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Supporting Information Text
SI text 1. Composite-space algorithm for migration-rate parameters. Changes to species divergence times during the MCMC may cause
contemporary species to become non-contemporary. As a result, a migration rate parameter which exists in the current model may not exist in
the proposed model. Consider the species tree ((𝐴, 𝐵) (𝐶, 𝐷)) of figure 2, with migration rate 𝑀𝑆𝐶 from 𝑆 to 𝐶. This exists only if 𝜏𝑆 < 𝜏𝑇 ,
when species 𝑆 and 𝐶 coexist during the time interval (𝜏𝑆 , 𝜏𝑇 ). Otherwise the two species are not contemporary, and 𝑀𝑆𝐶 is not a parameter in
the model. The problem also appears when migration is in the opposite direction (𝐶 → 𝑆) or in both directions (𝐶 ⇆ 𝑆), and in large species
trees with migration involving ancestral species. The problem appears to have been ignored in implementation of G-PhoCS (1).

In effect, the species tree represents two different models, depending on whether 𝜏𝑆 < 𝜏𝑇 , and the rubber-band algorithm for updating the
species divergence time (𝜏), which is a within-model proposal under MSC with no gene flow, becomes trans-model and trans-dimensional under
MSC-M. Several approaches have been suggested to deal with dimension changes in MCMC. In the product-space approach (2), all parameters
from all models are collected into a vector. When the MCMC is visiting one model, parameters of all other models are called pseudo-parameters
and are assigned pseudo-priors. A Gibbs sampler is used to update all parameters, including the pseudo-parameters. Use of good pseudo-priors
that are similar to the posterior of the parameters is noted to be critical to the success of the algorithm, and pilot runs are used to approximate
the posterior of the parameters (2). The well-known reversible-jump MCMC (rjMCMC) (3) emphasizes dimension matching between models,
but a drawback is the difficulty of proposing values of parameters for the new model that do not exist in the current model; poor choices often
lead to rejection of the proposal. The composite-space construction (4) allows arbitrary overlap of parameters between models.

Here we combine ideas in those frameworks (2, 4, 5), and implement a Carlin-Chib-Green-O’Hagan-metropolized (CCGOm) algorithm.
Common parameters unaffected by a change to 𝜏 are mapped between the models, while a migration rate that ceases to exist due to a change in
the relative order of two species divergence times (𝜏𝑆 and 𝜏𝑇 in the example) is treated as a pseudo-parameter with a pseudo-prior assigned, as
in ref. (2). However, unlike ref. (2), we do not update pseudo-parameters that are inactive in the current model, as such updates are unnecessary
(5). We also use a Metropolis step of acceptance/rejection to move between the two models, instead of the Gibbs sampler (2). This has
two advantages. First it does not require the conditional distribution, which is intractable. Second, the Metropolis step makes the proposal
flexible and the choice of the pseudo-prior less critical to efficient mixing of the algorithm (even though it is still advantageous to choose the
pseudo-prior to be close to the posterior). Furthermore, the algorithm may be preferable to rjMCMC in that the migration-rate parameter for the
new model is not generated anew at each time but takes the value last visited when the chain was in that model.

Here we describe the algorithm for the particular case of updating 𝜏𝑆 or 𝜏𝑇 on the species tree ((𝐴, 𝐵), (𝐶, 𝐷)), to deal with the disappearance
and reappearance of migration rate 𝑀𝑆𝐶 . Larger species trees or more complex migration models are treated similarly. For simplicity, we
write the migration rate as 𝑀𝑆𝐶 ≡ 𝑀1 and let 𝑴−1 be the other migration rates in the model not affected by the proposal to change 𝜏, with
𝑴 = (𝑀1,𝑴−1). The species tree represents two models with different numbers of parameters: 𝐻0 : 𝜏𝑆 ≥ 𝜏𝑇 , in which 𝑀1 does not exist, and
𝐻1 : 𝜏𝑆 < 𝜏𝑇 , which includes 𝑀1 (fig. 2). Let 𝑝1 (𝑀1) be the prior of 𝑀1 under 𝐻1 and 𝑝1 (𝑀1 |𝑋) the posterior. 𝑀1 is a pseudo-parameter in
𝐻0. Let 𝑝∗0 (𝑀1) be the pseudo-prior in 𝐻0 so that the posterior 𝑝∗0 (𝑀1 |𝑋) = 𝑝∗0 (𝑀1). Suppose the Markov chain is currently in 𝐻0 with
𝜏𝑆 ≥ 𝜏𝑇 , and the rubber-band proposal changes one of the species divergence times such that 𝜏′

