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ave been a workhorse of evolutionary genetic studies for
still commonly in use for estimating signatures of genetic

population and species level across a multitude of taxa. Yet,
utation rate of these loci is a double-edged sword, conferring
at shallow levels of analysis (e.g. paternity analysis) but yield-
uncertainty for deeper evolutionary comparisons. For the
e used reduced representation genome-wide data (RADseq)
rns of interspecific hybridization previously characterized
llite data in a contact zone between two closely related
ecies in Madagascar (Microcebus murinus and M. griseorufus).
ystem by examining populations in, near, and far from the
cluding many of the same individuals that had previously
s hybrids with microsatellite data. Surprisingly, we find no
ixed nuclear ancestry. Instead, re-analyses of microsatellite

tions suggest that previously inferred hybrids were false posi-
he program NewHybrids can be particularly sensitive to
rring hybrid ancestry. Combined with results from coalesc-
ses and evidence for local syntopic co-occurrence, we
e two mouse lemur species are in fact completely reproduc-
hus providing a new understanding of the evolutionary rate
uctive isolation can be achieved in a primate.

e tandem repeats of repetitive DNA that typically range in
o six nucleotides and occur at thousands of locations within
most organisms [1,2]. Individual microsatellite loci contain
e to as many as 40 or more repeats, with copy number changes

and mispairing during DNA replication. Mutation rates for
orders of magnitude higher than for other types of variants,
ith the overall rate being a balance between the generation of
and the correction of errors by proofreading and mismatch
ch can vary by species [3]. Given their high rate of change,
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microsatellite loci have high allelic richness, often in excess of
10 alleles within humans and other primates [4]. This rich
allelic diversity, combined with relatively low genotyping
costs, have made microsatellites a popular genetic marker
for applications ranging from paternity analysis to historical
demography. In particular, they have proven useful for iden-
tifying conservation units in endangered species (e.g. [5]) as
well as for revealing the presence of homoploid hybrid spe-
ciation (e.g. [6]).

Yet, their extreme sensitivity can also be cause for con-
cern. The high rate of recurrent mutations (i.e. homoplasy)
makes them poor indicators of long-term population history
[2,4]. For example, the combination of homoplasy and poten-
tially inappropriate models of mutational dynamics can yield
highly inflated estimates of gene flow between populations
and species [7,8]. Thus, inferences above all but the shallowest
evolutionary levels should be treated with caution.

In this study, we revisit hypotheses of hybridization
between two named species of mouse lemur, Microcebus
murinus (sensu lato) and M. griseorufus, reported from
previous studies using microsatellite data [9–11]. These pre-
vious studies focused on two contact zones in the southeast
of Madagascar wherein hybrids were reported to occur.

To date, seven different pairs of mouse lemur species
have been shown to co-occur locally at various localities
throughout Madagascar. One widespread species,
M. murinus, is involved in five of these cases. In all but one
of these seven cases of sympatry, no hybridization has been
detected thus suggesting that co-occurring species are repro-
ductively isolated. Sources of reproductive isolation among
sympatric mouse lemurs are poorly known, but factors that
may contribute to prezygotic isolation via differential mate
choice may include divergence in acoustic [12,13] and olfac-
tory signalling [14,15]. Additionally, opportunities for
reproductive interaction may be reduced by ecological diver-
gence manifesting, for example, in differential timing of the
highly seasonal and temporally constrained reproductive
season seen in mouse lemurs [16–18].

It is thus intriguing that hybridization has only been
detected betweenM. murinus andM. griseorufus, using micro-
satellite loci [9,10], which is also unique among the seven
cases of sympatry in consisting of a pair of sister lineages.
Using the programs STRUCTURE [19] and GeneClass [20],
Gligor et al. [9], p. 529) concluded that ‘most individuals
within the transition zone’ had mixed ancestry (no individ-
ual-level assignments were made). Hapke et al. [10] studied
a contact zone 40 km further north, and used the same set
of microsatellite loci for a total of 159 mouse lemurs, with

populations. We examine individual-level admixture in the
northern contact zone and used coalescent modelling to ask
whether there is evidence for ongoing and/or ancestral
gene flow between the species. To our surprise, we found
no evidence for admixed individuals in the contact zone—
including among the individuals previously identified as
hybrids—and also infer a lack of ongoing gene flow between
the two species more generally.

