 , μ2 , . . . , μL
ν1 , ν2 , . . . , νL

Conditional i.i.d. (iid) 2(L + 1) μ1 , μ2 , . . . , μL , μ̅
ν1 , ν2 , . . . , νL , ν̅

Note.—Under the Gamma-Dirichlet model, μ̅ = (1/L)
L

i=1 μi and ν̅ = 
(1/L)

L
i=1 νi are printed out by BPP, but they are not free parameters in the model.
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Rates for Branches at a Locus
Our MSC+relaxed clock model assigns rates at any locus to 
branches on the species tree, rather than on gene trees 
(fig. 1a) (Xu and Yang 2016). A gene-tree branch may 
pass through multiple species and comprises multiple seg-
ments with different rates, and the branch length is calcu-
lated by summing over the segments, with each segment 
length being a product of the rate and the time duration. 
In contrast, multiple branches on a gene tree may all reside 
in a single species and have the same rate. For example, if 
all sequences at a locus are sampled from the same species 
and all coalescent events occur in that species (before 
reaching an ancestral species), all branches on the gene 
tree will have the same rate even if the relaxed-clock model 
allows different rates among species.

Given the overall rate μi and the rate variance param-
eter νi at locus i, the branch rate rij (for species-tree branch 
j at locus i) is defined as the rate for the mid-branch and 
applies to the whole time duration of the population. 
For example, the rate for branch A in figure 1a is the 
rate for the mid-point of branch A and applies to popula-
tion A over its whole time duration (0, τAB). We implement 
two models to describe the rate-evolution process: the 
independent-rates (clock 2) and the correlated-rates (clock 
3) models. For each, we used either a gamma or log-normal 
kernel. Note that the root branch (stem) of the species tree 
has a rate as well, which applies to gene-tree branches res-
iding in that species.

The independent-rates model assumes 2s − 1 independ-
ent branch rates at every locus. Although a rooted species 
tree for s species has 2s − 2 branches, we have 2s − 1 
branch rates, including a rate for the root branch on the 
species tree. The joint density for the branch rates is

f (R | μ, ν, Ψ) =
L

i=1

2s−1

j=1

f(rij | μi, νi), (8) 

where the density f is either the gamma or log-normal. 
Under the independent gamma model,

rij | μi, νi ∼ G
μ2

i

νi
,

μi

νi

 

, (9) 

which has mean μi and variance νi. Under the independent 
log-normal model,

rij | μi, νi ∼ LN(μi, νi), (10) 

with density

f(rij | μi, νi)

=
1

rij
�����
2πνi
√ exp −

1
2νi

log
rij

μi
+

1
2

νi

 2 

,

0 < rij < ∞.

(11) 

This has mean μi and variance (eνi − 1)μ2
i . Note that μi is 

the mean of the rate (rather than the mean of the log 

rate), whereas νi is the variance of the log rate (rather 
than the variance of the rate). The bias-correction term, 
1
2 νi, was introduced by Kishino et al. (2001) to ensure 
that the distribution has the mean μi.

The correlated-rates model specifies rates for daughter 
branches conditional on the rate for the mother branch, 
thus introducing correlation between branches. Rates are 
assigned to the midpoints of branches on the species 
tree and apply to the time duration of the population re-
presented by the branch. The overall rate μi for locus i is 
also used as the rate for the root population at the locus. 
With this formulation, the correlated-rates model has L 
fewer parameters than the independent-rates model 
(which uses rates for the root branch at the L loci, distinct 
from μi). Again we implement both the gamma (G) and 
log-normal (LN) distributions of rates for the daughter 
branches given the parental rate (fig. 2).

The correlated log-normal model specifies the geometric 
Brownian motion model of Thorne et al. (1998) and 
Kishino et al. (2001), modified by Rannala and Yang 
(2007) to account for the correlation in rates between 
the two daughter branches due to shared rate evolution. 
There are 2s − 2 branch rates at each locus, and their joint 
density is

f (R | μ, ν, τ) =
L

i=1

s−1

j=1

f (ric j1 , ric j2 | riaj , μi, νi, τ), (12) 

where aj is the jth mother branch, and c j1 and c j2 are its two 
child branches. For each locus, the product is over the s − 1 
internal nodes on the species tree, with the distributions of 
the branch rates specified recursively starting at the root. 
Given the rate at the species-tree root μi, the rates for its 
two daughter branches are specified. Then given the rate 
for each parental branch, the rates for its two daughter 
branches are specified by integrating over the rate at the in-
ternal node that is ancestral to the daughter branches 
(Rannala and Yang 2007, eq. 7). For example, given the 
rate rAB for the parental branch AB in figure 1a, the rates 
for the two daughter branches rA and rB have a bivariate 
log-normal density f(rA, rB | rAB; νi), where νi is the rate vari-

ance parameter at locus i. This has mean E
 rA

rB


=
 rAB

rAB



and correlation depending on both νi and the lengths of the 
daughter branches (τAB). In other words, given rAB, the rates 
rA and rB are correlated because both evolved from the 
same rate at the ancestral node AB, and the correlation is 
≈1 when τAB ≈ 0 and becomes weaker when τAB increases. 
The probability density of the rates for the whole tree is cal-
culated using a pre-order tree traversal, starting from the 
root moving towards the tips, until all branches are visited.

The correlated gamma model has the joint density of 
the rates for the 2s − 1 branches as

f (R | μ, ν, τ) =
L

i=1

2s−1

j=2

f(rij | ria, μi), (13) 
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where ria is the rate for the branch ancestral to j at locus i. 
We specify the rates for species-tree branches recursively, 
starting from the root and moving towards the tips. The 
species-tree root has rate μi at locus i. Then given the 
rate for each parental branch ria, the rates for its two 
daughter branches ri1 and ri2 are independent gamma vari-
ables with mean ria and variance νi:

rij | ria, νi ∼ G
r2

ia

νi
,

ria

νi

 

, j ∈ {1, 2}. (14) 

Our correlated-gamma model assumes conditional inde-
pendence of the daughter rates given the parental rate 
(eq. 14) and fails to account for the correlation between 
daughter rates due to shared evolution (e.g., both daugh-
ter rates rA and rB in fig. 1a evolved from the same rate at 
the node AB). This is an empirical model with no mechan-
istic basis, unlike the correlated log-normal model, which 
describes the geometric Brownian motion (GBM) process.

Note that the rate variance parameter ̅ν has different in-
terpretations in clock 2 and clock 3 and between the gam-
ma and log-normal distributions. Brown and Yang (2010)
noted that ν̅ = 0.1 in the correlated log-normal model 
means fairly strong violation of the clock; the clock is easily 
rejected by a likelihood ratio test in data simulated at 
ν̅ = 0.1.

Priors for τ and θ
As in previous versions of BPP a prior was placed on the root 
age on the species tree with the remaining node ages (τs) 
following a Dirichlet distribution conditional on the root 
age. Two choices of prior were implemented for the root 
age (τ0): a gamma prior G(α, β) with mean α/β and an 
inverse-gamma prior invG(α, β) with mean β/(α − 1). 
Three choices of prior were implemented for θ: an inverse- 
gamma prior invG(α, β) with mean β/(α − 1) (first intro-
duced in BPP3, Yang 2015); a gamma prior G(α, β) with 
mean α/β, and a beta prior beta(α, β, a, b), with shape 
parameters α and β, in the range a < θ < b, and with 
mean (αb + βa)/(α + β). The inverse-gamma prior allows 
the θ parameters to be integrated out analytically but has 
the disadvantage that it is heavy-tailed, which can cause 
mixing problems. The beta density allows a hard upper 
bound to be placed on θ which could also improve mixing.

Outgroups and Constraints on Species Tree Topology
With deep phylogenetic trees and among-species rate vari-
ation explicit inclusion of outgroup species in the data may 
add phylogenetic information, although the information 
may decrease with increased rate variation among species. 
We therefore implemented topological constraints on spe-
cies trees during species tree search (A01, Yang 2015). 
Constraints are specified by defining clades using the 
constraint and outgroup keywords, the latter of 
which means that the ingroup species form a clade. 
Note that species trees are always rooted in BPP, under 
both the strict-clock and relaxed-clock models.

Extension of the Nucleotide Substitution Model
The mutation/substitution model in BPP is extended from 
JC (Jukes and Cantor 1969) to GTR+Γ (Yang 1994a, 1994b). 
Standard priors are assigned to the parameters of the 
model and proposals are implemented to modify them 
in the MCMC algorithm (Yang 2014, Chapter 8). A uni-
form Dirichlet prior is assigned to the base frequencies 
(πT , πC , πA, πG) and another uniform Dirichlet prior is as-
signed to the ‘exchangeability’ parameters (a, b, c, d, e, f) 
of the GTR model (Yang 1994a). A gamma prior is assigned 
to the shape parameter α for gamma-distributed rates 
among sites (Yang 1994b). Simpler models that are special 
cases of GTR+Γ are implemented as well, including K80 
(Kimura 1980) and HKY (Hasegawa et al. 1984, 1985).

