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1  |  INTRODUC TION

Advancements in sequencing technologies and accumulation of ge-
nomic sequence data have brought population genetics and phylo-
genetics into the genomics age. The availability of genomic data from 
multiple closely related species makes it possible to address many 
exciting biological questions, and the multispecies coalescent (MSC) 

model (Rannala & Yang, 2003) has emerged as the natural inference 
framework, as it accounts for both species divergences and the co-
alescent process in each species on the phylogeny. By treating the 
unobserved genealogical trees at the sampled loci as latent variables, 
the model makes use of information in the gene trees while naturally 
accommodating phylogenetic uncertainties. The MSC has been used 
to estimate population parameters such as species divergence times 
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Abstract
Phylogenomic analyses under the multispecies coalescent model assume no recombi-
nation within locus and free recombination among loci. Yet, in real data sets intralocus 
recombination causes different sites of the same locus to have different genealogi-
cal histories so that the model is misspecified. The impact of recombination on vari-
ous coalescent- based phylogenomic analyses has not been systematically examined. 
Here, we conduct a computer simulation to examine the impact of recombination on 
several Bayesian analyses of multilocus sequence data, including species tree estima-
tion, species delimitation (by Bayesian selection of delimitation models) and estima-
tion of evolutionary parameters such as species divergence and introgression times, 
population sizes for modern and extinct species, and cross- species introgression 
probabilities. We found that recombination, at rates comparable to estimates from 
the human being, has little impact on coalescent- based species tree estimation, spe-
cies delimitation and estimation of population parameters. At rates 10 times higher 
than the human rate, recombination may affect parameter estimation, causing posi-
tive biases in introgression times and ancestral population sizes, although species di-
vergence times and cross- species introgression probabilities are estimated with little 
bias. Overall, the simulation suggests that phylogenomic inferences under the multi-
species coalescent model are robust to realistic amounts of intralocus recombination.
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and effective population sizes (Burgess & Yang, 2008; Ogilvie et al., 
2017; Rannala & Yang, 2003), to infer species phylogeny despite 
widespread genealogical fluctuations across the genome (Heled & 
Drummond, 2010; Liu & Pearl, 2007; Rannala & Yang, 2017; Yang & 
Rannala, 2014), and to identify and delimit species (Yang & Rannala, 
2010, 2017). The MSC has also been extended to accommodate 
cross- species gene flow, either continuous migration in the isolation- 
with- migration or IM models (Dalquen et al., 2017; Hey, 2010b; Hey 
et al., 2018; Zhu & Yang, 2012) or pulses of introgression/hybrid-
ization in the MSC- with- introgression or MSci models (Flouri et al., 
2020; Wen & Nakhleh, 2018; Zhang et al., 2018). See Xu and Yang 
(2016), Kubatko (2019), Rannala et al. (2020), and Jiao et al. (2021) 
for recent reviews of the MSC and its applications.

The basic MSC model assumes independent genealogical trees 
at different loci and a common gene tree for all sites in the sequence 
at any locus. Here, the term locus refers to a short genomic segment, 
which may not be protein- coding or even functional, although ex-
onic data have been successfully used in such analysis (Shi & Yang, 
2018; Thawornwattana et al., 2018, 2021). Such multilocus data sets 
have been widely used in traditional population genetic studies, and 
the loci may and may not correspond to protein- coding genes (or 
silent sites in the coding genes, e.g. Takahata, 1986; Hudson et al., 
1987; Ohta, 1995; Takahata et al., 1995). In analysis of modern ge-
nomic data, a common approach to generating such data is to sample 
short segments from the genome that are far apart (e.g. Beerli & 
Felsenstein, 2001; Burgess & Yang, 2008; Dalquen et al., 2017; Hey 
et al., 2018; Lohse et al., 2011; Nielsen & Wakeley, 2001; Wang & 
Hey, 2010). For example, each segment may be 100– 2000 bps long 
and separated by at least 2 kb or 10 kb. The large gap means that 
different loci have approximately independent coalescent histories 
because of recombination between loci, while intralocus recombina-
tion is unlikely in a short segment. In analysis of data from different 
populations of the same species or from closely related species with 
low mutation rates, longer segments (of 2– 10 kb, say) are sometimes 
used to ensure the presence of variable sites at each locus, with the 
four- gamete test (Hudson & Kaplan, 1985) applied to filter out ge-
nomic regions likely affected by recombination (Hey, 2010a; Hey 
et al., 2018; Lohse & Frantz, 2014). Another approach to generating 
multilocus phylogenomic data sets is targeted sequence capture, also 
called reduced- representation sequencing. This is an increasingly 
popular alternative to the more costly whole- genome sequencing. 
Example data sets produced using this approach include RAD- seq 
(Eaton & Ree, 2013; Rubin et al., 2012), ddRAD- seq (Ali et al., 2016), 
exomes, transcriptomes, ultraconserved elements (UCEs; Faircloth 
et al., 2012), anchored hybrid enrichment (AHE; Lemmon et al., 
2012), conserved nonexonic elements (CNEEs; Edwards et al., 2017) 
and rapidly evolving long exon capture (RELEC; Karin et al., 2020). 
The targeted genomic segments are typically 100– 1000 bps long 
and are treated as independent loci in coalescent- based phyloge-
nomic analysis.

While both assumptions of no intralocus recombination and 
of free interlocus recombination are violated in real data sets, the 
former may be more of a concern. When the genealogical trees for 

different loci are correlated due to linkage, a model ignoring link-
age may still fit the true gene trees at individual loci, and the impact 
of assuming independence should be an overstatement of the in-
formation content in the data or too narrow confidence intervals. 
As phylogenomic data sets often include thousands of loci and the 
confidence intervals are narrow anyway, this effect may not be very 
important. In contrast, intralocus recombination causes different 
sites of the same locus to have different histories, while the model 
ignoring recombination assumes that all sites share the same gene 
tree and branch lengths so that incorrect gene trees are applied to 
at least some sites in the alignment. In particular, recombination may 
create chimeric sequences that look very different from nonrecom-
binant sequences, leading to long branches in the gene tree and ex-
aggerated levels of sequence divergence. Thus, the assumption of 
no intralocus recombination may be expected to be more damaging 
than that of free recombination among loci.