2. Methods
(a) Sampling
Hapke et al. [10] and follow-up work in Lüdemann [11] detected
hybridization between M. murinus (hereafter referred to as
murinus) and M. griseorufus (hereafter referred to as griseorufus)
using 9 microsatellites and a fragment of the HV1 mitochon-
drial locus from individuals in the Andohahela area in
southeastern Madagascar. We made use of a selection of 94 of
their samples and augmented this dataset with 33 samples
from distant, allopatric sites, and 3 M. rufus samples that were
used as an outgroup (electronic supplementary material,
table S1, table S2).

At two of the sites examined by Hapke et al. [10], they
detected unadmixed individuals of both parental species as
well as individuals with admixed ancestry (individuals inferred
to be admixed by Hapke et al. [10] and Lüdemann [11] are here-
after referred to as ‘putative hybrids’). From these two contact
zone sites, Mangatsiaka and Tsimelahy, which we refer to as
‘sympatric’ sites, we selected 78 samples (electronic supplemen-
tary material, table S1), including 15 individuals for which
Hapke et al. [10] or Lüdemann [11] had detected nuclear admix-
ture, and an additional 3 with a mitonuclear ancestry mismatch.
We additionally selected samples from nearby sites at which
Hapke et al. [10] had exclusively (or nearly so) detected unad-
mixed individuals of only one of the two species: 8 griseorufus
from Hazofotsy and 8 murinus from Ambatoabo (electronic sup-
plementary material, table S1). We refer to these contact zone
sites as ‘parapatric’ sites. ‘Allopatric’ samples, taken well away
from the contact zone, were represented by 14 griseorufus, 8 mur-
inus and 11 M. ganzhorni, a species that was recently split from
murinus [23], from Mandena in far southeastern Madagascar
(electronic supplementary material, table S2, figure 1). Below,
we show that M. ganzhorni diverged very recently from the
Andohahela area murinus populations, while a much deeper
split occurs between western and other southeastern Madagascar
populations, all of which continue to be classified as murinus.
Therefore, we here include M. ganzhorni under the nomer
‘M. murinus s.l.’.

We used the following geographically defined population
groupings for analyses where individuals are assigned to prede-
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STRUCTURE and NewHybrids [21] identifying a total of 18
admixed individuals. Of these, 15 individuals showed signs
of nuclear admixture (i.e. among microsatellites) whereas 3
had a mismatch between microsatellite and mitochondrial
ancestry.

Here, we use RADseq data to revisit the contact zone area
studied by Hapke et al. [10] and follow-up work in Lüde-
mann [11] that used the same microsatellites and methods.
We have included a total of 130 individuals, including 18 of
the individuals that were inferred to be hybrids by these
studies in addition to samples from nearby and distant allo-
patric populations. To ensure that non-admixed individuals
from parental species were present, as is critical for accurately
identifying either the presence or absence of hybrids [22], we
also include samples from nearby and distant allopatric
RSPB20220596—19/7/22—10:52–Copy Edited by: Not Mentioned
fined groups (figure 1): western griseorufus (abbreviated ‘gri-W’),
central/contact zone area griseorufus (abbreviated ‘gri-C’), wes-
tern murinus (abbreviated ‘mur-W’), central/contact zone area
murinus (abbreviated ‘mur-C’) and eastern murinus s.l. (abbre-
viated ‘mur-E’; this population corresponds to M. ganzhorni
sensu Hotaling et al. [23]).

(b) Sequencing and genotyping
We prepared Restriction-site Associated DNA (RAD) sequencing
libraries following the protocol of Ali et al. [24]. Libraries were
sequenced using paired-end 150 bp sequencing on an Illumina
HiSeq 4000 at Duke University’s Center for Genomic and
Computational Biology sequencing facility.

After read flipping, demultiplexing, trimming and mapping
to the M. murinus reference genome (‘Mmurinus 3.0’, [25]), we
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performed genotype calling with GATK v. 4.0.7.0 [26], and we
filtered SNPs and individuals largely according to the ‘FS6’
filter of O’Leary et al. [27] (see electronic supplementary materials
for details).