Implementation of the MCMC Algorithms
We modified the subtree-pruning-and-regrafting (SPR) 
algorithm for proposing changes to the species tree (Yang 
and Rannala 2014; Rannala and Yang 2017) under the MSC 
+relaxed clock models. An example is illustrated in figure 1
for the case of three species, in which case the SPR move is 
equivalent to the nearest-neighbor-interchange (NNI) 
move. The move keeps the MSC parameters (τs and θs) un-
changed, and prunes off and regrafts so-called affected nodes 
on the gene trees to avoid conflicts with the proposed species 
tree, keeping the coalescent times unchanged during the 
move (fig. 1) (Yang and Rannala 2014). Thus, the MSC density 
of gene tree and coalescent times may not change in the 
move, but the likelihood for the sequence alignments may 
change. As an extreme example, for the species trees S and 
S′ of figure 1, suppose the gene tree is [(a, b), c] with both 
inner nodes to reside in the root species ABC so that there 
are no affected nodes. Although the gene tree topology 
and coalescent times remain unchanged during the move, 
the branch lengths and the likelihood change, due to the 
mapping of the branch-rates in the relaxed-clock model.

Validation of the MCMC Algorithms
We have conducted various tests to validate our imple-
mentation of the MCMC algorithm (Yang 2014, 
pp. 241–242). We ran BPP with the likelihood set to 1 to 
confirm that the MCMC samples from the prior distribu-
tion of the parameters, and the gene tree topologies and 
coalescent times match the expected distributions. This 
test was effective during the early stages of debugging. 
See the supplementary text, Supplementary Material on-
line for details.

We conducted a Bayesian simulation to confirm the ex-
pectation that when model parameters are sampled from 
the prior and used to simulate data, the posterior matches 
the prior. From

f (X) f (Θ | X) = f(Θ) f (X |Θ), (15) 

we have

∫ f(X) f (Θ | X) dX= ∫ f(Θ) f (X |Θ) dX = f(Θ). (16) 
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Thus any expectation of the prior distribution can be writ-
ten as an average over the replicate datasets and, for each 
dataset, over the posterior distribution:

h= ∫ h(Θ) f (Θ) dΘ

= ∫∫ h(Θ) f (X) f (Θ | X) dX dΘ

≈
1
R

R

i=1

∫ h(Θ) f (Θ | Xi) dΘ,

≈
1

RN

R

i=1

N

t=1

h(Θ(i)
t ),

(17) 

where Θ(i)
t , t = 1, . . . , N are an MCMC sample from the 

posterior f(Θ|Xi) in the analysis of replicate dataset Xi, 
whereas the function h(Θ) is calculated using the sampled 
values from the posterior. Each replicate dataset (Xi) is 
generated by sampling parameters Θ from the prior f(Θ) 
and then simulating under the likelihood model f (X |Θ) 
using those parameter values. Each dataset is then ana-
lyzed to generate the posterior f (Θ | Xi) and to calculate 
the posterior mean of h(Θ). By averaging over R replicate 
datasets and over N MCMC samples for each dataset, we 
recover the prior expectation h.

Here the function h(Θ) is generic. If h(Θ) = ϕ, where ϕ is 
any scalar parameter (such as τ0, the age of the species-tree 
root), h will be the mean of the distribution. If 
h(ϕ) = Iϕl<ϕ<ϕu

, then h = P{ϕl < ϕ < ϕu} will be the prob-
ability that ϕ falls in the fixed interval (ϕl, ϕu). If 
h(ϕ) = Iϕ<a, then h = P{ϕ < a} will be the cumulative 
density function (CDF). Note that the function h(Θ) can 
be multivariate, allowing the estimation of joint densities, 
even though here we focus on marginal distributions only.

Equation (17) holds for any fixed size, L, of the dataset X 
(in the current context, L is the number of loci). If L = 0, 
the posterior distribution for each dataset will match the 
prior, and equation (17) will not constitute a useful test. 
If L is very large, however, analysis of each dataset by 
MCMC will be more expensive and furthermore the pos-
terior distribution for each dataset will be highly concen-
trated so that more replicate datasets (large R) may be 
needed to produce a smooth estimation of the average 
posterior density. Note that when L→∞, the posterior 
distribution for each dataset degenerates to a point mass 
at the true parameter value. In sum, ideally the datasets 
should be small enough to avoid heavy computation but 
large enough so that the posterior distribution for each 
parameter is influenced by both the prior and the data 
likelihood. It is advisable to plot the posterior densities 
for replicate datasets to confirm that they are different 
(i.e., X is sufficiently large so that the posterior is influenced 
by the data). In our analyses, 10 loci were used in each da-
taset. Some authors have advocated the use of a formal 
statistical test to evaluate the difference between the aver-
age posterior and the prior (e.g., Cook et al. 2006). 
However, failure to detect a difference with a formal test 

could be due to either the low power of the test or small 
sample size (small R and N in eq. 17) and may not indicate 
a genuine match between the average posterior and 
the prior or the correctness of the MCMC algorithm. 
Thus to ensure that any test has nearly 100% power, a 
very large number of simulated datasets (R) may be neces-
sary, and furthermore, the impact of L needs to be 
considered.

We let Θ represent both the parameters in the MSC+re-
laxed clock model and the gene trees (which are latent 
variables in the model). We let X represent the data of 
multi-locus sequence alignments, and use equation (17) 
to recover the whole prior distribution via simulation. 
The prior distributions for some parameters are analytical-
ly available: for example, the age of the root of the species 
tree (τ0) and the θ parameters are assigned independent 
gamma priors, and the GTR exchangeability parameters 
a, b, c, d, e, f are assigned a Dirichlet prior. The prior distri-
butions for other parameters, and for the gene trees, may 
be intractable analytically but can be estimated numeric-
ally by sampling parameters from the prior f(Θ) and simu-
lating the gene trees from f(G |Θ). These methods were 
used to conduct a Bayesian simulation to validate our 
BPP implementation of the MSC-relaxed clock models using 
a species tree for three species. See the supplementary text, 
Supplementary Material online for details.

We also simulated datasets under relaxed clock models 
and confirmed that the Bayesian estimates converged to 
the true values when the data size (the number of loci) in-
creases. See the Results section for more details.

Although we were able to validate the correctness of all 
three clock models for small datasets, we encountered ser-
ious mixing problems in large datasets, in particular for 
species tree estimation under the correlated-rates model 
(clock 3). Our analysis of the two real datasets thus relied 
on the independent-rates model (clock 2). MCMC mixing 
problems are discussed below in the Results section.

Results
Validation of the MCMC Algorithms
We present two sets of test results to validate our imple-
mentation in BPP of the MCMC algorithms under 
MSC-relaxed clocks. In the first set, we ran BPP with the like-
lihood fixed at 1 to confirm that the posterior distribution 
of the parameters, which BPP samples from, matches the 
prior. We used the species tree [(A, B), C] (fig. 1) and mon-
itored 12 parameters in the MSC-relaxed clock model, for 
which the prior marginals are analytically available for com-
parison. These include θA, θAB, θABC , τABC , τAB, and the locus- 
specific substitution parameters in the GTR+Γ5: the ex-
changeability rates a, b, c, d, e, f and the gamma shape par-
ameter α. We used both the independent-rates (clock 2) 
and correlated-rates (clock 3) models, and for each exam-
ined four model settings, with different prior distributions 
of the overall rate and variance parameters (μi and νi) 
among loci (conditional i.i.d. versus gamma-Dirichlet), and 
different kernel distributions of branch rates (gamma versus 

8

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/39/8/m
sac161/6652437 by U

niversity C
ollege London user on 19 August 2022

http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac161#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msac161#supplementary-data
https://doi.org/10.1093/molbev/msac161


Bayesian Phylogenetic Inference under Relaxed Clocks · https://doi.org/10.1093/molbev/msac161 MBE

log-normal). Close matches were observed between the 
prior and the posterior in each of the eight settings 
(supplementary figs. S1 and S2, Supplementary Material
online).

In the second set of tests, we conducted a Bayesian 
simulation, generating 200 replicate datasets, each of 10 
loci, with each dataset simulated by using parameter va-
lues sampled from the prior, and then analyzing the data-
sets using BPP. Averaged over the replicate datasets, the 
posterior of parameters is expected to match the prior 
(see eq. 17). This is a stringent test, and validates both 
the simulation program and the inference program.

We used the same species tree for three species and the 
same eight relaxed-clock settings as in the first test. Besides 
the 12 parameters mentioned above, we monitored four 
additional locus-specific parameters: μ1 (the overall rate 
at locus 1), ν1 (the variance parameter at locus 1), and gene- 
tree tree height (TH or the gene-tree root age) and tree 
length (TL or the sum of branch lengths). The branch 
length on the gene tree is calculated as a sum over the dif-
ferent segments and is a function of species divergence 
times (τs), coalescent times (ts), and branch rates for the lo-
cus (fig. 1a). In this test, we estimated the priors empirically 
using sampled values in the simulation even if their analyt-
ical forms may be available. See the supplementary SI text, 
Supplementary Material online for the details of the pro-
cedure. Supplementary figures S3 and S4, Supplementary 
Material online show the prior and average posterior dens-
ities for clock 2 and clock 3, respectively, with excellent 
match as expected from theory. Note that the posterior 
varies among replicate datasets (supplementary figs. S5 
and S6, Supplementary Material online), because the data-
sets are generated by using different parameter values and 
because the datasets have a finite size so that the posterior 
is influenced by the random sampling errors due to the fi-
nite data size. However, by averaging over replicate datasets 
one recovers the prior distribution. The Bayesian simula-
tion tests both the simulation and inference components 
of the BPP program.