Few studies have examined the impact of intralocus recombi-
nation on coalescent- based phylogenomic analyses, even though 
its importance has been hotly debated (see, e.g. Edwards et al., 
2016; Gatesy & Springer, 2014). Wall (2003) incorporated recom-
bination in a simulation- based approximate inference method 
under the basic MSC model (Takahata et al., 1995; Yang, 2002) to 
estimate divergence times and ancestral population sizes among 
the human being and the great apes, noting that intralocus recom-
bination causes overestimation of divergence times and underes-
timation of ancestral population sizes (Takahata & Satta, 2002). 
Zhu and Yang (2012) conducted a small simulation to examine the 
impact of recombination on a likelihood- ratio test of gene flow 
using the maximum- likelihood (ML) program 3s, which compares 
the null hypothesis of MSC with no gene flow against the alterna-
tive hypothesis of MSC with migration. The false- positive rate was 
found to be low except when the recombination rate was orders 
of magnitude higher than estimated rates from the human being. 
Lanier and Knowles (2012) conducted a simulation study to exam-
ine the impact of recombination on species tree estimation using 
the heuristic method STEM (Kubatko et al., 2009) and the Bayesian 
method *beast (Heled & Drummond, 2010). Species tree estima-
tion was found to be robust to recombination even at levels far 
higher than estimates from real data. Indeed, recombination was 
the least important factor affecting species tree estimation, and 
far less important than the number of sequences and the number 
of loci in the data set. However, the study had very limited scope, 
with at most nine sequences or nine loci, whereas modern phylog-
enomic studies routinely include thousands of loci. The study also 
used an unconventional experimental design, sampling species 
trees and parameter values at random for each simulation repli-
cate. The impact of recombination is expected to depend on the 
species tree shape and species divergence times, and frequentist 
simulation with replicate data sets generated on a fixed species 
tree with fixed parameter values is preferable. We note that STEM 
uses estimated gene tree topologies and coalescent times (branch 
lengths) without accommodating their sampling errors, and is in 
particular sensitive to errors in gene tree branch lengths (Degnan, 
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2018; Leaché & Rannala, 2011), and similarly, the early version of 
*beast had very limited capability. Lastly, Lohse and Frantz (2014) 
used simulation to evaluate the impact of recombination on their 
inference of Neandertal admixture into Eurasian populations, and 
found that their comparison of models of admixture and ancestral 
structure was robust to realistic levels of recombination (around 
1.3 cM/Mb).

The last decade has seen considerable computational improve-
ments and algorithmic breakthroughs in Bayesian implementations 
of the MSC model, either with or without accommodating gene 
flow, making it possible to analyse large genomic data sets with over 
10,000 loci (Shi & Yang, 2018; Thawornwattana et al., 2018, 2021). 
A range of inference problems have been addressed, including spe-
cies tree estimation despite conflicting gene trees (Rannala & Yang, 
2017; Yang & Rannala, 2014), species delimitation (Yang & Rannala, 
2010, 2014) and estimation of population parameters such as species 
divergence times, population sizes for extant and extinct species, 
and the rates and times of ancient introgression events (Burgess & 
Yang, 2008; Flouri et al., 2020). There is thus a need to evaluate 
the impact of recombination on inference using modern software 
programs and realistically sized data sets. In this paper, we conduct a 
simulation study to examine the impact of recombination on several 
Bayesian inference problems under the MSC model using multilocus 
phylogenomic data. We use estimates of recombination rates from 
the human being as a guide to simulate data sets with recombination 
and analysed them assuming no recombination to examine the ro-
bustness of the analysis. We conducted three sets of simulations to 
examine three inference problems: (i) estimation of the species tree 
topology under the MSC model with no gene flow, (ii) delimitation of 
species boundaries through Bayesian model selection, and (iii) esti-
mation of population parameters under the MSC model with intro-
gression (MSci), including species divergence times, population sizes 
and cross- species introgression probabilities. The Bayesian program 
bpp was used, which is a full- likelihood implementation of the MSC 
model with and without gene flow applied to multilocus genomic 
data sets (Flouri et al., 2018). From a statistical point of view, the 
method is expected to have optimal properties, compared with heu-
ristic methods based on data summaries such as the estimated gene 
tree topologies. The simulation results should serve as a useful guide 
for empirical studies in which real genomic data sets are analysed 
with recombination ignored.

2  |  MATERIAL S AND METHODS

2.1  |  A01 species tree estimation

In the first set of simulations, we examined the impact of recombi-
nation on the estimation of species tree topology under the MSC 
model. Data were simulated by using the program MS (Hudson, 
2002) to generate the genealogical trees with branch lengths (coa-
lescent times) for different sequence segments at each locus and 
then using seq- gen (Rambaut & Grassly, 1997) to generate sequence 

alignments under the JC mutation model (Jukes & Cantor, 1969). 
Sequences at the tips of the gene tree constituted the data at the 
locus. We assumed two challenging species trees, with short inter-
nal branches (Figure 1). In the balanced species tree B, the diver-
gence times were �R = 5�, �S = 4.8�, �T = 4.7� and �U = 4.8�. In the 
unbalanced species tree U, the parameters were �R = 5�, �S = 4.8�, 
�T = 4.6� and �U = 4.4�. Here, the population size parameter is de-
fined as � = 4Ne�, with Ne to be the effective population size and 
� the mutation rate per site per generation. This is also known as 
heterozygosity and varies hugely among species, with previous es-
timates for extant animal and plant species covering a broad range 
(0.0005– 0.02; Zhang & Hewitt, 2003). We used two values for �: 
0.0025 and 0.01, to represent different species. In our experiment, 
species divergence times (τs) are proportional to � so that the differ-
ent θs may also mimic different types of genomic regions with dif-
ferent mutation rates (e.g. ultraconserved elements or UCEs versus 
introns).