For the set of individuals from the contact zone area, we
additionally produced two datasets using more lenient filtering
procedures to be able to examine admixture using more individ-
uals and SNPs: (1) a dataset produced by omitting the last round
of removal of SNPs and individuals based on missing data;
(2) a dataset produced using the FS6 filter without the individ-
ual-filtering steps that retained two additional putative hybrids
and two individuals with mitonuclear discordance.

Based on GATK-called genotypes, we also produced
full-sequence FASTA files for each RAD locus (see electronic
supplementary materials for details).

Figure 1. Distributions and sampling sites of murinus and griseorufus in sou
seorufus in gold. A population in southeastern Madagascar was recently split
M. murinus extends to the north of the area shown in the map, whereas the en
zone area (corresponding to the study site of [10]), showing two parapat
(Mangatsiaka and Tsimelahy) sites. Microcebus illustrations courtesy of Steph
RSPB20220596—19/7/22—10:52–Copy Edited by: Not Mentioned
adagascar. The distribution of murinus is shown in purple and that of gri-
urinus as M. ganzhorni, but is here included within murinus s.l. The range of
tribution of M. griseorufus is shown. Inset: Overview of sampling in the contact
(c) Detection of hybrids using clustering approaches
For the detection of admixed individuals, we used complementary
model-free and model-based approaches. First, we used Principal
Component Analysis (PCA) as implemented in the SNPRelate R
package v. 1.17.2 [28], using the snpgdsPCA() function. Second,
we used the program ADMIXTURE v. 1.3.0 [29] to detect clusters
and assign individual-level ancestry proportions from each clus-
ter. Third, we used the program NewHybrids v. 1.1 [21], which
identified the majority of admixed individuals in Hapke et al.
[10] and Lüdemann [11]. NewHybrids was used to estimate, for
each sample, the posterior probability of it belonging to each of
six predefined categories: griseorufus, murinus, F1 hybrid (griseoru-
fus ×murinus), F2 hybrid (F1 x F1), griseorufus backcross (F1 x
griseorufus) and murinus backcross (F1 x murinus). 500 000 iter-
ations were used as burn-in, with another 1 500 000 iterations

. (Online version in colour.)



after that, using Jaffereys-like priors. A run was considered
successful if it passed a test for convergence implemented in the
hybriddetective R package [30].

(d) Reanalysis of microsatellite data
We reanalyzed the Hapke et al. [10] and Lüdemann [11] microsa-
tellite data using only the samples included in this study. Like in
Hapke et al. [10], we used the Bayesian classification methods
STRUCTURE v. 2.3.4 ([19]; see the electronic supplementary
materials for details) and NewHybrids v. 1.1 to detect hybrids.
For STRUCTURE, 20 runs using K = 2 were used to calculate the
average membership coefficients by creating an optimal align-
ment using the full-search algorithm implemented in CLUMPP
v. 1.1.2 [31]. To keep the results directly comparable with
Hapke et al. [10], we used the same threshold for the detection
of hybrids: a sample was considered a hybrid when the posterior
probability for assignment to the species of their mitochondrial
haplotype was ≤0.9 for Structure or ≤0.5 in NewHybrids,
and part of a specific hybrid category when the corresponding
probability was greater than 0.5.

(e) Comparison of microsatellites and SNPs using
simulations

Using simulations, we compared the performance of microsatel-
lites and SNPs for detecting hybrids. The hybriddetective R
package [30] was used to generate multi-generational hybrids
from both the microsatellite and SNP data. First, unadmixed
murinus and griseorufus individuals were created by randomly
drawing two alleles per locus from the allopatric reference popu-
lations, without replacement. For subsequent F1 samples, one
allele per locus was drawn from an unadmixed individual of
each species. This procedure, drawing from the appropriate
population, was continued for F2 and backcross individuals.
In total, 60 simulated individuals were created: 20 each of
unadmixed griseorufus and murinus, and 5 each of F1, F2, F1 x
unadmixed griseorufus, and F1 x unadmixed griseorufus. Ancestry
assignment was compared between microsatellites and SNPs by
running STRUCTURE and NewHybrids, as described above, on
the simulated genotypes.