Simulation to Evaluate Species Tree Estimation
We simulated multilocus sequence data under the MSC 
+relaxed clock model and analyzed them using BPP, in com-
parison with ASTRAL and MP-EST. The species tree of figure 4
was used. Species O was used as the outgroup to root the 
tree in ASTRAL and MP-EST, whereas the BPP analysis used ei-
ther the three ingroup species only or all four species, in 
which case species O was specified as the outgroup. 
Note that BPP operates on rooted species trees under 
both the strict- and relaxed-clock models so that an out-
group is not required. Data were simulated under the 
GTR+Γ5 substitution model, whereas both JC and GTR 
+Γ5 models were used in the analysis. We used the 
independent-rates model (clock 2) to simulate data, 
with two values for the average rate variance parameter: 
ν̅ = 0.01 representing slight clock violation, whereas 
ν̅ = 0.1 serious clock violation. All three clock models 
were used for data analyses. This is the A01 analysis 

(Yang 2015), with the SPR algorithm (Rannala and Yang 
2017) used to move between species trees generating a pos-
terior distribution. The maximum a posteriori probability 
(MAP) tree is the Bayesian estimate of the true species 
tree and its posterior probability is a measure of confidence 
in the estimate. The results are summarized in table 2.

As mentioned above, we observed mixing problems for 
clock 3 (correlated rates) when the data comprised 20 or 
more loci. Although the results at L = 10 loci are similar 
to those for clock 2, performance under clock 3 was poorer 
in larger datasets (with L ≥ 20), and sometimes perform-
ance even deteriorated when more loci were included in 
the data (table 2). We suggest that the poor performance 
in recovering the true species tree under clock 3 is due to 
mixing difficulties of the MCMC algorithm, and does not 
reflect the true performance of the inference method. A 
typical symptom was that different runs of the same ana-
lysis produced inconsistent results. We thus disregard the 
results for clock 3 with L > 20.

At ν̅ = 0.01, the molecular clock holds approximately, 
and all three clock models are expected to perform well, 
with perhaps an advantage for clock 1 (strict clock), due 
to its smaller size (with fewer parameters). This expect-
ation held for clock 1 and clock 2 (independent rates) 
(table 2). Also clock 1 and clock 2 recovered the true spe-
cies tree with higher probabilities than the two-step meth-
ods ASTRAL and MP-EST. For example, in the simulation with 
locus-rate variation at L = 200, clock 1 and clock 2 recov-
ered the true species tree in 81% and 86% of the replicates, 
whereas the proportions were 66% and 65% for ASTRAL and 
MP-EST. This may be explained by the fact that BPP uses in-
formation in the gene-tree branch lengths (although ac-
commodating their uncertainties), whereas ASTRAL and 
MP-EST do not. Note that ASTRAL and MP-EST should, in the-
ory, be equivalent to one another in the case of three spe-
cies plus the outgroup with one sequence sampled per 
species. The observed differences between the two meth-
ods (table 2) are due to the different ways in which they 
treat ties in the estimated gene trees.

When the species are closely related so that the molecu-
lar clock holds approximately and the sequences are highly 
similar, we expect the mutation model to be unimportant 

A CB

S

R

O

T

FIG. 4. A species tree for four species (A, B, C, with O to be the out-
group) used to simulate multilocus sequence data for species tree 
estimation. The MSC parameters used are τR = 0.2, 
τS = 0.105, τT = 0.1, θR = θS = 0.01, and θT = 0.05.
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and the clock1+JC model to be adequate for inference using 
BPP, as the role of the mutation model is to correct for mul-
tiple hits in the likelihood calculation in BPP (Xu and Yang 
2016; Shi and Yang 2018). We examined this expectation 
by comparing the posterior probabilities for MAP trees in-
ferred under JC and GTR+Γ for datasets simulated under 
ν̅ = 0.01 in supplementary figure S7, Supplementary 
Material online. With outgroup, GTR+Γ recovered the 
true tree more often than JC, and JC tends to produce pos-
terior probabilities that are too high. Without outgroup, 
the two models are much more similar. This may be be-
cause the sequence divergence levels are far higher when 
the outgroup is included in the data. The largest average se-
quence distance between species is approximately 2τR + 

θR = 0.41 mutations per site in datasets with outgroup, 
and ∼0.22 without outgroup (fig. 4). At such high levels 
of sequence divergence, correction for multiple hits may 
be important. For comparison, the sequence divergence be-
tween any gibbon species and the human outgroup is 
∼3.1% and ∼3.6% for coding and noncoding loci, respect-
ively (Shi and Yang 2018, table 7). The results suggest 
that JC+clock should be adequate for analysis of genomic 
data from closely related species, in which the molecular 
clock holds approximately and the between-species se-
quence divergence is low, within 10–15%, say. Note that 
here the data were simulated under GTR+Γ, and the JC 
model was grossly wrong in its goodness of fit to the data.

At ν̅ = 0.1, the molecular clock assumption is seriously 
violated, and the strict-clock model (clock 1) is expected 
to perform more poorly than clock 2 or clock 3. Clock 1 
was indeed poorer than clock 2, especially at L = 100 or 
200 loci (table 2). Also clock 2 recovered the true species 
tree with higher probabilities than the two-step methods 
ASTRAL and MP-EST. For example, in the simulation with 
locus-rate variation at L = 200, clock 2 recovered the true 
species tree in 76% of replicates, whereas the proportions 
were 61% and 63% for ASTRAL and MP-EST, respectively.

Finally the impact of the outgroup is noteworthy. When 
the outgroup was excluded, BPP performed consistently 
worse. For example, in the simulation with ν̅ = 0.1 and 
with locus-rate variation, clock 2 recovered the true species 
tree with probability 76% at L = 200 when the outgroup 
was used, but this dropped to 56% when the outgroup was 
excluded. Even though BPP operates on rooted trees, including 
an outgroup adds useful phylogenetic information. In par-
ticular, outgroups may be expected to provide important in-
formation about the placement of the root for the ingroup, 
and closely related outgroups may be expected to be more 
informative than distant outgroups. Nevertheless, BPP/clock 
2 recovered the true species tree without the outgroup 
with increasingly higher probability when the number of 
loci increased from 10 to 200 (table 2), suggesting that the 
method is statistically consistent. The results confirm that 
there is valuable phylogenetic information in the gene-tree 
branch lengths even when the clock is seriously violated, 
and that the MSC+relaxed clock model can extract that in-
formation. Note that the two-step methods (ASTRAL and 
MP-EST) cannot produce an estimate of the species tree at 
all in the case of three species without an outgroup as there 
is only one unrooted gene tree for three species.

Simulation to Evaluate Parameter Estimation
In the second set of simulations, we examined the per-
formance of BPP for parameter estimation under the MSC 
+relaxed clock model. We used estimates of MSC para-
meters obtained from the BPP analysis of the 250 UCE 
loci for the ratites to simulate biologically realistic datasets 
under the independent-rates model (clock 2) using species 
tree 1 of figure 5 both to simulate and to analyze the data 
(see Materials and Methods). The GTR+Γ5 model was used 
to simulate data, with model parameters sampled for each 
locus.

Table 2. Probability (estimated using 100 simulated replicates) that the 
True Species Tree is Recovered by BPP under Different Clock Models and 
by ASTRAL and MP-EST.

GTR+Γ JC

ν̅ LR Loci C1 C2 C3 C1 C2 C3 AST MP

With outgroup
0.01 No 10 54 55 56 52 51 53 50 44
0.01 No 20 51 50 46 49 50 48 44 43
0.01 No 100 77 77 33 74 74 54 71 70
0.01 No 200 87 87 44 75 75 50 64 65
0.01 Yes 10 45 44 45 51 52 47 45 46
0.01 Yes 20 53 54 48 47 48 42 39 36
0.01 Yes 100 77 81 46 71 71 51 52 52
0.01 Yes 200 81 86 40 79 81 46 66 65
0.1 No 10 35 39 40 39 43 46 44 42
0.1 No 20 39 53 48 46 44 42 46 45
0.1 No 100 50 63 35 48 51 43 52 52
0.1 No 200 72 84 51 66 75 48 75 76
0.1 Yes 10 47 46 47 43 47 45 40 38
0.1 Yes 20 49 54 56 49 52 50 52 51
0.1 Yes 100 59 72 40 63 70 43 54 55
0.1 Yes 200 69 76 44 66 72 46 61 63
Without outgroup
0.01 No 10 47 49 43 47 47 44
0.01 No 20 48 47 48 50 49 43
0.01 No 100 58 56 33 65 60 35
0.01 No 200 78 78 42 78 78 52
0.01 Yes 10 45 41 46 48 45 49
0.01 Yes 20 52 53 56 53 53 52
0.01 Yes 100 69 71 41 69 69 47
0.01 Yes 200 75 73 47 77 75 34
0.1 No 10 33 36 35 30 36 36
0.1 No 20 39 40 40 39 39 41
0.1 No 100 41 43 33 40 39 27
0.1 No 200 58 65 43 58 65 43
0.1 Yes 10 45 44 43 43 44 43
0.1 Yes 20 38 42 36 38 40 36
0.1 Yes 100 47 51 37 49 54 27
0.1 Yes 200 52 56 37 51 57 35