We chose recombination rates based on estimates for the human 
being, at r = 0.37 cM/Mb (Arnheim et al., 2007) or 1.13 cM/Mb from 
segregation analysis on pedigrees (Kong et al., 2002). With the ef-
fective population size of Ne = 104, those estimates translate to the 
population recombination rates of � = 4Ner = 0.148 and 0.452 per 
generation per kb. We used three values: � = 0.05, 0.5, and 5 per 
generation per kb, with the intermediate value to be slightly higher 
than the estimates from the human being, while the other two are 
10 times smaller or larger. We note that recombination rate var-
ies among species (see Discussion). The average rate for mice is at 
0.5 cM/Mb (Kauppi et al., 2004), while in Drosophila, estimated rates 
for autosomes are mostly 0– 1 cM/Mb, with 2.3 cM/Mb considered 
to be high rates (Singh et al., 2005).

We sampled either S = 2 or 8 sequences per species at each 
locus, with the sequence length to be 500 sites. Each replicate data 
set consisted of L = 40 or 160 loci. The number of replicates was 
100. The total number of simulated data sets, over all combinations 
of the species tree, the number of sequences per species (S), the 

F I G U R E  1  (a) Balanced species tree B and (b) unbalanced 
species tree U for five species, used to simulate data for species 
tree estimation under the MSC model. Both species divergence 
times (τs) and population sizes (θs) are measured by the expected 
number of mutations per site. Two values are used for �: 0.0025 
and 0.01, to mimic low and high mutation rates

(a) (b)
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number of loci (L), the mutation rate (�) and the recombination rate 
(� ), was 2 × 2 × 2 × 2 × 3 × 100 = 4800.

Each replicate data set was analysed using bpp version 4 to esti-
mate the species tree (Flouri et al., 2018; Rannala & Yang, 2017). This 
is the A01 analysis of Yang (2015). The correct mutation model (JC) 
was assumed, but intralocus recombination was ignored. Inverse- 
gamma priors were assigned on the age of the root on the species 
tree (�0 = �R) and the population size parameters (�): �0 ∼ IG(3, 
0.025) and � ~ IG(3, 0.005) for � = 0.0025; and �0 ~ IG(3, 0.1) and � 
~ IG(3, 0.02) for � = 0.01. Here, the inverse- gamma prior IG(�, �) has 
the mean �∕(� − 1), while the shape parameter � = 3 means that the 
prior is diffuse. Independent � parameters were assigned to differ-
ent branches on the species tree, but they were integrated out an-
alytically through the conjugate inverse- gamma priors to help with 
MCMC mixing (Flouri et al., 2018). Pilot runs were used to determine 
the suitable settings for the MCMC, with convergence assessed by 
running the same analysis multiple times and confirming consistency 
between runs (Flouri et al., 2018; Yang, 2015). Then, the same set-
ting was used to analyse all replicates. We used 32,000 iterations 
for burn- in, after which we took 105 samples, sampling every 5 it-
erations. Analysis of each data set took ~20 min on a single core for 
small data sets of 40 loci and 10 sequences per locus or ~20 h for 
large data sets of 160 loci and 40 sequences per locus, with longer 
running time for more divergent data simulated using the higher mu-
tation rate (� = 0.01).

2.2  |  A11 species delimitation

In the second set of simulation, we examined the impact of recom-
bination on species delimitation under the MSC model (Yang & 
Rannala, 2010, 2014). We used two models/trees, referred to as the 
shallow tree and the deep tree, respectively, each with three spe-
cies (AB, C and DE) and five populations (A,B,C,Dand E; Figure 2). In 
the shallow tree, �R = �, �S = 0.5�, while in the deep tree, �R = 5�and 
�S = 4.8�. Sequence data from five populations were simulated using 
the species trees of Figure 2, with �T and �U fixed at ≈ 0. At each 
locus, S = 2or 8 sequences are sampled from each population. Other 
parameter settings were as before. With 100 replicates, the total 
number of data sets simulated was 4800.

The data sets were analysed to infer the species delimitation 
and species phylogeny. This is the A11 analysis of Yang (2015). 
We did not assess the impact of misassignment of individual se-
quences to populations. Instead, the correct assignment was as-
sumed, with bpp comparing different models of merging the five 
populations into species and rearranging the phylogenetic rela-
tionships if three or more species were inferred (Yang & Rannala, 
2014). Similarly, we integrated out θs analytically to improve 
mixing. The bpp program summarizes the MCMC sample to pro-
duce posterior probabilities for different models and for differ-
ent delimitations. The maximum a posteriori probability (MAP) 
model constitutes the best inferred model from the data set. 
We also used the posterior probabilities for the true model and 

true delimitation to assess performance. Running time for ana-
lysing one replicate data set was ~20 min for small data sets of 
40 loci and 10 sequences per locus or 12 h for large data sets of 
160 loci and 40 sequences per locus.

2.3  |  A00 Estimation of population parameters 
under the MSci model

In the third set of simulation, we evaluated the impact of intralocus 
recombination on Bayesian estimation of population parameters under 
the MSci model, including species divergence times (�s), (effective) 
population sizes (θs) and introgression probabilities at hybridization/
introgression nodes. We simulated data under the two MSci models of 
Figure 3, referred to as trees B and U, each involving two introgression 
events, with introgression probabilities �Y = 0.3 and �W = 0.2 (Flouri 
et al., 2020). The introgression probability in the MSci model specifies 
the contributions of the two parental populations to each hybridizing 
species at the time of introgression; for example, in tree B (Figure 3a), 
species Y (ancestral to C) was an admixture population with �Y = 30% 
contribution from the parental species TX and 1 − �Y = 70% from the 
other parent SY. The divergence times are given in the figure legend. 
Again, we simulated gene trees and sequence alignments using bpp 
under the JC model. A total of 4800 replicate data sets were generated. 
Each data set was then analysed to estimate the parameters under the 
correct model. Priors on �s and �s are as before, while �s are assigned 
the uniform prior �(0, 1).