( f ) Phylogenetic inference
To enable subsequent tests of gene flow and demographic
modelling, we determined relationships among all murinus s.l.
and griseorufus individuals sampled by our study, using three
M. rufus individuals as an outgroup. First, we used the Neigh-

(h) Demographic modelling
We ran the coalescent-based approaches implemented
in G-PhoCS v. 1.3 [35] and BPP v. 4.2 [36], using Markov
Chain Monte Carlo (MCMC) to jointly infer population sizes,
divergence times and migration rates for the three murinus popu-
lations (mur-W, mur-C and mur-SE) and the two griseorufus
populations (gri-W and gri-SE). While G-PhoCS implements an
isolation-with-migration model with continuous gene flow
during potentially long periods, the multispecies-coalescent-
with-introgression (MSCi) model in BPP models discrete
introgression events.

As input for G-PhoCS and BPP, we created full-sequence
FASTA files with loci for three individuals per population
based on the GATK genotypes (See electronic supplementary
materials for details).

We converted the migration rate parameter m to the popu-
lation migration rate (2 Nm), which is the number of haploid
genomes (i.e. twice the number of migrants) in the source popu-
lation that arrive each generation by migration from the target
population. Divergence times, population sizes and the pro-
portion of migrants per generation (m × μ) were converted
using empirical estimates of the mutation rate (1.52 × 10−8, [37])
and generation time. For the generation time, we used a lognor-
mal distribution with a mean of ln(3.5) and a standard deviation
of ln(1.16) based on two available estimates for Microcebus
(4.5 years from [38] and 2.5 years from [39]).

3. Results
(a) Genotyping
GATK genotyping followed by the standard (FS6) filtering
procedure for all individuals resulted in a VCF file with 83
individuals and 60 460 SNPs. The equivalent VCF file with
only samples from sympatric and parapatric sites in the
contact zone area (Andahohela area, figure 1) contained 69
individuals, 12 of which were putative hybrids, and 7,180
SNPs. The two less stringent filtering procedures (see
Methods) for the contact zone set resulted in the retention of
78 individuals (13 putative hybrids) and 48 556 SNPs and 79
individuals (18 putative hybrids) and 1360 SNPs, respectively.
16 individuals, among which 2 putative hybrids, did not
survive the filtering steps for any of the final VCF files. The
full-sequence FASTA file produced for G-PhoCS analyses
contained 12 952 loci with an average length of 475 bp. For a
comparison of QC and filtering statistics among populations,
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borNet method implemented in Splitstree v. 4.14.4 [32].
This method visually displays phylogenetic conflict in an
unrooted tree and thus shows phylogenetic relationships while
also allowing for the detection of potentially admixed popu-
lations and individuals. Second, we used Treemix v. 1.13 [33]
to estimate relationships among predefined populations (gri-W,
gri-C, mur-W, mur-C and mur-E) both with and without
admixture events among populations.

(g) Formal admixture statistics
The D-statistic and related formal statistics for admixture use
phylogenetic invariants to infer post-divergence gene flow
between non-sister populations. We used the qpDstat and
F4RatioTest programs of admixtools v. 4.1 [34] to compute
four-taxon D-statistics and f4-ratio tests, respectively, to test for
gene flow among the predefined mouse lemur populations. For
all tests, M. rufus was used as the outgroup. Significance of
D-values was determined using the default Z-value reported
by qpDstat, which uses weighted block jackknifing.
RSPB20220596—19/7/22—10:53–Copy Edited by: Not Mentioned
see the electronic supplementary materials.

(b) No evidence for ongoing hybridization in the
contact zone

ADMIXTURE identified K = 2 as the optimal number of clusters
among individuals from the contact zone area (figure 2a - top).
All individuals, including the 12 putative hybrids that passed
filtering, were entirely assigned to one of the two clusters
(figure 2a - bottom), with no signs of admixture. Results
were also plotted for K = 3, for which a third cluster corre-
sponded to differentiation between sympatric (Mangatsiaka,
Tsimelahy) and parapatric (Hazofotsy) sites in griseorufus
(electronic supplementary material, figure S11).

Principal component analysis (PCA) with individuals
from the contact zone revealed a wide separation between
two groups along the first principal component axis (PC1),
which explained around tenfold more of the variation



compared to PC2. The separation along PC1 corresponded to
differentiation between griseorufus and murinus, and impor-
tantly, all putative hybrids fell within one of those two
groups, with none occupying an intermediate position
(figure 2b). Similar to the ADMIXTURE results at K = 3, PC2
mostly corresponded to differentiation between sympatric
and parapatric sites in griseorufus (see also electronic sup-
plementary material, figure S12 for a within-species PCA).