Note.—Data were simulated under the independent-rates model (clock 2) with 
and without locus-rate variation (LR) using the four-species tree of figure 4. 
One sequence was sampled per species per locus. The simulation options are 
clock = 2 ̅ν 5 iid g (where ν̅ = 0.01 or 0.1), and locusrate = 1 5 iid. 
The data were analyzed using BPP to infer the species tree under the strict clock 
(C1 = clock 1), the independent-rates (C2 = clock 2) and the correlated-rates 
(C3 = clock 3) models, and using ASTRAL (AST) and MP-EST (MP). The control files 
for simulating and analyzing the data using BPP are shown in supplementary figure 
S10, Supplementary Material online. Results for clock 3 with L ≥ 20 loci are unre-
liable due to MCMC mixing problems.
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The results are summarized in figure 6. Parameters were 
well estimated under the true model: clock2+GTR+Γ, al-
though the population size parameters for ancestral spe-
cies corresponding to short branches on the species tree 
(θ20, θ21, θ23, etc.) had large 95% highest probability dens-
ity (HPD) credibility intervals (CIs). In particular, all species 
divergence times were well estimated, with the HPD CIs in-
cluding the true values. Note that here the replicate datasets 
are simulated using fixed parameter values, so we are evalu-
ating the Frequentist properties of a Bayesian estimation 

method. The results are similar to those from the simulation 
under the strict clock of Huang et al. (2020), in which it was 
found that the coverage probability of the Bayesian CI ex-
ceeds the nominal 95% for well estimated parameters.

Assuming either the strict clock or the JC substitution 
model led to biased parameter estimates; in particular, 
species divergence times were seriously underestimated. 
The incorrect assumption of the strict clock had greater 
impact than the incorrect assumption of JC, with the 
biases being the greatest in the JC+clock setting (fig. 6a).

(a) Tree 1 (b) Tree 1 (c) Tree 1 

(Cloutier et al. 2019) (Mitchell et al. 2014) (Smith et al. 2013)
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FIG. 5. Three species trees for the ratites that differ concerning the placement of the rheas (node 1). Node 2 is in all three trees but received weak 
support in some analyses (see text). Nodes are numbered to identify parameters in figures 6 & 12. Branches are drawn to represent the posterior 
means of species divergence times (τ) obtained from BPP analyses of the 250-loci UCE dataset under the independent-rates model (clock 2) ac-
counting for among-loci rate variation (locusrate = 1 0 0 5 dir; clock = 2 2 20 5 dir G).

FIG. 6. Posterior means and 95% HPD intervals for parameters when the data were simulated under the independent-rates model (clock 2) using 
parameter estimates from the ratite dataset (tree 1 in fig. 5) and analyzed under either the strict clock (clock 1) or the relaxed clock (clock 2). The 
species tree was fixed in the BPP analysis. Horizontal lines represent the true values. Note that both τs and θs are measured in the expected num-
ber of mutations per site, whereas ν̅ is the rate variance parameter in the rate-evolution model.
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Analysis of the Gibbon Datasets
Species Tree Estimation under Different Clock Models and 
Priors
We analyzed two datasets from five species of gibbons, 
with the human used as the outgroup (fig. 7). The datasets 
consist of 500 noncoding loci and 1000 coding loci, re-
spectively, and were analyzed previously under the strict 
clock and the JC model (fig. 3A&B in Shi and Yang 
2018). Here we used the strict clock, either with or without 
locus-rate variation, and the independent-rates model 
(clock 2) with different distributions of overall rates (μi) 
and rate variance parameters (νi) among loci (iid vs. 
dir) and different distributions of branch rates for each 
locus (LN vs. G), with 4 = 2 × 2 prior settings. Both JC 
and GTR+Γ were used. The results are summarized in 
figure 8.

The strict clock (clock 1) and the independent-rates 
models (clock 2) produced very similar results in both da-
tasets (fig. 8). For the coding dataset, all analyses, under 
both JC and GTR+Γ and under both clock 1 and clock 2, 
favored tree 1, with posterior ∼0.6, whereas tree 2 had 
∼0.2 (fig. 8). For the noncoding dataset, tree 2 was the 
MAP tree with posterior ∼0.53 under JC while tree 1 had 
0.20, as in Shi and Yang (2018). Under GTR+Γ, trees 1 
and 2 received nearly equal support. As the substitution 
model had some impact on the posterior probabilities of 
species trees in one of the two datasets, we conducted 
the same analysis using each of the 35 blocks of loci 
from the gibbon genome of Shi and Yang (2018, fig. 
3A&B), with the results summarized in supplementary 
figure S8, Supplementary Material online. Each block was 
analyzed under the JC or GTR+Γ4 models and the strict 
clock (clock 1). The results for JC are nearly identical to 

those in Shi and Yang (2018, fig. 3A&B). Overall, the two 
mutation models produced highly similar results, no 
more different than in the simulated datasets of 
supplementary figure S7, Supplementary Material online.

We evaluated the impact of different priors for the aver-
age rate variance parameter, ν̅ ∼ G(αν̅, βν̅), on species tree 
estimation, assuming the GTR+Γ model. We used αν̅ = 1, 
2, 10 and βν̅ = αν̅, 10αν̅, 100αν̅, generating 3 × 3 = 9 priors 
in total. Note that the prior has mean αν̅/βν̅ and variance 
αν̅/β2

ν̅ , so that the mean reflects our prior assumption 
about the extent of clock violation while αν̅ measures 
the confidence in the prior mean. The prior mean varied 
from 0.01 (very slight clock violation) to 1 (very severe 
clock violation). The different priors produced the same 
MAP trees with very similar posterior probabilities, sug-
gesting that the analyses were robust to the priors (fig. 9).

Parameter Estimation under Different Clock Models and 
Priors
We then examined the estimates of parameters in 
the MSC model under the same six clock models as in 
figure 8, with results shown in figure 10. First, we note 
that species divergence times (τ) and population sizes 
(θ) for modern species were well estimated with narrow 
CIs, but population sizes for ancestral species were poorly 
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FIG. 8. Posterior probabilities for species trees 1 and 2 for the gibbons 
(fig. 7) obtained from BPP analysis of the coding and noncoding da-
tasets under different clock models. In each panel are presented 
two replicate runs for each of six analyses, specified as (1) clock = 
1 (strict clock, one rate for all loci); (2) locusrate = 1 0 0 5 
iid, clock = 1 (strict clock, i.i.d. rates μi among loci); (3) 
locusrate = 1 0 0 5 iid, clock = 2 10 100 5 iid LN 
(clock 2, i.i.d. prior for μi and νi among loci, and log-normal kernel); 
(4) locusrate = 1 0 0 5 iid, clock = 2 10 100 5 iid G 
(clock 2, i.i.d. prior for μi and νi among loci, and gamma kernel); (5) 
locusrate = 1 0 0 5 dir, clock = 2 10 100 5 dir LN 
(clock 2, dir prior for μi and νi among loci, and log-normal kernel); 
(6) locusrate = 1 0 0 5 dir, clock = 2 10 100 5 dir G 
(clock 2, dir prior for μi and νi among loci, and gamma kernel). 
The strict clock (clock 1) is assumed in the first two analyses while 
the independent-rates model (clock 2) is assumed in the next four 
analyses. The substitution model is either JC or GTR+Γ. 
Inverse-gamma priors are assigned on τ and θ.
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FIG. 7. Species trees 1 and 2 for five species of gibbons: Hylobates mo-
loch (Hm), H. pileatus (Hp), Nomascus leucogenys (N), Hoolock leuco-
nedys (B), and Symphalangus syndactylus (S), with the human as the 
outgroup (O). These are the top two species trees in the species-tree 
analysis of genomic data by Shi and Yang (2018) (the A01 analysis of 
Yang 2015). Branches are drawn to represent the posterior means of 
divergence times (τs) in the BPP analysis of the noncoding data under 
the JC+clock model.
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estimated with wide CIs, especially for species correspond-
ing to short internal branches in the tree.

Second, parameter estimates were overall very similar be-
tween the mutation models (JC and GTR+Γ) and between 
the strict clock (clock 1) and relaxed-clock (clock 2) models 
(fig. 10). One exception was the impact of the locus-rate vari-
ation on estimation of species divergence time and popula-
tion size for the root population on the species tree (τr and 
θr in fig. 7). Ignoring mutation rate variation among loci is 
known to lead to overestimation of the ancestral population 
size and underestimation of the species divergence time. This 
effect was noted by Burgess and Yang (2008) and affects 
mostly the root of the species tree only. For those data, the 
locus-rate variation had a slightly larger effect than 
the clock models.

Third, estimates of the rate variance parameter were 
overall small (ν̅ < 0.1) and had large uncertainties, consist-
ent with our expectation that the clock holds approxi-
mately for those data as the species are closely related. 
The large uncertainties in ̅ν may be due to the small species 
tree with only five species. We note that in this case esti-
mates of ν̅ were similar between the gamma and log- 
normal models, even though the parameter has different 
interpretations in the two models.