The posterior mean for each parameter provides the point es-
timate, while the 95% highest probability density (HPD) credibility 
intervals (CIs) measure the uncertainty. We calculated the bias in pa-
rameter estimate, the 95% HPD CI width and the relative root mean 
square error (rRMSE), defined as

F I G U R E  2  Species trees or MSC models used in the simulation 
for species delimitation, with five populations (A,B,C,D and E) and 
three distinct species (AB, C and DE) in the true model. Data are 
simulated by assuming the tree of five populations with �T and �U 
set to very small values (= 10−50�), and then analysed to infer both 
the species delimitation and species phylogeny (the A11 analysis; 
Yang, 2015). In (a), the shallow tree, �R = � and �S = 0.5�, while 
in (b), the deep tree, �R = 5� and �S = 4.8� . The thickness of the 
branches indicates the population sizes (θs) relative to the species 
divergence times (τs). Two values are used for �: 0.0025 and 0.01

(b) deep tree

A B D EC

τR = 5θ
τS = 4.8θ

T U

S

R

(a) shallow tree

A B D EC

τR = θ

τS = 0.5θ

T U

R

S
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where � is the true value of any parameter, and �̂i, its estimate in the 
ith replicate data set, with i = 1,⋯,R = 100. For example, rRMSE = 
0.1 means that the mean square error is 10% of the true value. The 
rRMSE reflects both the bias and the variance in the estimate.

Running time for analysing one replicate data set was ~25 min 
for small data sets of 40 loci and 10 sequences per locus or ~12 h for 
large data sets of 160 loci and 40 sequences per locus.

3  |  RESULTS

3.1  |  A01 species tree estimation

Replicate data sets were simulated using species trees B and U of 
Figure 1 and analysed using bpp to infer the species tree topology. 
The A01 analysis (Yang, 2015) produces a posterior distribution 

of species trees. The MAP species tree may be considered the 
best point estimate of the true species tree (Yang, 1996). The 
probability that the MAP tree is the true tree (i.e. that the true 
species tree is recovered) measures the efficiency of the method 
(Figure 4). This either increased or decreased when the recombi-
nation rate changed by two orders of magnitude, but the differ-
ences were small, no larger than random sampling errors expected 
from our use of 100 replicates. For example, the probability that 
the MAP tree matches the true species was 0.24, 0.22 and 0.27 
for � = 0.05, 0.5 and 5, respectively, in the least informative data 
sets simulated using species tree B with S = 2, L = 40, at the low 
mutation rate � = 0.0025. Similarly, the probabilities of recovering 
the true clades R (the whole species tree), S, T and U on the true 
species tree (Figure 1a and b) varied very little among the three re-
combination rates used (Table 1), and the average posterior prob-
abilities for the true clades (Table 2) were very similar for the three 
recombination rates as well. Overall, recombination, at the rates 
considered here, had little impact on species tree estimation. The 
average number of recombination events that occurred at each 
locus should be proportional to the recombination rate �, and was 
0.7– 0.9 at the low rate, 7– 9 at the medium rate and 66– 81 at the 
high rate (Table 3). While at the low rate about a half of the loci 
had no recombination events, this proportion dropped to 0% at the 
medium or high rates.

We also note that trees B and U of Figure 1 are challenging spe-
cies trees because of the extremely short internal branches. The 
average coalescent time between two sequences sampled from the 
same species with population size � is 1

2
�. In comparison, the time 

gaps between speciation events in the species trees of Figure 1 (0.2� 
or 0.1�) are much shorter, representing a scenario of very rapid suc-
cessions of speciation events, resulting in species trees that are hard 
to resolve. For easy trees with long internal branches, recombination 
is expected to be even less important.

The other factors considered in the simulation (the number of se-
quences S sampled per locus per species, the mutation rate � and the 
number of loci L) had far more impact on species tree estimation than 
recombination (Table 4). Performance improved slightly when the num-
ber of sequences increased from S = 2 to 8 (Figure 4, Tables 1 and 2). 

(1)rRMSE =
1

�

[

1

R

R
∑

i=1

(�̂i−�)2

]

1

2

,

F I G U R E  3  Two introgression (MSci) models used in the 
simulation to examine Bayesian parameter estimation. The 
parameters for tree B are �R = 5�, �S = 4�, �T = 3�, �U = 4.5�,  
�X = �Y = � and �Z = �W = �, while those for tree U are �R = 5�,  
�S = 4�, �T = 3� , �U = 2.5�, �X = �Y = � and �Z = �W = �. In both 
trees, the introgression probabilities are �Y = 0.3 and �W = 0.2. Two 
values are used for �: 0.0025 and 0.01
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1 plotted against the recombination rate 
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Increasing the mutation rate from � = 0.0025 to 0.01 improved per-
formance dramatically, while the greatest improvement came from 
the increase in the number of loci (from L = 40 to 160). For example, 

the probability of recovering the balanced species tree B at the low 
recombination rate (� = 0.05) was 0.24 at S = 2, � = 0.0025 and L = 40 
(Table 1). This increased to 0.27 with the number of sequences in-
creased by fourfold (S = 8), to 0.60 when the mutation rate increased 
by fourfold (� = 0.01), and to 0.88 when the number of loci increased 
by fourfold (L = 160). The patterns were similar when the unbalanced 
species tree U (Figure 1) was used in the simulation (Figure 4, Tables 1 
and 2). Those results are consistent with the previous simulation study 
of Huang et al. (2020), which examined the relative importance of var-
ious factors that influence the information content in the data on spe-
cies tree estimation.

We note that the posterior probability for the true species tree 
was often much lower than the probability that the true species 
tree was recovered. For example, at S = 8, � = 0.01 and L = 160, spe-
cies tree B was recovered in 87% of the replicate data sets (Table 1), 
but the average posterior probability for the true tree was only 0.68 
(Table 2). Note that in our simulation, the species tree and model 
parameters were fixed when the replicate data sets were gener-
ated, so we are evaluating the Frequentist properties of a Bayesian 
method. The results suggest that Bayesian posterior probabilities 
for species trees are conservatively judged by the Frequentist 
criterion.