NewHybridswas run with and without assigning individ-
uals from the parapatric populations to reference parental
species, and in both cases, all individuals were assigned to

figure S13). ADMIXTURE and NewHybrids analyses of these
datasets similarly showed no evidence for admixed individuals
with the exception of mitonuclear discordance: for two of the
individuals for which Lüdemann [11] had detected griseorufus
ancestry in nuclear DNA but murinus mtDNA haplotypes
mitonuclear discordance, we could confirm that the nuclear
DNA has pure griseorufus ancestry (electronic supplementary
material, figure S13). The third sample for which Lüdemann
[11] detected mitonuclear discordance did not pass filtering at
all. No other cases of mitonuclear discordance were found
(figure 2a, electronic supplementary material, table S1.)

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9
K (number of clusters)

C
V

 e
rr

or

gri
para

gri
sym

hybrid?
sym

mur
sym

mur
para

R
A

D
se

q
m

tD
N

A

PC1 (28.1%)

PC
2 

(2
.9

%
)

site type: parapatric sympatric

microsats: griseorufus murinus hybrid?

0 150 300 m

sympatric site 1: Mangatsiaka

0 150 300 m

microsat
assignment:

hybrid
non–hybrid

RADseq
assignment:

griseorufus
 murinus

sympatric site 2: Tsimelahy

(a)

(c)

(b)

Figure 2. No evidence for hybridization in the contact zone. Nuclear RADseq data from the contact zone area was used for all analyses, including 12 individuals that
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one of the two parental species and none were assigned to
one of the hybrid categories. Assignment to species matched
perfectly with ADMIXTURE assignments and PCA results.

Datasets produced by less stringent filtering procedures
included an additional 4 putative hybrids that did not pass
all filtering steps but could still be assessed using a more lim-
ited number of SNPs (electronic supplementary material,
RSPB20220596—19/7/22—10:53–Copy Edited by: Not Mentioned
(c) False positives in hybrid detection using
microsatellites with newHybrids

In a reanalysis of the Hapke et al. [10] microsatellite data for
only the individuals that were included in this study, 11 indi-
viduals identified as hybrids in Hapke et al. [10] were no
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longer identified as such by either NewHybrids or STRUC-
TURE. Only a single sample was now identified as a hybrid
by NewHybrids, but STRUCTURE did not support this
inference (figure 3a, electronic supplementary material,
figure S14). As noted above, admixture was not detected
for any individuals in the RADseq data, including those that

Figure 3. Re-analysis of microsatellite data and analysis of simulated individu
TURE (STR; bottom row). Among the 12 individuals previously identified as hyb
hybrid (black dot), with several further griseorufus individuals showing non-si
viduals. Dots indicate detected hybrids. Using SNPs (bottom two rows), bot
microsatellites (top two rows), NewHybrids was prone to falsely inferring hy
NewHybrids (2 out of 20) and STRUCTURE (6 out of 20). (Online version in
RSPB20220596—19/7/22—10:54–Copy Edited by: Not Mentioned
had been identified as hybrids in the original microsatellite
analyses figure 4.

In analyses of simulated microsatellite data, NewHybrids
inferred that 4 out of 40 unadmixed individuals were
hybrids, whereas STRUCTURE found no false positives.
False negatives occurred with both NewHybrids (2 out of

Re-analysis of microsatellite data with NewHybrids (NH; top row) and STRUC-
een background bars), NewHybrids now identifies only a single individual as a
t signs of admixed ancestry (yellow ancestry). (b) Analysis of simulated indi-
Hybrids and STRUCTURE correctly inferred ancestry for all individuals. Using
out of 40 unadmixed individuals), and false negatives occurred both with
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20) and STRUCTURE (6 out of 20) for microsatellite data. On
the other hand, NewHybrids and STRUCTURE analyses of
simulated RADseq data were 100% accurate in inferring
ancestry (figure 3b, electronic supplementary material,
figure S15).