Finally, estimates of τs and θs were smaller for the coding 
data than for the noncoding data. This is because the neutral 
mutation rate is reduced in the coding loci by purifying selec-
tion removing deleterious nonsynonymous mutations. 
Indeed Shi and Yang (2018) found that the posterior means 
under the JC+clock model were nearly perfectly linear be-
tween the two sets of data, with the regressions τ(C) = 
0.73τ(NC) and θ(C) = 0.62θ(NC). Since our estimates under 
clock 2 and GTR+Γ were nearly identical to those under JC 
+clock, the same relationships apply to the estimates here.

We then evaluated the impact of the different priors for 
the rate variance parameter (ν̅) on parameter estimation, 

with the GTR+Γ model assumed (fig. 11). The different 
priors had virtually no impact on the species divergence 
times (τ) and population sizes (θ) for modern species, para-
meters that were well estimated, but had some minor ef-
fects on the ancestral population sizes, which were poorly 
estimated. However, estimates of the variance parameter 
ν̅ were affected by the prior (fig. 11). The posterior mean 
of ̅ν and the CI width increased with the increase in the prior 
mean, αν̅/βν̅, and the prior mean had more impact than the 
prior variance. The sensitivity of ̅ν estimates to the prior (fig. 
11) and the large CIs (figs. 10 and 11) both reflect the low 
information content about the parameter in the data.

In sum, our BPP analyses of the gibbon datasets (figs. 8–11) 
confirmed the expectation that JC+clock is adequate for 
shallow species trees when the species are closely related, 
the molecular clock approximately holds, and the se-
quences in the alignments are highly similar. JC is clearly 
an extremely unrealistic model (for example, the frequen-
cies of the four nucleotides are rarely ∼0.25 each), but be-
cause the role of the mutation model in BPP is mainly to 
correct for multiple hits, the realism of the mutation model 
used is unimportant when the sequences are highly similar. 
We recommend the use of JC+clock for analysis of genomic 
data for closely related species, as it is far more efficient 
computationally than GTR+Γ.

Analysis of the Ratite Data
We used the independent-rates model (clock 2) to analyze 
a dataset of 250 UCE loci to infer the species tree for the 
flightless birds (Palaeognathae) (fig. 5). Four clock models 
were used with either the iid or dir distributions of 
overall rates (μi) and variances (νi) among loci, and with 
either the log-normal (LN) or gamma (G) distributions 
of branch rates. Preliminary runs suggested that several 
clades had total support (with posterior ∼1), irrespective 
of the model and prior. We thus applied four clades or 
topology constraints to reduce the space of MCMC 
species-tree search: the kiwis (four species), tinamous 
(four species), rheas (two species), and emu+cassowary 
(two species), besides using the ostrich as the outgroup 
(fig. 5). We ran each of the four analyses 40 times, with 
four different starting species trees. The MAP trees and 
posterior probabilities are shown in supplementary 
figure S9, Supplementary Material online. The MCMC al-
gorithm for stochastic tree search showed serious mixing 
problems, as seen by the differences among the replicate 
runs. The starting trees did not have an impact in this 
case. Tree 2 was the MAP tree in more replicate runs 
than any other tree under all four models (it was the 
MAP tree in 48.1% of the 4 × 40 runs) (supplementary 
fig. S9, Supplementary Material online). We suggest that 
the MAP tree was tree 2 under all four models, and com-
bined samples across replicate runs in which the MAP tree 
was tree 2 to calculate the posterior probability for tree 2 
to be 0.90, 0.87, 0.92, 0.85, for the four models. We discuss 
MCMC mixing problems later in the Discussion section.

In tree 2 (fig. 5), the rheas diverged first, followed by the 
divergence of the tinamou+moa clade from the kiwi-emu 
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FIG. 9. Posterior probabilities for species trees 1 and 2 (fig. 7) for the 
gibbon datasets under different priors in the relaxed-clock models. 
Two replicate runs are presented for each of nine priors, specified 
by locusrate = 1 0 0 5 iid, clock = 2 αν̅ βν̅ 5 iid G, 
where the parameters are given as (αν̅ , βν̅) = (1, 100), (2, 200), (10, 
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ν̅ . The GTR+Γ substitution model is assumed.
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clade. Cloutier et al. (2019) analyzed the full UCE data of 
3158 loci and used both ostrich and chicken as the out-
groups, recovering tree 1 (fig. 5) as the estimate using 
both ASTRAL and MP-EST, which has the tinamou+moa clade 
diverging first. A number of factors might explain the dif-
ference, including data filtering, the use of all or a subset of 
the loci, the different outgroups, and the different meth-
ods (BPP vs. summary methods).

To identify the possible reasons, we applied our filters to 
all three types of noncoding nuclear markers from Cloutier 
et al. (2019): the UCEs (ultraconserved elements), the in-
trons, and the CNEEs (conserved nonexonic elements). 

For each filtered dataset, we used ASTRAL to infer the species 
tree with different subsets of loci, with three outgroup op-
tions: (i) the chicken and the ostrich, (ii) the ostrich only, 
and (iii) the chicken only. The results are summarized in 
supplementary table S1, Supplementary Material online. 
With the ostrich as the outgroup, the ASTRAL analysis of 
the 250-loci UCE data produced tree 2 as the estimate 
(supplementary table S1, Supplementary Material online), 
consistent with the BPP analysis. However, tree 1 was recov-
ered when the chicken was used as the outgroup. With the 
ostrich+chicken outgroup, ASTRAL analyses of the full UCE 
and introns data recovered tree 2 as the estimate, 
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FIG. 10. Posterior means and 95% HPD CIs for the 16 parameters in the MSC model on species tree 1 (fig. 7) in analyses of the gibbon datasets 
under different clock models. Estimates of θs and τs are multiplied by 103. Each panel includes two replicate runs under six clock models as in 
figure 8, specified by (1) clock = 1 (strict clock, one rate for all loci); (2) locusrate = 1 0 0 5 iid, clock = 1 (strict clock, i.i.d. rates μi 
among loci); (3) locusrate = 1 0 0 5 iid, clock = 2 10 100 5 iid LN (clock 2, i.i.d. prior for μi and νi among loci, and log-normal 
kernel); (4) locusrate = 1 0 0 5 iid, clock = 2 10 100 5 iid G (clock 2, i.i.d. prior for μi and νi among loci, and gamma kernel); 
(5) locusrate = 1 0 0 5 dir, clock = 2 10 100 5 dir LN (clock 2, dir prior for μi and νi among loci, and log-normal kernel); 
(6) locusrate = 1 0 0 5 dir, clock = 2 10 100 5 dir G (clock 2, dir prior for μi and νi among loci, and gamma kernel). The panel 
for ν̅ shows two replicate runs for each of the four clock-2 analyses.
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FIG. 11. Posterior means and 95% HPD CIs for 16 parameter in the MSC model on species tree 1 for the gibbons (fig. 7) using different priors. The 
prior is specified as follows, as in figure 9: locusrate = 1 0 0 5 iid, clock = 2 αν̅ βν̅ 5 iid G, with (αν̅ , βν̅) = (1, 100), (2, 200), (10, 
1000), (1, 10), (2, 20), (10, 100), (1, 1), (2, 2), and (10, 10). Estimates of τ and θ are multiplied by 103.
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while Cloutier et al. (2019) recovered tree 1; this difference 
should be due to our filtering of the data (supplementary 
table S1, Supplementary Material online). In sum, data fil-
tering and the different outgroups had major impacts on 
species tree estimation in the ratite datasets. We note 
that Simmons et al. (2022) found similar dependence of 
the ASTRAL and MP-EST results on the use of the outgroup 
species and argued that the chicken may not be the best 
outgroup species for rooting the ratite tree.

In the analysis of the same 250-loci UCE dataset, both BPP 

and ASTRAL produced tree 2 as the estimate, but the poster-
ior probabilities for tree 2 from BPP were much higher than 
the local node support values from ASTRAL, that is, 0.93 for 
N1 and 0.67 for N2 in tree 2 (fig. 5, supplementary table 
S1, Supplementary Material online). This may be due to 
the fact that ASTRAL uses reconstructed gene tree topologies 
as data and ignores information in gene-tree branch 
lengths whereas BPP makes use of both sources of informa-
tion, potentially increasing power. However, the two mea-
sures of support may not be directly comparable.

Next we ran BPP to estimate the parameters under the 
MSC+relaxed clock model with the species tree fixed. 
Clock 2 (independent rates) was used together with GTR 
+Γ. This is the A00 analysis (Yang 2015), which did not suf-
fer from serious mixing problems as in the A01 analysis. 
The posterior means and 95% HPD CIs for all parameters 
for species trees 1 and 2 of figure 5 are shown in figure 12. 
The CIs for most parameters were narrower than those 
from the simulated data (fig. 6), suggesting that the real 
dataset was more informative than the simulated datasets, 
presumably due to the fact that the average sequence 
length among the 250 UCE loci is 2525, much greater 

than the sequence length used in the simulation 
(500 sites).