𝑆
< 𝜏′

𝑇
, so that the proposed model is 𝐻1. When

we move from 𝐻0 to 𝐻1, we use the value of 𝑀1 last visited when the chain was in 𝐻1. The proposal also changes the gene trees from 𝐺 to 𝐺′.
The proposal from 𝐻0 to 𝐻1 is then accepted with probability min{1, 𝐴01}, where

𝐴01 =
𝑞(𝝉, 𝐺 |𝝉′, 𝐺′)
𝑞(𝝉′, 𝐺′ |𝝉, 𝐺) ×

𝑝1 (𝝉′, 𝜽 ,𝑴−1 |𝐻1)
𝑝0 (𝝉, 𝜽 ,𝑴−1 |𝐻0)

× 𝑝1 (𝑀1)
𝑝∗0 (𝑀1)

× 𝑝(𝐺′ |𝐻1, 𝝉
′, 𝜽 ,𝑴−1, 𝑀1)

𝑝(𝐺 |𝐻0, 𝝉, 𝜽 ,𝑴−1)
× 𝑝(𝑋 |𝐺′)

𝑝(𝑋 |𝐺) , [1]

where 𝑞 (𝝉,𝐺 |𝜏′ ,𝐺′ )
𝑞 (𝝉′ ,𝐺′ |𝜏,𝐺) is the Hastings ratio of the rubber-band move (6). The pseudo-prior 𝑝∗0 (𝑀1) does not influence the posterior for parameters

of interest, and is a computational device that affects MCMC mixing. While it is flexible, it should be chosen to resemble the posterior
𝑝1 (𝑀1 |𝑋) under 𝐻1.

The reverse rubber-band move from 𝐻1 to 𝐻0 is accepted with probability min{1, 𝐴10}, with 𝐴10 = 1
𝐴01

.
Note that in 𝐻0, 𝑀1 is a pseudo-parameter. When the MCMC sample is processed to summarize the posterior, it is incorrect to summarize

all samples of 𝑀1 without checking whether 𝜏𝑆 < 𝜏𝑇 . Samples of 𝑀1 conditional on 𝐻0 : 𝜏𝑆 ≥ 𝜏𝑇 are from the pseudo-prior, while those
conditional on 𝐻1 : 𝜏𝑆 < 𝜏𝑇 are from the posterior.

SI text 2. Extended rubber-band algorithm for the MSC-M model. We extend the rubber-band algorithm for changing the species
divergence time to accommodate migration events on gene trees. The rubber-band algorithm was developed under the simple MSC model with
no gene flow (6) and modifies a species divergence time (𝜏) by making coordinated changes to coalescent times on the gene trees to avoid
conflicts, using an analogy with the movements of points on a rubber band when the rubber band is pulled in one direction or the other. Here
we modify the algorithm so that both migration times and coalescent times on the gene trees are changed to avoid conflicts with the proposed
species divergence time.

Consider updating the age of the focal node 𝑋 on the species tree, which has mother node 𝑌 and daughter nodes 𝑈 and 𝑉 (fig. S1a). We
identify bounds (𝜏𝑙 , 𝜏𝑢) for 𝜏𝑋 , and the species in which the coalescent times and migration times on gene trees have to be rescaled together
with 𝜏𝑋 to avoid conflicts, according to equations A.7 and A.8 of ref. (6). The algorithm proposes a joint change to one species-tree node age
and potentially multiple gene-tree node ages and migration times, but keeps the relative order of coalescent and migration events on the gene
trees unchanged.

The algorithm identifies the widest bounds 𝜏𝑙 < 𝜏𝑋 < 𝜏𝑢 for which there are no conflicts; wider bounds allow larger changes to 𝜏𝑋 to be
proposed. Given the bounds, we identify so-called affected populations, within which gene-tree nodes are affected by the move and have to be
rescaled. Note that changes to gene trees cause changes to the sequence likelihood and increase the chance of rejection of the proposed move.
Thus we include a population as affected only if it is necessary for avoiding conflicts.
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In our algorithm, we may break the duration of a recipient species (i.e., a species that receives immigrants at some loci) into multiple time
segments, as the migration rates into that population (i.e., rate 𝑀𝑠 𝑗 into species 𝑗 in eq. 2) may differ among time segments. For example, in
the species tree of figure S1a, species 𝑇 exists over the time interval (𝜏𝑇 , 𝜏𝑆), and this time interval is broken into two segments: (𝜏𝑇 , 𝜏𝑋),
during which 𝑇 is receiving migrants from population 𝑈, and (𝜏𝑋 , 𝜏𝑆), during which 𝑇 is not a recipient population. In contrast, species 𝑈 in
figure S1a exists over (𝜏𝑈 , 𝜏𝑋) and this is just one time segment, during which 𝑈 is not a recipient population. The algorithm determines
whether any migration time on the gene trees falls within each time segment on the species tree defined this way. Breaking one species into
multiple time segments in this way facilitates the calculation of the gene-tree density under the MSC-M model (eq. 2) and also allows us to
identify fewer affected populations in which the gene-tree nodes have to be rescaled.