(d) Phylogenetic approaches clarify relationships within
murinus

A SplitsTree NeighborNet phylogenetic network (elec-
tronic supplementary material, figure S16A) of the SNP
data showed a very clear separation between griseorufus
and murinus with little phylogenetic conflict, and strong

gr
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Figure 4. Demographic inferences using G-PhoCS and BPP. (a–c) Summary of
gene flow). Each box represents an extant (bright colours: gold for griseorufus
Ne and box height indicating time. Gene flow was estimated reciprocally betwe
d and e). (d ) Point estimates and 95% HPDs of BPP introgression probabilit
(2 Nm). (Online version in colour.)
RSPB20220596—19/7/22—10:55–Copy Edited by: Not Mentioned
intraspecific structure in murinus. All putative hybrids fell
squarely within one of the two clades, with individual
assignments in perfect agreement with clustering approaches.
Similarly, a NeighborNet network using only contact
zone individuals showed little to no phylogenetic conflict
(electronic supplementary material, figure S17).

Treemix (electronic supplementary material, figure
S16B) was run with murinus and griseorufus individuals
assigned to the five populations and M. rufus as the out-
group, and confirmed the relationships within murinus
suggested by Splitstree: mur-W was the most divergent
and mur-C and mur-E were sister. No significant migration
edges were found between murinus and griseorufus, with

(e)

(c)S: migration BPP (migration)
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instead several significant edges between M. rufus and
griseorufus and M. rufus and murinus (electronic supplemen-
tary material, figure S18). When M. rufus was excluded,
significant migration edges between griseorufus and murinus
did emerge, but did not include any between contact zone
area populations (gri-C and mur-C) (electronic supplementary
material, figure S19).

(e) No current – but some ancestral – interspecific
gene flow

D-statistics showed an over-representation of shared derived
sites between both griseorufus populations (gri-W and gri-C)
and the two southeastern murinus populations (mur-C and
mur-E; relative to their sister mur-W, western murinus) (elec-
tronic supplementary material, figure S20A). Values of D
were highly similar regardless of which of the griseorufus or
southeastern murinus populations were used, which suggests
historical admixture between the ancestral griseorufus and
southeastern murinus lineages, as well as a lack of ongoing
gene flow in the contact zone. A lack of ongoing gene flow
was further supported by values of D very close to (and
not significantly different from) zero for comparisons testing
for excess derived allele sharing between contact zone popu-
lations of both species relative to their sister populations
(electronic supplementary material, figure S20A).

F4-ratio tests similarly indicated ancestral admixture
between griseorufus and the ancestor of contact zone
(mur-C) and eastern murinus (mur-E) populations, specifically
estimating that after divergence from western murinus, this
ancestral southeastern murinus population experienced
about 4.0–4.4% admixture with griseorufus (electronic
supplementary material, figure S20B).

Demographic modelling using G-PhoCS and BPP sup-
ported the presence of non-zero but low levels of historical
gene flow between ancestral murinus and griseorufus popu-
lations, but a lack of gene flow between extant contact zone
area populations of griseorufus and murinus (Figure 6A-B).

4. Discussion

We re-examined a contact zone between two species of

mouse lemur in southeastern Madagascar, where significant
hybridization had previously been reported based primarily
on evidence from microsatellite data [10]. With RADseq
data, we found no evidence for the presence of admixed
individuals, and using simulations and re-analyses of micro-
satellite data, we showed that previously detected hybrids
were likely false positives. By including allopatric popu-
lations and performing multispecies coalescent analyses, we
furthermore found a general lack of ongoing gene flow, and

very low levels of ancestral gene flow, between these two

o

a
a
d
gh
ro
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differentiation between these two species (estimated diver-
gence time in a no-migration scenario: approximately
600 ka ago, Figure 6; average FST in the contact zone area:
0.40, electronic supplementary material, table S5). Further-
more, in a re-analysis of microsatellite data using the same
methods as the original studies [10,11], though restricted to
the individuals used in this study, all but one of the pre-
viously detected hybrids were no longer classified as such
(figure 3a).

Considering the clear and robust RADseq results, it is
highly unlikely that true hybrids were missed in our analyses.
Hapke et al. [10] were false positives, and more generally,
that the inference of hybridization using microsatellites can
be sensitive to such false positives, particularly when using
the program NewHybrids.