Discussion
Simulation of Gene Trees and Sequence Alignments 
under the MSC+relaxed Clock Model
We have implemented a simulation procedure to generate 
gene trees with branch lengths and sequence alignments 
at multiple loci under the MSC+relaxed clock model. 
The simulation follows the model formulation of figure 3
(see the Materials and Methods section) and can adopt 
the GTR+Γ substitution model (Yang 1994a, 1994b) or 
its special cases, with the substitution parameters such 
as base frequencies or the gamma shape parameter for 
rate variation among sites sampled randomly among 
loci. We generate gene trees (topologies and coalescent 
times) on a rooted species tree with node ages represent-
ing species divergences times, and then use a rate- 
evolution model to simulate the substitution rates for dif-
ferent branches at different loci. The species divergence 
times, coalescent times and branch rates determine the 
branch lengths on the gene trees (fig. 1a), which can be 
used to generate the sequence alignment for the locus. 
Parameters in this MSC+relaxed clock model include spe-
cies divergence times (τs), population sizes for both mod-
ern and ancestral species (θs), and parameters in the 
rate-evolution model (e.g., μi and νi). The species tree is al-
ways rooted and ultrametric, whereas the gene trees are 
rooted but not ultrametric, with the branch lengths given 
by the products of time duration and species-specific and 
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FIG. 12. Posterior means and 95% HPD CIs for the 27 parameters in the MSC model on species tree 1 (fig. 5) in analyses of the ratite dataset under 
different clock models. The independent-rates model (clock 2) was assumed, with four prior settings concerning the distribution of overall rates 
(μi) and rate variance parameters (νi) among loci (iid vs. dir) and concerning the distribution of the branch rates (G vs. LN). Each panel shows 
four replicate runs for each of the four clock model settings.
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locus-specific substitution rates (fig. 1a). The asymptotic 
performance of the inference method is then assessed by 
letting the number of loci approach infinity while the se-
quence length is finite and fixed.

Recently, Roch et al. (2019) studied the inconsistency of 
coalescent-based summary methods, as well as partitioned 
and unpartitioned concatenation methods, for species 
tree estimation when the molecular clock is violated. An 
unrooted gene tree for four taxa was used to generate se-
quence data at multiple loci, which had two long external 
branches (with length ρ, measured in the probability of dif-
ferent sites) on two sides of the short internal branch, 
while the other three branches (one internal and two ex-
ternal) had the length ρ3. This is the characteristic long- 
branch attraction (LBA) tree studied by Felsenstein 
(1978). When ρ is small and the sequence length is fixed, 
all summary methods of species tree estimation were 
found to be inconsistent, converging to an incorrect spe-
cies tree when the number of loci or the number of 
gene trees approach ∞. Even though the maximum- 
likelihood (ML) method is consistent in recovering the 
gene trees (when the number of sites in the sequence ap-
proaches ∞, at a fixed finite sequence length it may re-
cover a wrong gene tree (the LBA tree) with a higher 
probability than the true gene tree. As a result the more 
probable incorrectly reconstructed gene tree becomes a 
(statistically inconsistent) estimate of the species tree, 
when the number of loci approaches ∞. The result is inter-
esting and highlights the importance of accounting for 
gene-tree reconstruction errors in species tree estimation. 
Nevertheless, the framework adopted by Roch et al. (2019)
for evaluating the statistical properties of a species tree es-
timation method does not appear to be valid. The gene 
trees considered by Roch et al. (2019) vary in branch 
lengths in only one dimension, and are akin to isolated da-
tasets which in total have near-zero probability of occur-
rence under an MSC model with violated clocks. One 
cannot draw valid statistical conclusions about the infer-
ence method based on such isolated datasets. Correctly 
gene trees with branch lengths are random variables, 
and both the gene-tree topology and all its five branch 
lengths should vary, as specified by the MSC and the rate- 
change model.

The simulation procedure implemented in BPP may pro-
vide a flexible tool for generating multilocus sequence da-
tasets under the MSC with relaxed clocks and realistic 
substitution models, useful for studying the statistical per-
formance of methods for estimating the species tree and 
divergence times.

Mixing Issues of the MCMC Algorithm in BPP

Our comprehensive tests suggest that our implementation 
of the relaxed clock models (clock 2 and clock 3) are cor-
rect in that the MCMC samples from the posterior under 
the model. However, we observed MCMC mixing issues 
in the algorithm for changing species tree, in particular 
under the correlated-rates model (clock 3). Mixing is con-
siderably poorer under the relaxed-clock models than 

under the strict clock. The main reason appears to be 
the increased dimension in the trans-model move. Note 
that species trees correspond to different statistical mod-
els, while τs, θs, and the locus-specific rate variance para-
meters and branch rates (μi, νi, rij) may all be considered 
parameters in the model. When we change a species tree 
through an NNI or SPR move (Yang and Rannala 2014; 
Rannala and Yang 2017), we modify the gene trees at 
the multiple loci to avoid conflicts, and the branch rates 
(rij) are transferred to the new trees at each locus, necessi-
tating the re-evaluation of the sequence likelihood. The 
branch rates rij did not exist under the clock, and their 
introduction in the relaxed-clock models increases the di-
mension of the MCMC algorithm considerably, leading 
to much reduced acceptance rate of the species-tree pro-
posal. Similarly, the SPR move is “larger” under the 
correlated-rates model (clock 3) than under the 
independent-rates model (clock 2), involving changes to 
more variables, which may explain why clock 3 had even 
more severe mixing problems. While we were able to run 
BPP under the strict clock on datasets with >10,000 loci 
(Rannala and Yang 2017; Shi and Yang 2018), here we en-
countered mixing problems with species tree estimation 
with hundreds or even dozens of loci.

It may be noted that mixing under the relaxed-clock 
models was better for the two gibbon datasets with 500 
or 1000 loci than for the ratite dataset with only 250 loci. 
This may be because there are more sequences per locus 
in the ratite dataset and furthermore the ratite sequences 
are more divergent so that each ratite locus is more inform-
ative than a gibbon locus. In large or informative datasets, 
the within-model parameter posterior becomes sharper, 
making it harder to move across models as the proposed 
parameters are likely to miss the spike in the parameter pos-
terior under the new model.

Thus, our implementation in BPP of the MSC+relaxed 
clock model for species tree estimation (Yang 2015, the 
A01 analysis) is currently only feasible for use with small 
datasets, and should be considered a proof of concept. 
We leave it to future work to improve the mixing proper-
ties of the algorithm, so that the models can be applied to 
datasets with thousands of loci. We note that the prior on 
θ may affect MCMC mixing, and in particular the gamma 
and inverse-gamma priors have different features related 
to mixing. First, heavy-tailed priors on θ may cause mixing 
problems because they sometimes generate implausibly 
large θs for populations represented by short internal 
branches on the species tree (e.g., θt and θu in the gibbon 
trees in fig. 10), possibly because extremely large ancestral 
θs may make an implausible species tree look reasonable. 
The gamma is a light-tailed distribution while the inverse- 
gamma is heavy-tailed. Second, integrating out θs analytic-
ally reduces the dimension of the MCMC algorithm and 
helps mixing. The inverse-gamma is a conjugate prior for 
θs and allows θs to be integrated out analytically, while 
the gamma does not. Whether the gamma or the inverse- 
gamma is a better prior may thus depend on the particular 
datasets.
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One idea worth exploring is to discretize the branch 
rates as an approximation to the continuous rates gener-
ated in the rate-evolution process and then to sum over 
the discrete rates analytically in the pruning algorithm, 
as achieved in the so-called speed-dating algorithm 
(Akerborg et al. 2008). If the branch rates are integrated 
out, they will not contribute to the dimension of the prob-
lem in the cross-tree proposal. Another idea is to simultan-
eously change the branch rates and coalescent times for 
each locus such that the gene-tree branch lengths stay 
fixed. This was originally proposed by Thorne et al. 
(1998) in the phylogenetic dating context and recently im-
plemented in the context of MSC with relaxed clocks by 
Douglas et al. (2022) in STARBEAST3. We note that recent al-
gorithmic improvements in STARBEAST3 have made the pro-
gram feasible for datasets as large as 100 loci (Douglas et al. 
2022, table 3).

Assumptions and Utility of the Current Algorithms
Our algorithm for parameter estimation when the species 
tree is fixed (the A00 analysis, Yang 2015) does not seem to 
suffer from the mixing problems mentioned above. While 
the GTR+Γ model involve much more computation than 
the JC model, proposals changing the parameters in GTR 
+Γ at different loci are parallelized. We suggest that the 
current implementation in BPP may be most useful for es-
timating important population parameters (such as spe-
cies divergence times, population sizes, and even the 
magnitude of rate variation over time), after the species 
tree topology is estimated using computationally efficient 
two-step methods such as ASTRAL or MP-EST.

We also envisage examining the posterior distribution of 
gene trees at individual loci to identify genes that show un-
usual phylogenetic relationships as a possible indication for 
natural selection. The posterior distribution of substitution 
rates between loci might be used to identify genes that are 
co-evolving, for example, with strongly correlated branch 
rates. We expect such analysis to have power only if large 
species trees with many species are analyzed.

Here we examine some of the assumptions made in the 
MSC-relaxed clock models. First the models implemented 
here ignore cross-species introgression or migration. 
Ignoring gene flow when it exists may cause serious under-
estimation of species divergence times, as the model of no 
gene flow will then misinterpret the reduced sequence di-
vergences between species due to gene flow as evidence 
for recent species divergence. We have recently implemen-
ted the multispecies-coalescent-with-introgression (MSci) 
model in BPP assuming the strict clock model (Flouri et al. 
2020). It will be straightforward to extend the model to 
work under the relaxed clocks.