We use the ages of the mother node and oldest daughter node of node 𝑋 to form the initial bounds (𝜏𝑙 , 𝜏𝑢). If there are migration events
between any of species 𝑋,𝑈 and 𝑉 and another species on the species tree, the initial bounds (𝜏𝑙 , 𝜏𝑢) may be too wide and may have to be
refined. Note that both final bounds (𝜏𝑙 , 𝜏𝑢) must coincide with ages of nodes on the species tree. We use the initial bounds to build a list of
linked populations, which are populations that exchange migrants with any of 𝑋,𝑈 and 𝑉 with migration events in either direction on any gene
tree during the time interval (𝜏𝑙 , 𝜏𝑢), or are linked to another such population. A list of linked populations is constructed for each locus and the
lists among loci are assembled. A population is linked to a focal population (𝑋,𝑈, or 𝑉) if they are linked at at least one locus. The resulting
list is used to determine the bounds for 𝜏𝑋 . We scan the list of linked populations to build two sets of population node ages: the mother set U
and the daughter set L. Then the minimum in U will be the final upper bound 𝜏𝑢 and the maximum in L will be the final lower bound 𝜏𝑙 .

Given the bounds (𝜏𝑙 , 𝜏𝑢), we identify populations which have gene-tree nodes that are affected by the move and have to be rescaled (6,
eqs. A7&A8). These are called the affected populations, and gene-tree nodes in affected populations that have to be rescaled are called affected
nodes. Affected populations are those that fall within the range (𝜏𝑙 , 𝜏𝑢) and are a subset of the linked populations. Affected populations are
used to identify affected nodes on the gene trees for rescaling. We use locus-specific lists of linked populations to identify affected nodes.

In detail, our extended rubber-band algorithm for proposing a change to the age 𝜏𝑋 of species tree node 𝑋 involves the following steps:

1. Initial bounds. We set the initial 𝜏𝑙 to the age of the older daughter node and 𝜏𝑢 to the age of the mother node. In the example of figure
S1a, we have the initial bounds for 𝜏𝑋 to be (𝜏𝑙 , 𝜏𝑢) = (𝜏𝑉 , 𝜏𝑌 ).

2. Linked populations and age sets. Let the branch 𝛼-𝛽 be a linked population, with 𝛼 to be the mother node and 𝛽 the daughter node.
If the branch brackets 𝜏𝑋 , with 𝜏𝛽 < 𝜏𝑋 < 𝜏𝛼, set 𝜏𝛼 ∈ U and 𝜏𝛽 ∈ L. If 𝜏𝛼 < 𝜏𝑋 , set 𝜏𝛼 ∈ L. If 𝜏𝛽 > 𝜏𝑋 , set 𝜏𝛽 ∈ U. Let
𝜏𝑙 = max(L) and 𝜏𝑢 = min(U). In figure S1a, the linked populations are 𝑇 and 𝐴. Note that 𝐷 is not a linked population as migration
with 𝑈 are outside the bounds (𝜏𝑉 , 𝜏𝑌 ). The daughter set is L = (𝜏𝑉 , 𝜏𝑇 , 𝜏𝐴), with 𝜏𝑉 included as the first element. The mother set is
U = (𝜏𝑌 , 𝜏𝑆 , 𝜏𝑅). We thus have 𝜏𝑙 = max(L) = 𝜏𝑇 , and 𝜏𝑢 = min(U) = 𝜏𝑆 .

3. Affected populations. We scan the linked populations to remove those that do not exchange migrants (directly or indirectly) with the three
focal populations (𝑋,𝑈,𝑉) during (𝜏𝑙 , 𝜏𝑢). The remaining linked populations are the affected populations. In the example of figure S1a,
the affected populations are (𝑋,𝑈,𝑉, 𝑇, 𝐴).

We propose an update to the focal 𝜏𝑋 using a sliding window, reflected into the interval (𝜏𝑙 , 𝜏𝑢), and jointly propose updates to the node ages
and migration times on the gene trees in the affected populations (as in the original rubber-band algorithm). If no migration events link the
three focal populations (𝑋,𝑈,𝑉) with any other populations at any locus (as in fig. S1b), the move will be identical to the original rubber-band
move of ref. (6). More scenarios are shown in figure S1b–d.