Tree �

S = 2 S = 8

� = 0.0025 � = 0.01 � = 0.0025 � = 0.01

A01 analysis

Tree B (Figure 1a) 0.05 0.7 (0.49) 0.7 (0.48) 0.9 (0.42) 0.9 (0.41)

0.5 7.2 (0.00) 7.2 (0.00) 8.7 (0.00) 8.7 (0.00)

5 67.6 (0.00) 67.8 (0.00) 80.5 (0.00) 80.6 (0.00)

Tree U (Figure 1b) 0.05 0.7 (0.49) 0.7 (0.49) 0.9 (0.43) 0.9 (0.42)

0.5 7.1 (0.00) 7.1 (0.00) 8.5 (0.00) 8.6 (0.00)

5 66.5 (0.00) 66.4 (0.00) 79.3 (0.00) 79.5 (0.00)

A11 analysis

Shallow (Figure 2a) 0.05 0.5 (0.63) 0.5 (0.63) 0.6 (0.57) 0.6 (0.57)

0.5 4.7 (0.01) 4.7 (0.01) 5.7 (0.00) 5.7 (0.00)

5 45.2 (0.00) 45.1 (0.00) 53.9 (0.00) 53.6 (0.00)

Deep (Figure 2b) 0.05 0.2 (0.85) 0.2 (0.85) 0.3 (0.78) 0.3 (0.78)

0.5 1.6 (0.00) 1.6 (0.00) 2.5 (0.09) 2.5 (0.09)

5 15.8 (0.00) 15.9 (0.00) 24.6 (0.00) 24.5 (0.00)

A00 analysis

Tree B (Figure 3a) 0.05 0.6 (0.54) 0.6 (0.54) 0.8 (0.46) 0.8 (0.46)

0.5 6.2 (0.00) 6.2 (0.00) 7.8 (0.00) 7.7 (0.00)

5 58.8 (0.00) 58.8 (0.00) 72.4 (0.00) 72.4 (0.00)

Tree U (Figure 3b) 0.05 0.6 (0.57) 0.6 (0.56) 0.7 (0.49) 0.7 (0.48)

0.5 5.7 (0.00) 5.7 (0.00) 7.2 (0.00) 7.3 (0.00)

5 54.3 (0.00) 54.1 (0.00) 67.9 (0.00) 67.9 (0.00)

Note: The results are averages over the 100 replicate data sets of L = 160 loci. The expected 
number of recombinations increases with the number of sequences (S) and is proportional to the 
recombination rate (�), but independent of the mutation rate (�).

TA B L E  3  Average number of 
recombination events per locus and 
the average proportion of loci with no 
recombination (in parentheses)

TA B L E  4  Relative importance of different factors in different 
inference problems

Analysis Influence

A01 (species tree under MSC) L ≻ 𝜃 ≻ S ≻ 𝜌

A11 (species tree and species delimitation)

Species tree L ≍ 𝜃 ≍ S ≻ 𝜌

Delimitation L ≍ S ≻ 𝜃 ≻ 𝜌

A00 (parameter estimation)

�s for modern species L ≍ S ≻ 𝜃 ≻ 𝜌

�s for ancestral species L ≻ 𝜃 ≻ S ≻ 𝜌

�s L ≻ 𝜃 ≻ S ≻ 𝜌

�s L ≻ 𝜃 ≍ S ≻ 𝜌

Note: The factors are the number of loci (L), the number of sequences 
per species per locus (S), the mutation rate (�) and the recombination 
rate (�). L ≻ S means the number of loci (L) has more impact on the 
information content in the data or on method performance than the 
number of sequences (S), while ≍ means that the two factors have 
similar effects.
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3.2  |  A11 species delimitation

We simulated data sets using the shallow and deep species trees 
of Figure 2 and run bpp to calculate the posterior probabilities for 
different species delimitation models, which are different instances 
of the MSC model and correspond to different ways of merging the 
five populations into distinct species, with the number of inferred 
species ranging from 1 to 5. This is the A11 analysis of Yang (2015). 
We considered the correct model to be recovered if the correct 
number of species (3), the correct delimited species (AB, C and DE ) 
and the correct species phylogeny ((AB,C),DE) were all recovered. 
The probability that the MAP model matches the true model (with 
correct delimitation and correct phylogeny) was very similar for the 
three recombination rates, for every parameter setting (Table 5). 
For example, this was 0.98, 0.95 and 0.94 for � = 0.05, 0.5 and 5, 
respectively, for data simulated using the shallow tree with S = 2 se-
quences per species, low mutation rate � = 0.0025 and L = 40 loci, 
while the corresponding values for the deep tree were 0.68, 0.70 
and 0.68 (Table 5). Similarly, the posterior probabilities for the true 
model (both the delimitation and the phylogeny), the true delimita-
tion and the true species (AB and DE) were very similar among the 
three recombination rates (Figure 5). Overall recombination had 
minimal impact on species delimitation at the rates considered here. 
The average number of recombination events per locus was about 
0.5, 5 and 50 for the three recombination rates, respectively, for the 
shallow tree, and was in the order of 0.2, 2 and 20 at the three rates 
for the deep tree (Table 3). At the medium or high rates, almost every 
locus had at least one recombination event.

In contrast, the other factors considered in the simulation had far 
more impact than recombination (Table 4). The posterior probability 
for the true model or true delimitation increased with the increase 
in the number of sequences per species (from S = 2 to 8), with the 
increase in mutation rate (from � = 0.0025 to 0.01) and with the in-
crease in the number of loci (from L = 40 to 160). It is noteworthy 
that the number of sequences per species was even more important 
than the mutation rate, although the number of loci was the most 

important factor (Table 4). The importance of the number of sam-
pled sequences to species delimitation was noted before by Zhang 
et al. (2011).

The shallow and deep trees showed different patterns. In the 
shallow tree, species divergence times were comparable to av-
erage coalescent times 

(

1

2
�
)

 and it was challenging to delineate 
species boundaries. As a result, the posterior probabilities for the 
correct model and for the correct delimitation were nearly the same 
(Figure 5): as long as the correct species delimitation was recovered; 
the phylogeny and thus the whole model were reconstructed cor-
rectly as well. In the deep tree, species divergences were much older 
than the coalescent times, but the species arose in a quick succession 
of speciation events with short internal branches. As a result, it was 
easy to delimit species but hard to infer the phylogeny. Thus, in many 
small data sets with L = 40 loci, the posterior probability for the cor-
rect delimitation was ~100%, but the posterior for the whole model 
was very low (Figure 5).

3.3  |  A00 Estimation of population parameters

We simulated data sets under the MSci model using the balanced 
species tree B and the unbalanced species tree U of Figure 3, in-
volving two introgression events with introgression probabilities 
�Y = 0.3 and �W = 0.2. The data were then analysed using bpp with 
the MSci model fixed to estimate the 21 parameters in the model 
(6 �s, 13 �s, and 2 �s). The posterior HPD CIs among the 100 rep-
licate data sets for each parameter setting are plotted in Figure 6 
and Figure S1 for species trees B and U, respectively. The coverage 
probability for the CI is the proportion of replicate data sets in which 
the CI includes the true parameter value. The bias and relative root 
mean square error (rRMSE) in parameter estimates (posterior means) 
are shown in Tables S1 and S2.