Similarly both the independent- and correlated-rates 
models may be unrealistic for some species groups. One as-
sumption made by all current relaxed-clock models is that 
substitution rates evolve independently among loci, 
whereas there exists evidence for strong lineage effects in 
substitution rates, in that almost all genes from a 
fast-evolving lineage tend to have high rates (Lee and Ho 

2016; Xu and Yang 2016). For example, in mammals, ro-
dents tend to have high rates than primates, and the effect 
is correlated with life-history traits of the species which af-
fect all genes in the genome (Li et al. 1987; Amster and 
Sella 2016). We leave it to future work to implement 
such models of rate evolution with lineage effects or cor-
related rate evolution among loci. Models of independent 
rate evolution that ignore the correlation among loci are 
still able to fit arbitrary rates to branches on the gene trees, 
but may be expected to exaggerate the amount of infor-
mation in the data. In other words, under relaxed-clock 
models accommodating lineage effects of rate evolution, 
the lineage rates will be confounded with species diver-
gence times, making relaxed-clock dating extremely chal-
lenging (Yang and Donoghue 2016). Under the 
independent-rates model, the infinite- and finite-sites 
theories (Rannala and Yang 2007; Zhu and Yang 2015) pre-
dict that when the number of loci increases, the precision 
of species divergence times will approach a fixed limit gi-
ven under the strict-clock model, reflecting the uncertain-
ties in the fossil calibrations. Strong lineage effects in rate 
evolution may change the asymptotics of relaxed-clock 
dating, and in particular, the prior of divergence times spe-
cified by the model of cladogenesis is expected to have a 
significance impact on the posterior of divergence times 
(Xu and Yang 2016).

Materials and Methods
Simulation to Evaluate Species Tree Estimation
We conducted two sets of simulations to evaluate the per-
formance of the relaxed clock models implemented in BPP 

for species tree estimation and parameter estimation, re-
spectively. In each, data of sequence alignments at multiple 
loci were simulated using the simulate option of BPP4. 
Simulation consisted of three steps: (i) generation of gene 
trees and coalescent times for each locus under the MSC 
model, (ii) simulation of substitution rates for each locus 
along species-tree branches (which determine gene-tree 
branch lengths), and (iii) simulation of sequences along 
branches of the gene trees. The resulting sequences at the 
tips of the gene trees constitute the data. A sample BPP con-
trol file (MCcoal.ctl) used for the simulation is shown in 
supplementary figure S10, Supplementary Material online.

The first set of simulations used the four-species tree 
(A, B, C, and outgroup O) of figure 4 with an 
independent-rates model (clock 2). The simulated se-
quences were analyzed using BPP under all three clock mod-
els, and using two summary methods, ASTRAL (Mirarab and 
Warnow 2015) and MP-EST (Liu et al. 2010). The species 
tree had divergence times τR = 0.2, τS = 0.105, and 
τT = 0.1, and population size parameters θR = θS = 0.01, 
θT = 0.05 (fig. 4). The short internal branch, in 2(τS − 
τT)/θT = 0.2 coalescent units, makes the species tree chal-
lenging to recover. We sampled one sequence per species 
per locus.

Overall rates (μi) among loci were either constant or 
variable, and in each case, the same model is used in 
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both simulation and analysis of the data. With variable 
rates, μi for locus i was sampled from a gamma distribution 
G(αμ, αμ) with αμ = 5 (locusrate = 1 5 iid). Given ν̅ 
(either 0.01 or 0.1), the rate variance parameter νi for locus 
i was generated from G(αν, αν/ν̅) with αν = 5 (with the 
specification clock = 2 0.1 5 iid g in the case of 
ν̅ = 0.1, for example). Given the overall rate μi and the vari-
ance parameter νi for each locus i, the rate rij for (species- 
tree) branch j at locus i was sampled from the gamma dis-
tribution with mean μi and variance νi (eq. 9). A branch 
length on a gene tree is specified as the sum of branch seg-
ments corresponding to populations that the branch tra-
verses (see fig. 1a).

Sequences were simulated under a GTR+Γ5 substitution 
model (Yang 1994a, 1994b), with the parameters in the 
model varying among loci. For each locus, the base frequen-
cies π = (πT , πC , πA, πG) were generated from a Dirichlet 
distribution π ∼ Dir(αT , αC , αA, αG) with parameters 
(αT , αC , αA, αG) = (10, 10, 10, 10). The exchangeability 
parameters for the GTR model (Yang 1994a) were also gen-
erated from a Dirichlet distribution q = (a, b, c, d, e, f ) ∼ 
Dir(αa, αb, αc, αd, αe, αf ) with parameters 
(αa, αb, αc, αd, αe, αf ) = (10, 5, 5, 5, 5, 10); that is, the prior 
mean of the transition/transversion rate ratio (κ) is 2. The 
shape parameter for gamma distributed rates among sites 
at a locus was generated from G(2, 2), with k = 5 categories 
in the discrete-gamma model (Yang 1994b). Four values 
were used for the number of loci: L = 10, 20, 100, 200, 
with 500 sites per sequence and four sequences per locus. 
The number of simulated replicate datasets was 100. 
Using two rate variance (ν̅) values, two locus-rate variation 
models, four data sizes (L) and 100 replicates, we simulated 
a total of 2 × 2 × 4 × 100 = 1, 600 datasets.

The simulated multilocus sequence datasets were ana-
lyzed to infer the species tree using BPP4 (Flouri et al. 
2018) as well as ASTRAL (Mirarab and Warnow 2015) and 
MP-EST (Liu et al. 2010). The outgroup was used to root 
the tree in both ASTRAL and MP-EST. In both the ASTRAL 

and MP-EST analyses, RAXML was used to infer the un-
rooted gene trees under the JC model and the most com-
mon gene tree was the species tree estimate. The BPP 

analysis used either sequences of only the three ingroup 
species, or sequences of all four species. In the latter 
case, O was used as the outgroup. Note that BPP always op-
erates on rooted trees with node ages, so that rooted trees 
are inferred under relaxed-clock models whether or not 
outgroups are included in the data. We expect that use 
of an outgroup should provide additional information 
about the rooted species tree. We assign gamma priors 
on the age of the root, τ0 ∼ G(2, 15) with mean 0.133, 
which is too small for the 3-species data and too large 
for the 4-species data. The population size parameters 
are assigned the gamma prior θ ∼ G(2, 200) with mean 
0.01. When analyzing sequences simulated with rate vari-
ation among loci, the locus-rate option was used in the 
BPP analysis (locusrate = 1 0 0 5 iid), with αμ = 5, 
so that the overall rates for loci have the i.i.d. prior μi ∼ 
G(αμ, αμ) with mean 1.

We used all three clock models to analyze the data: 
clock 1 (strict clock), clock 2 (independent rates), and 
clock 3 (correlated rates). We expect clock 1 to work 
best when ν̅ = 0.01 (slight clock violation) and worst 
when ν̅ = 0.1 (serious clock violation). For data simulated 
with ̅ν = 0.01 the clock 2 prior is specified as clock = 2 2 
200 5 iid g, with αν̅ = 2, βν̅ = 200, αν = 5, so that ν̅ ∼ 
G(2, 200) with prior mean 0.01, and the rate variance para-
meters for loci νi | ν̅ ∼ G(5, 5/ν̅) (fig. 2). For data simulated 
with ν̅ = 0.1 the clock 2 prior was adjusted to clock = 2 
2 20 5 iid g. In both cases the rates for branches were 
modelled using a gamma kernel. The prior for clock 3 was 
specified similarly to clock 2, using clock = 3 2 200 5 
iid g with αν̅ = 2, βν̅ = 200, αν = 5 for data simulated 
with ν̅ = 0.01; and clock = 3 2 200 5 iid g with αν̅ = 
2, βν̅ = 20, αν = 5 for data simulated with ̅ν = 0.1. The rates 
for branches were modeled using the bivariate log-normal 
density. The nucleotide substitution model assumed was ei-
ther JC or GTR+Γ5 (the true model). Uniform Dirichlet 
priors are used for the exchangeability parameters in the 
GTR model and for the stationary base frequencies.

With 1,600 datasets, 3 clocks, 2 substitution models, and 2 
outgroup choices, we conducted a total of 1, 600 × 3 × 2 × 
2 = 19, 200 BPP analyses. A sample BPP control file is provided 
in supplementary figure S10b, Supplementary Material on-
line. We conducted pilot runs to determine the length of 
the Markov chain needed for convergence. In the final setting, 
we used 32,000 iterations for burn-in, and then took 2 × 105 

samples, sampling every 2 iterations. Running time for each 
analysis ranged from ∼30 s for the small datasets of L = 10 
loci analyzed under the strict clock and JC without outgroup 
and without locus-rate variation to ∼15 h for the large data-
sets of L = 200 loci analyzed under clock 2 and GTR+Γ5 with 
locus rate variation and with outgroup.