In our simulations with microsatellites, STRUCTURE

suffered from false negatives only, whereas NewHybrids

produced 4 false positives among 40 simulated unadmixed
individuals (figure 3b). Additionally, in our reanalysis of
the microsatellite data, the single individual that NewHy-

brids continued to assign hybrid ancestry to did not show
signs of admixture using STRUCTURE (figure 3a). In Hapke
et al. [10], their Figure 5), STRUCTURE did not consistently
infer admixed ancestry for several of the putative hybrids.
This was especially apparent when parapatric populations
were included, in which case only 4 out of the 12 NewHy-

brids positives showed admixed ancestry using
STRUCTURE (and 3 out of those 4 were still assigned less
than 10% admixed ancestry by STRUCTURE, [10], their
Figure 5). Even though NewHybrids appears considerably
more prone to false positives than STRUCTURE, the latter
did show admixed ancestry for 7 individuals in an analysis
using only individuals from the contact zone site Mangat-
siaka (versus 9 with NewHybrids). At the same time, both
programs had 100% accurate assignments with simulated
SNP data, suggesting that the false positives found in the
microsatellite analysis stem mostly from challenges with
this type of molecular marker, to which NewHybrids

appears to be more sensitive than STRUCTURE.

(b) Evolutionary resolution of microsatellite versus SNP
data

The results of our simulation analysis suggest that microsatel-
lite data are vulnerable to both false positive and false
negative detection of admixture between species. This effect
will be especially significant when parental lineages are suffi-
ciently phylogenetically diverged such that the rate of
recurrent or backward mutation will obscure the true evol-
utionary signal [2,4]. To our knowledge, this study is the

first to directly compare microsatellite and SNP data in a
population genetic analysis within mammals. As reviewed
species. by Sunde et al. [42], such ‘head-to-head’ studies are extremely
rare and are presently limited to plants and fish. Nonetheless,
an
as
t
i

4,7
si
a
ra
(a) Reconciling the lack of evidence f
microsatellite results

We found no admixed nuclear ancestry in
uals from the contact zone. Our RADseq d
have high power in species assignment an
given the combination of the relatively hi
etic markers used [40,41] and the p
r hybrids with

ny of the individ-
ta are expected to
hybrid detection,
number of gen-

nounced genetic

relative strengths
emerging. Where
data posited tha
would make them
etic parameters [
showing the oppo
cate that SNP dat
of evolutionary pa
d weaknesses of the two data types are
earlier assessments of microsatellite

their extremely high evolutionary rate
deal for revealing subtle population gen-
], direct comparison with SNP data is
te to be true. Indeed, these studies indi-
are more sensitive across a broad range
meters, including phylogenetic structure,
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admixture, population subdivision and m
zygosity [42–44]. Recent work is also cla
to which SNP data are robust to small o
even those with as few as N = 2 [44].
and assessments are further support
simulation and empirical results reported

(c) Lack of ongoing gene flow and im
speciation

The presence of at least two individual
discordance (a griseorufus-type mitochond
murinus nuclear DNA) may suggest some
gene flow between the two species. Howe
the lack of evidence for nuclear admixtu
sites, we found no evidence for ongoing ge
tiple methods, including a phylogenetic
supplementary material, figure S16A), T

supplementary material, figure S16B),
statistics (electronic supplementary mater
two multispecies coalescent methods (G
Figure 6). Combined with syntopic occurr
the contact zone sites (figure 2), these findin
that murinus and griseorufus are currently
lated, which is striking giving the estimat
of less than 1 million years (see also [45]).

Little is known about the relative imp
types of reproductive isolation in mouse l
ranges, murinus and griseorufus occur in di
with griseorufus mostly limited to spiny fo
be too arid for murinus [46,47]. Separati
[48]) at larger scales could therefore minim
syntopic co-occurrence despite nominal sy
tact zone area, thus limiting interactions b
At one of the two sympatric sites inclu
Tsimelahy, species-specific sampling loc
consistent with separation by habitat,
Mangatsiaka, the two species co-occur e
spatial scale ([46]; figure 2c). Therefore, th
gene flow is unlikely to simply be a by-pr
by habitat, and additional sources of pre-
reproductive isolation need to be invoked

5. Conclusion
Using RADseq data, we found no evide
between two species of mouse lemurs in
southern Madagascar. This is in sharp co
study that found widespread hybridizatio
samples using microsatellites. Our resul
hybrids inferred by the previous study
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