Because the model is misspecified, parameter estimates are ex-
pected to be statistically inconsistent and to converge to incorrect 
parameter values when the amount of data increases. The limit of 

TA B L E  5  A11 probability of recovering the true model and true delimitation in the species delimitation simulation under models of Figure 
2

S L

Low rate (� = 0.0025) High rate (� = 0.01)

� = 0.05 � = 0.5 � = 5 � = 0.05 � = 0.5 � = 5

Shallow tree

2 40 0.98, 0.98 0.95, 0.95 0.94, 0.94 0.94, 0.94 0.97, 0.97 0.96, 0.96

160 0.97, 0.97 0.99, 0.99 0.95, 0.95 1.00, 1.00 1.00, 1.00 0.98, 0.98

8 40 1.00, 1.00 0.98, 0.98 0.99, 0.99 1.00, 1.00 1.00, 1.00 1.00, 1.00

160 1.00, 1.00 1.00, 1.00 0.99, 0.99 1.00, 1.00 1.00, 1.00 1.00, 1.00

Deep tree

2 40 0.68, 0.97 0.70, 0.99 0.68, 0.96 0.85, 1.00 0.88, 0.99 0.91, 0.99

160 0.91, 0.98 0.91, 1.00 0.85, 0.97 1.00, 1.00 0.97, 0.98 0.99, 0.99

8 40 0.69, 1.00 0.68, 1.00 0.73, 1.00 0.84, 1.00 0.85, 1.00 0.88, 1.00

160 0.95, 1.00 0.87, 1.00 0.88, 1.00 0.99, 0.99 0.98, 1.00 1.00, 1.00
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F I G U R E  5  (A11) Violin plot of the posterior probabilities among the 100 replicates for the correct model (both delimitation and 
phylogeny), correct delimitation and correct delimited species AB and DE in the A11 analysis (joint species delimitation and species tree 
estimation, Yang, 2015). Delimitation C has posterior probability 1 in all data sets and is not shown. In (a), the shallow tree (Figure 2), �R = � 
and �S = 0.5�, while in (b), the deep tree, �R = 5� and �S = 4.8�. The number of sequences per locus per species is S = 2 or 8. In each panel, 
there are six combinations of � and �, as indicated in the key
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the maximum- likelihood estimates (MLE, �∗) when the number of loci 
L approaches ∞, also known as the best- fitting or pseudo- true parame-
ter values, minimizes the Kullback– Leibler divergence from misspeci-
fied model to the true model,

where X is the data (alignment at any locus), g(X;�0) is the true density 
with the true parameter values �0 under the correct model allowing 
for intralocus recombination, and f(X;�) is the density under the mis-
specified model assuming no intralocus recombination. We expect that 
�∗ ≠ �0. As a consequence when the data size increases, the CIs will 
become increasingly narrow, and the CI coverage will approach 0. The 
relevant question is then whether the ‘bias’ caused by recombination 
(or the difference between �∗ and �0) is large enough to be of biological 
significance. Small biases may be tolerable even if the CI does not in-
clude the true value. We expect the information content in the data set 
to be mostly determined by the number of sequences (S), the mutation 
rate (�) that affects the number of variable or informative sites in the 
alignment at each locus, and the number of loci (L), but should be similar 
at different recombination rates. Thus, the variance in parameter esti-
mates is expected to be similar for different values of � (see discussion 
below for the case of very large �). Thus, we focus on the bias and CI 
coverage here.

For instance, at the high recombination rate (� = 5), in the case 
of species tree B, high mutation rate (� = 0.01), S = 8 sequences 
per species and L = 160 loci, the average estimate of �A is 0.0111 
(Table S1), with the CI coverage to be 21%, much lower than the 
nominal 95% (Figure 6). In replicate data set 1, the posterior mean 
was 0.0108 (with CI 0.0100– 0.0116), whereas the true value was 
0.01. Such a difference from the true value may be considered 
unimportant. Parameter �C was more poorly estimated than �A, 
with the average to be 0.00127 (Table S1), and with the CI cov-
erage to be 0%. In replicate 1, the posterior mean was 0.00119 
(with CI 0.0110– 0.0128). This was a slightly larger deviation from 
the true value, but the 20% relative bias may be tolerable given 
that population size varies hugely even between sister species. 
Note that both parameter estimates are inconsistent and the CI 
coverage will approach 0 when the number of loci approaches ∞
. We thus emphasize the CI coverage for small-  and medium- sized 
data sets, and the bias �∗ − �0 for large data sets in which the CI 
is very narrow.

Performance was extremely similar at the low and medium re-
combination rates (� = 0.05 and 0.5) for all settings, with the bias 
to be within 10% of the true values (Figure 6 and Figure S1, Tables 
S1 and S2). This applies to all parameters (except �U on tree B), 
including population sizes for modern species (�A– �E), species di-
vergence times (�R– �U) and introgression probabilities. Population 
sizes for ancestral species were hard to estimate and involve large 
CIs; in particular, �U on tree B was poorly estimated because the 
population corresponds to a short branch on the species tree 
(Table S1).

However, excessive recombinations (at the rate of � = 5, ten 
times the human rate) caused more substantial biases in parame-
ter estimates. Species divergence times (�R, �S, �T and �U) were the 
least affected, with mostly a positive bias at ≤ 4% of the true value 
when � = 0.5 (the human rate) or ≤ 7% of the true value when � = 5 
(10× the human rate) (Table S1). Population sizes for modern species 
(�A , �B and �D) were affected slightly more, with positive biases of up 
to 15% of the true values. Parameter �C was affected more than �B 
(and �E more than �D), with positive biases of 20– 30% when � = 5 , 
presumably because C and E were recipient populations for immi-
grants so that estimates of their sizes were easily affected by the 
time and strength of introgression. Introgression times (�X = �Y and 
�Z = �W) had positive biases of 20– 40% of the true value at � = 5. 
Overestimation of �X = �Y (or similarly of �Z = �W) was compensated 
by an overestimation of �C (or similarly of �E). It is somewhat surpris-
ing that the introgression time was affected by recombination, but 
the introgression rate (�Y or �W) was not (Table S1). Finally, excessive 
recombinations (at � = 5) also caused underestimation of ancestral 
�s for the speciation nodes (�R, �S, and �T), by about 20– 30% (Table 
S1). The results are consistent with Wall (2003) and Lohse and Frantz 
(2014), who found that intralocus recombination caused underesti-
mation of ancestral population sizes (�s) and overestimation of spe-
cies divergence times (Takahata & Satta, 2002).