Simulation to Evaluate Parameter Estimation
The second set of simulations assessed the performance of 
parameter estimation under the MSC model when the 
clock is violated. We used parameter estimates for the 
ratites species tree of Cloutier et al. (2019) (species tree 
1, fig. 5a) obtained from the BPP analysis of the 250 UCE 
loci to simulate datasets under the independent-rates 
model (using clock = 2 0.35 5 iid g, with 
ν̅ = 0.35). The species divergence times (τ) were estimated 
from the UCE data, with τ16 = 0.0783 for the root of the 
non-ostrich Palaeognathae clade and τ15 = 0.0820 for the 
separation of the ostrich (fig. 5a). For the population size 
parameters (θ), we used two values 0.001 and 0.005, and as-
signed the small value to six branches with small empirical 
estimates and the large value to the branches with large es-
timates. The GTR+Γ5 model was used to simulate data, 
with parameters in the model sampled for every locus, as 
described above. We simulated 100 replicate datasets, 
each of 250 loci, with one sequence sampled per species 
and with the sequence length of 500 sites. The simulation 
control file is included as supplementary material.

Each simulated dataset was analyzed using BPP4 to esti-
mate the model parameters with the species tree fixed 
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(the A00 analysis, Yang 2015). Both JC and GTR+Γ (the true 
model) were used in the analysis, assuming either the strict 
clock or clock 2 (i.e., clock = 2 2 5 5 iid g). With two 
substitution models and two clocks, there are in total 400 
BPP analyses. In all runs rates were assumed to vary across 
loci (locusrate = 1 0 0 5 iid) (fig. 2). The age of 
the root was assigned the inverse-gamma 
prior τ15 ∼ invG(3, 0.2) with mean 0.2/(3 − 1) = 0.1. 
Population sizes were assigned the prior θ ∼ 
invG(3, 0.006) with mean 0.003. We used 32,000 iterations 
for burn-in, and then took 2 × 105 samples. Running time 
was ∼7 h under the clock+JC model, ∼11 h under clock 2 
+JC, ∼41 h under clock 1 with GTR+Γ, and ∼154 h under 
clock 2 with GTR+Γ.

Analysis of the Gibbon Datasets
We analyzed two datasets from the gibbon genomes (Shi 
and Yang 2018) using the relaxed clock models. The coding 
and noncoding genomic datasets were generated by 
Carbone et al. (2014) and Veeramah et al. (2015) for five 
gibbon species: Hylobates moloch (Hm), Hylobates pileatus 
(Hp), Nomascus leucogenys (N), Hoolock leuconedys (B), 
and Symphalangus syndactylus (S), plus an outgroup (hu-
man). There were 12,413 noncoding loci, each of 1,000 bp, 
and 11,323 coding loci, each of 200 bp, with 17 sequences 
per locus. Here we used the first 500 noncoding loci and 
the first 1000 coding loci, which correspond to block 1 
in figure 3A&B of Shi and Yang (2018), who analyzed the 
data under the JC+clock model.

We used both the strict clock (clock 1) and the 
independent-rates model (clock 2) to estimate the species 
tree, assuming either the JC (Jukes and Cantor 1969) or 
GTR+Γ4 (Yang 1994a, 1994b) substitution models. We as-
signed inverse-gamma priors τ0 ∼ IG(3, 0.03) with mean 
0.015 for the age of the species-tree root, and θ ∼ 
IG(3, 0.004) with mean 0.002 for the population sizes, al-
lowing θ to be integrated out analytically. For the GTR 
+Γ model, a gamma prior is assigned on the shape param-
eter α for among-sites rate variation: α ∼ G(1, 1). We con-
ducted pilot runs to determine the MCMC settings for 
convergence. The final settings are 16,000 iterations for 
burn-in, followed by 8 × 105 samples (or 4 × 105 samples 
when the influence of priors was examined), with a sam-
pling frequency of 2 iterations. Each analysis is run twice 
to confirm consistency between runs. Running time using 
one thread was ∼57 h under the clock+JC model or ∼13 
days under clock 2 with GTR+Γ for the coding dataset. 
For the noncoding dataset, it was ∼34 h under JC or 
∼10 days under GTR+Γ.

We then examined the impact of the different prior as-
sumptions about the rate variance parameter ν̅. Running 
time was ∼6 days for the coding dataset and ∼5 days for 
the noncoding dataset.

The species tree analysis recovered trees 1 and 2 of fig-
ure 7 as the maximum a posteriori (MAP) tree, as in Shi and 
Yang (2018). We then fixed the species tree to estimate the 
parameters in the MSC model including species divergence 

times and population sizes under different models about 
the molecular clock (clock 1 and clock 2). We used 
16,000 iterations for burn-in, then taking 2 × 105 samples, 
sampling every 2 iterations. Running time using two 
threads was ∼6 h under clock+JC or 66 h under clock 2 
with GTR+Γ for the coding dataset. For the noncoding da-
taset, it was ∼8 h under clock+JC or ∼38 h under clock 2 
with GTR+Γ.

We used the GTR+Γ model to analyze the data under 
different priors on the rate variance parameter (ν̅) in clock 
2 to evaluate the posterior sensitivity to the prior in the 
estimation of the species tree and parameters. The 
MCMC settings were the same as above. Running time 
using two threads was ∼44 h for the coding dataset and 
∼34 h for the noncoding dataset.

Analysis of the Ratite Dataset
We used a subset of 250 loci from the data of 3,158 UCEs 
from the flightless birds (Palaeognathae) analyzed by 
Cloutier et al. (2019). There are 13 species, including the 
extinct little bush moa (Anomalopteryx didiformis), plus 
the ostrich as the outgroup (Cloutier et al. 2019). We omit-
ted the more distant outgroup, chicken (see fig. 5). Manual 
inspection suggested that alignments at some loci had 
poor quality. We thus applied the following filters to im-
prove the data quality. 

• Step 1: remove sequences with on average >40% dif-
ferences from other sequences in the alignment.

• Step 2: remove columns with no states (all gaps).
• Step 3: remove sequences that have >50% missing 

data.
• Step 4: remove columns with no states (all gaps).
• Step 5: remove loci that comprise >50% columns 

with missing data.

The number of UCE loci (alignments) after filtering was 
2,278. Most sequences removed in steps 1 and 3 were from 
white-throated tinamou. The sequence length ranged 
from 966 to 11,018 sites among loci, with the mean 
2510. We used the first 250 loci, with mean sequence 
length of 2525.

We estimated the species tree under clock 2 with four 
different prior settings, with either the iid (conditional 
i.i.d.) or dir (gamma-Dirichlet) distributions for the over-
all rate (μi) and variance parameter (νi) among loci, and ei-
ther the gamma (G) or the log-normal (LN) distributions 
for species-tree branch rates at each locus. A typical setting 
is locusrate = 1 0 0 5 iid and clock = 2 2 20 5 
iid G, specifying the iid prior for μi and νi, and the 
gamma distribution for the branch rates (fig. 2). In all 
four prior settings, the mean rate variance parameter ν̅ ∼ 
G(2, 20) with mean 2/20 = 0.1, representing serious clock 
violation.

Gamma priors are assigned to the MSC parameters: 
τ0 ∼ G(2, 20) with mean 2/20 = 0.1 for the age of the 
species-tree root, and θ ∼ G(2, 2000) with mean 0.001 
for the population sizes. We assumed the GTR+Γ 
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substitution model, with the gamma shape parameter for 
the rate variation among sites (Yang 1994b) assigned a 
gamma prior, α ∼ G(2, 1).

Preliminary runs suggested that several clades had com-
plete support, with posterior ∼1, irrespective of the model 
and prior. They were defined as five clade constraints during 
the Bayesian species tree search, to reduce the search space. 
These were the kiwis (4 species), tinamous (4 species), rheas 
(2 species), and emu+cassowary (2 species), with the ostrich 
as the outgroup (meaning that all 13 ingroup species form a 
clade) (see fig. 5). We used 32,000 iterations for burn-in, 
then taking 105 samples, sampling every 2 iterations. Each 
of the four prior settings was run 40 times, using four differ-
ent starting trees (10 runs for each starting tree). Each run 
took ∼10 days using two threads. This analysis produced 
species tree 2 of figure 5 as the best estimate.

We then reran BPP with the species tree fixed to estimate 
the parameters of the MSC model, such as species diver-
gence times, population sizes, and the rate variance param-
eter (ν̅). The same settings were used as above except that 
2 × 105 samples were taken. Running time using 4 threads 
was ∼7 days.

Supplementary Material
Supplementary data are available at Molecular Biology and 
Evolution online.
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We should mention that Ogilvie et al. (2017) implemented a multispecies coalescent model with relaxed clocks in 
StarBEAST2, which assigns branch rates to species-tree branches rather than to gene-tree branches, as discussed by 
Xu and Yang (2016). The model does not allow the branch rates to change freely at different loci. In the notation of our 
paper, Ogilvie et al. (2017) assigns a rate μi for locus i, but the branch rate ri j for locus i and species-tree branch j is constant 
for all i for each j, with L+ (2s−1) rate parameters in total for a species tree with s species and data of L loci, compared with 
L+ (2s−1)×L rate parameters in the model implemented in BPP. In the formulation of Ogilvie et al. (2017), the species-tree 
branch rates are shared by all loci and are confounded with the species divergence times (τ in our paper). We thank Drs 
Alexei Drummond and Huw Ogilvie for clarifications of the model implemented in StarBEAST2 (Ogilvie et al. 2017). 
Ogilvie HA, Bouckaert RR, Drummond AJ. 2017. StarBEAST2 brings faster species tree inference and accurate estimates 
of substitution rates. Mol Biol Evol 34:2101-2114.
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