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SI text. Likelihood function under the IM and MSci models in the case of two species
Here we derive the likelihood function under the three continuous migration models (IM, IIM, SC) and the episodic
introgression (MSci) model for two species (fig. 1a-d) when the data consist of an infinite number of loci, with two
sequences sampled at each locus, one from each species. The data at each locus can be summarized as x differences
at n sites. The infinite-sites mutation model is assumed so that the probability of data given the coalescent time
is given by the Poisson probability (eq. 8). To calculate the likelihood, we integrate over the unknown coalescent
time t, which has density fm(t|Θm) (eq. 3) under the IM or IIM model, fsc(t|Θm) (eq. 4) under the SC model, and
fi(t|Θi) (eq. 5) under the MSci model (Wilkinson-Herbots, 2008, 2012; Costa and Wilkinson-Herbots, 2021).

Under the IM and IIM models (fig. 1a&b), we have from eq. 3
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with
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to be the gamma function and the lower incomplete gamma function, respectively, with γ(a,∞) = Γ(a).
Similarly the second term in eq. S1 is
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Putting everything together, we get
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Similarly, under the secondary-contact (SC) model (fig. 1c), the density of coalescent time t is given in eq. 4. The
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probability of observing x differences at n sites at a locus is
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Finally, under the MSci model (fig. 1d), the density of coalescent time t is given in eq. 5. We have
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Figure S1: (kl-IM:ft) The true distribution of coalescent time fm(t) under the IM model (black; fig. 1a) and the
best-fitting distribution fi(t) under the MSci model (red; fig. 1d). See figure 2 for the methods of analysis (a-e)
and for the MLEs. Note that the discontinuity points in the fitting distribution reflect the MLEs of divergence times
(τ∗S = 0 and τ∗R). The true distribution depends on M but is the same for different methods of analysis (a-e).
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Figure S2: (kl-IIM:MLE) Best-fitting parameter values under the MSci model of figure 1d when data of two
sequences per locus (each of n sites) are generated under the IIM model of figure 1a. See legend to figure 2 for the
description of the five methods (a-e). In (a) and (c), τS is fixed at τT , while in (e), the constraint θR = θS is imposed.
The true and best-fitting distributions of the coalescent time (t) are in figure S3.
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Figure S3: (kl-IIM:ft) The true distribution of coalescent time fm(t) under the IIM model (black; fig. 1b with
τT > 0) and the best-fitting distribution fi(t) under the MSci model (red; fig. 1d). The MLEs are shown in figure
S2.
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Figure S4: (kl-SC:MLE, τR = 2θ0,τT = θ0) Best-fitting parameter values under the MSci model of figure 1d when
data of two sequences per locus (each of n sites) are generated under the SC model of figure 1c. See figure 1 for
parameter values used. See legend to figure 2 for the description of the five methods (a-e). In (a) and (c), τS = 0 is
fixed, while in (e), the constraint θR = θS is imposed. The true and best-fitting distributions of the coalescent time
(t) are in figure S5.
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Figure S5: (kl-SC:ft) The true distribution of coalescent time fm(t) under the SC model (black; fig. 1c) and the
best-fitting distribution fi(t) under the MSci model (red; fig. 1d). The MLEs are shown in figure S4.
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Figure S6: The true (black) and fitting (red and blue) distributions of coalescent times between sequences from two
species, f (tab), f (tac), f (tbc), when data are generated under models A, B, C, and D of figure 4 and analyzed under
models A and B. The row corresponds to the true model (A, B, C, or D) while the colour lines indicate the fitting
models (A and B). For example, the first row corresponds to the A-B setting, and the second row the B-A setting
(fig. 4), with the discontinuity points in the fitting models corresponding to τT ,τX and τS. The fitting distributions
are calculated using parameter estimates (averages of posterior means) from the simulated data with L = 4000 loci
(fig. 4e).
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Figure S7: Average BPP running time over replicate datasets for different parameter settings and different numbers
of loci. Each run uses one thread.
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