The average number of recombination events per locus was 0.6– 
0.8 for the low recombination rate, 6– 8 for the medium rate and 
60– 80 for the high rate (Table 3). At the low rate, about half of the 
loci were unaffected by recombination, while at the medium or high 
rates, every locus had at least one recombination event.

Compared with recombination, other factors such as the number 
of sequences (S), the mutation rate (�) and the number of loci (L) had 
greater impact on parameter estimation (Table 4). The number of loci 
(L) is the sample size in the model so that quadrupling the number of 
loci (L) may be expected to reduce the CI width by a half (e.g. White, 
1982; O’Hagan & Forster, 2004, pp. 72– 3). This expectation held for 
parameters that were well estimated, such as the species divergence 
times (Table S2).

4  |  DISCUSSION

4.1  |  Recombination hot spots and the impact of 
recombination

Genome- wide recombination rate is known to vary over an order of 
magnitude among different eukaryotes (Stapley et al., 2017). Within 
the same species, recombination rate is known to vary between the 
sexes, and across the genome, with most crossovers occurring at 
the so- called recombination hot spots (Jeffreys et al., 2001; Kauppi 
et al., 2004). Recombination hot spots were first documented in 
sperm- typing experiments in humans and mice (Cullen et al., 1997, 
2002) and confirmed in linkage- disequilibrium (LD) analysis of sin-
gle nucleotide polymorphism (SNP) markers or population genetic 
analysis of genomic sequences (Jeffreys et al., 2001; Myers et al., 

(2)D(�) = ∫ g(X;�0)log
g(X;�0)

f(X;�)
dX ,
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F I G U R E  6  The Posterior 95% CIs and coverage for parameters under the MSci model for species tree B of Figure 3. Simulation for 
L = 640 loci was done for the high recombination rate (� = 5) only
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2005). Technological advancements in the 2000s including efficient 
resequencing methods (which led to increased SNP marker den-
sity) and single- molecule methods (which allow recombinant DNA 
molecules to be recovered directly from sperm DNA) have brought 
breakthroughs in studies of recombination hot spots. They have now 
been studied in a variety of species including fruit flies (Chan et al., 
2012), cricket (Blankers et al., 2018), birds (Kawakami et al., 2017) 
and mammals (Jeffreys et al., 2001; see, for reviews, Kauppi et al., 
2004; Arnheim et al., 2007; Penalba & Wolf, 2020). In humans, re-
combination hot spots are narrow regions of 1 to 2 kb, spaced on 
average every 50 to 100 kb, with highly variable levels of activity 
(Baudat et al., 2010; Myers et al., 2005).

In our simulation, we used the program ms, which assumes a 
constant recombination rate and does not allow the presence of 
recombination hot spots. Programs such as msHot (Hellenthal & 
Stephens, 2007) can simulate recombination hot spots. Based on es-
timates from the human being, a plausible simulation scenario may 
be to generate a mixture of loci, with, say, ~98% of them having the 
background recombination rate of � = 0.05, and ~2% of hot spots 
with elevated rates of � = 20 (Stapley et al., 2017; Wang & Rannala, 
2009), with the average rate of ~0.45. It appears obvious that under 
such a scenario, the number of recombination events and the impact 
of recombination on the MSC- based analyses will be less than that 
found in our simulation at � = 0.5, and much less than in our simula-
tion at � = 5. Thus, we have not conducted simulation under a model 
of recombination hot spots.

Our simulation addresses the question whether it matters if 
recombination is ignored in the analysis when it is known to exist. 
The answer to this question obviously depends on the nature of 
the analysis and on the recombination rate. Here, we examined 
three major inference problems under the multispecies coalescent 
model using data of multilocus genomic sequence alignments: 
species tree estimation, species delimitation through Bayesian 
model selection and estimation of population parameters such as 
population sizes, species divergence times and cross- species in-
trogression probabilities. We found that the Bayesian methods for 
species tree estimation and species delimitation are robust to re-
combination even when the recombination rate is 10 times higher 
than the average human rate. We note that both those inference 
problems involve Bayesian model selection. For example, in the 
case of species tree estimation, the true model is the MSC model 
with recombination. We may then expect the true species tree 
with no recombination to be a less wrong model than any wrong 
species tree with no recombination, judged by the Kullback– 
Leibler divergence. Then, when the amount of data (the number 
of loci) approaches infinity, the less wrong model represented 
by the true species tree will dominate, with its posterior proba-
bility approaching 1 (Yang & Zhu, 2018). Bayesian estimation of 
species tree topology is then statistically ‘consistent’, in that the 
MAP model converges to the true species tree despite the model 
misspecification.

Such consistency or convergence does not apply to the prob-
lem of parameter estimation. When there is no recombination, 

the MSC model is correct, and the Bayesian point estimates (the 
posterior means) of all parameters will converge to the true val-
ues, and the CI width will converge to 0. However, when recom-
bination is present and ignored, the model is misspecified. Then, 
the Bayesian estimates will converge to the best- fitting param-
eters �∗, which differ from the true parameter values �0, the CI 
width will converge to 0, but the CI coverage will become 0%. 
The difference, �∗ − �0, measures the ‘bias’ in parameter estima-
tion or the robustness of the analysis to model misspecification. 
As the information content and the variances of parameter es-
timates are expected to be nearly the same at different recom-
bination rates when the rates are low, our results suggest that 
recombination at the low rates (10% of the human rate) had vir-
tually no impact and produced nearly identical results as in the 
case of no recombination (Table S1). However, recombination at 
rates 10× higher than the average human rate produced biases in 
some parameters, with small biases (within 10% of true values) 
in population sizes for modern species and in species divergence 
times, but with much larger positive biases (20– 40% of true val-
ues) in introgression times and in population sizes for species re-
ceiving migrants. The introgression probability was affected little 
even with such excessive recombination events. In summary, the 
bias in parameter estimation caused by ignoring recombination 
depends on the recombination rate and the parameters being 
estimated.

In the extreme case of an infinite recombination rate (� = ∞), the 
different sites at the same locus will have independent genealogical 
histories. As a result, some parameters in the MSC and MSci models 
will become unidentifiable (Zhu & Yang, 2021). In the multilocus data 
sets, differences among sites of the same sequence reflect the ran-
dom variations of the mutation process, while differences between 
loci reflect the stochastic fluctuation of the coalescent process. 
Thus, genealogical variations among loci provide important informa-
tion about the parameters in the MSC model such as ancestral popu-
lation sizes and species divergence times (Lohse & Frantz, 2014; Shi 
& Yang, 2018; Yang, 1997, 2002; Zhu & Yang, 2021). If the recombi-
nation rate between any pair of sites at the same locus is infinite, all 
sites in the data will have independent histories, and the two sources 
of variation will be confounded. As a result, the information from the 
coalescent variation among loci is lost, and some parameters in the 
model will become unidentifiable. The species tree topology remains 
identifiable by data of independent sites, but there is a dramatic loss 
of information (Zhu & Yang, 2021, Figure 3c). Nevertheless, the as-
sumption of an infinite recombination rate between any sites in the 
sequence is implausible, and the performance of a method under 
such a model is not representative of its performance in real ge-
nomic data sets.

Overall, our simulation suggests that the impact of recombina-
tion on species tree estimation, species delimitation, and estimation 
of population parameters including species divergence times and 
cross- species introgression probabilities, is relatively minor at realistic 
recombination rates. Species tree estimation is particularly robust to 
even excessive amounts of recombination, with over 50 recombination 
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events in the genealogical history of one locus (500 bps) (Table 3, � = 5). 
The results are consistent with the small- scale simulation of Lanier and 
Knowles (2012). To understand this lack of effects, we examined the 
gene trees generated by ms for each locus in some of the simulated 
replicates. As discussed by Hein et al. (2005, pp. 148– 150), a recom-
bination event may (i) have no effect, (ii) change the branch lengths 
(coalescent times) or (iii) change both the tree topology and branch 
lengths. No theory is available for calculating the probabilities for 
those cases under the MSC model. Our examination of the simulated 
gene trees suggests that most recombination events caused no or little 
differences between the gene trees for the neighbouring segments 
of the same locus. For example, the first locus in the first replicate in 
the A01 simulation under tree B (Figure 1a) with S = 2 sequences per 
species at the medium recombination rate (� = 0.5) had 4 recombi-
nation events, breaking the 500- bp locus into 5 segments of lengths 
200, 59, 228, 11 and 2 sites, but the five gene trees had the same 
topology and branch lengths so that the recombination events were 
‘invisible'. At the high rate (� = 5) and with S = 2, the first locus in the 
first replicate in the same setting had 72 recombination events, but 
the 73 gene trees had the same topology, sometimes with small differ-
ences in local branch lengths between neighbouring trees. At the high 
rate (� = 5) and with S = 8 sequences per species, the first locus in the 
first replicate had 73 recombination events, and the 74 gene trees had 
20 distinct topologies, with all differences to concern the relationships 
among sequences from the same species. Thus, the recombination 
events in those simulations caused either no change to the gene tree, 
or the changes were minor and did not affect the relative support for 
the alternative species trees.

Nevertheless, our simulation has limited scope and our results 
should not be overgeneralized. For example, we used a fixed se-
quence length of 500 bps and three recombination rates that are 
within two orders of magnitude of the average human rate. If the 
recombination rate in the species group under study is much higher 
than the rates used here or if the sequence at each locus is much 
longer than 500 bps, the conclusions based on our simulation may 
not apply.

4.2  |  Information content and strategies for 
analysing genomic data sets

We note that our simulation does not address two related questions. 
The first is estimation of recombination rates (and identification of 
recombination hot spots). Recombination is an important biological 
process, and reliable estimation of recombination rates is critical for 
identification of disease- causing mutations and detection of variants 
involved in selective sweeps (Clark, 2003; Penalba & Wolf, 2020). 
Second, even in the context of using mutations in the genome as 
neutral markers to infer the demographic history of species diver-
gences, the MSC- based methods are just one strategy for analys-
ing the genomic data. By sampling short genomic segments that are 
far apart, recombination is ignored in the model, but the analysis 
does not utilize information in linkage disequilibrium (LD) between 

neighbouring segments of the genome, which may be informative 
about certain population genetic processes such as admixture. 
Alternately, a number of population genetic methods deal with 
recombination in the model explicitly and can be applied to large 
chromosomal regions. Examples include the sequential Markov coa-
lescent approaches to inferring human population size and separa-
tion histories from multiple genomes (Li & Durbin, 2011; Schiffels & 
Durbin, 2014; Sheehan et al., 2013), the simulation- based method 
of Wall (2003) for estimating species split times and ancestral popu-
lation sizes under the MSC, the hidden Markov model (HMM) ap-
proach to estimating species divergence times and population sizes 
of Mailund et al. (2012). Most methods in this class use summary 
statistics such as the first- coalescent time (Schiffels & Durbin, 2014) 
or the introgression haplotype tracks (Harris & Nielsen, 2013; Setter 
et al., 2020), or otherwise apply approximations to the ancestral re-
combination graphs (ARGs) (Griffiths & Marjoram, 1996; McVean & 
Cardin, 2005) because full- likelihood implementations of the ARG 
are too costly (Wang and Rannala (2009).

The relative performance of the two strategies for analysing 
population genomic data is not well understood and appears to de-
pend on the timescale. At very shallow timescales as in the analysis 
of different populations of the same species, there may be too few 
mutations in short genomic segments so that methods that leverage 
the information in LD may be advantageous. For data from different 
species, the phylogenomic methods based on the MSC that explic-
itly use information in the gene genealogies may be more powerful. 
Simulation may be useful to understand the relative power of the 
different classes of methods.
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