Methods and Materials
Bayesian simulation to validate the MCMC algorithms. Three species, one migration rate: comparison with G-PhoCS. We conducted
Bayesian simulations to validate our implementation. Each replicate dataset was generated by sampling model parameters from the prior and
those sampled parameter values were then used to simulate gene trees and sequence alignments at multiple loci. Each replicate dataset was then
analyzed to generate the posterior using the same prior. The expectation is that the posterior averaged over the replicate datasets should match
the prior, if both the simulation and the inference programs are implemented correctly (7).

We used two MSC-M models for three species, with either one or eight migration rates (figs. S6a & S7a). The species tree is ((𝐴, 𝐵), 𝐶),
with the internal nodes to be 𝑅 (the root) and 𝑆 (the 𝐴-𝐵 ancestor). The first model assumed one migration event from 𝐶 → 𝑆. The rate
𝑀𝐶𝑆 was sampled from the gamma prior, 𝑀𝐶𝑆 ∼ G(10, 100). The five population size parameters were sampled from the gamma prior, 𝜃 ∼
G(10, 1000). The age of the root is sampled from the gamma prior 𝜏𝑅 ∼ G(10, 1000). Given 𝜏𝑅 , the age of the younger node is uniform,
𝜏𝑆 |𝜏𝑅 ∼ U(0, 𝜏𝑅) (8, eq. 2). As 𝜏𝑅 ∼ G(𝛼, 𝛽), 𝜏𝑆 has the density

𝑝(𝜏𝑆) = 𝛽
𝛼−1

[
1 − 𝐺 (𝜏𝑆 ;𝛼 − 1, 𝛽)

]
, [2]

where 𝐺 (𝑥;𝛼, 𝛽) is the cumulative distribution function (CDF) for the gamma distribution G(𝛼, 𝛽) (7, eq. A1). The prior mean of 𝜏𝑆 is
E(E(𝜏𝑆 |𝜏𝑅)) = 1

2 E(𝜏𝑅) =
𝛼

2𝛽 .
We simulated 500 replicate datasets on the species tree of figure S6a. Each dataset consisted of 250 loci, with 4 sequences per species per

locus, and 500 sites in the sequence. Specifically, we sampled 𝜏𝑅 , 𝜏𝑆 from the gamma-Dirichlet prior (8, eq. 2), the five 𝜃s from the gamma
prior, and 𝑀𝐶𝑆 from the gamma prior. We then generated a control file using those sampled parameters to simulate a replicate dataset using the
simulate option of bpp version 4.5 (9, 10). For each locus, the program generates a gene tree with coalescent times under the MSC-M model
and then “evolves” sequences along the branches of the gene tree under the JC model (11). Sequences at the tips of the gene tree constitute
the data at the locus. Gene trees and sequence alignments at different loci in the same replicate dataset are generated using the same set of
parameter values while different replicate datasets are generated using different parameter values sampled from the prior.
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Each replicate dataset was then analyzed using bpp under the same priors as used in the simulation. We used a burnin of 32,000 MCMC
iterations, then took 104 samples, sampling every 50 iterations. Analysis of each replicate dataset took ∼ 3 hours using 2 threads. We then
merged the MCMC samples across replicate datasets and used kernel density smoothing to estimate the average posterior density.

We included G-PhoCS (1) in the Bayesian simulation under the same MSC-M model. G-PhoCS is based on MCMCcoal, an earlier version
of bpp (6, 12), and uses a different parametrization from bpp4. As a result, the two programs use the same likelihood model but different priors.
Both programs assign gamma priors on 𝜃. However, G-PhoCS assigns separate gamma priors on the node ages on the species tree, with the
joint prior distribution of node ages generated by automatic truncation to ensure that daughter nodes are younger than mother nodes (12).
Furthermore, G-Phocs uses the mutation-scaled migration rate, 𝜛𝑖 𝑗 = 𝑚𝑖 𝑗/𝜇 = 4𝑀𝑖 𝑗/𝜃 𝑗 . We sampled parameter values according to the
priors used by G-PhoCS, converted them into parameters used in bpp to simulate the sequence data using bpp, and then analyzed the data
using G-PhoCS with the same priors as used in the simulation. Specifically, we sampled five 𝜃 parameters from G(10, 1000). We generate
species divergence times from 𝜏𝑅 ∼ G(10, 1000) and 𝜏𝑆 ∼ G(10, 2000). If 𝜏𝑆 > 𝜏𝑅 , we discarded the values and sampled again; this mimics
the implicit truncation applied by the program. We sampled the mutation-scaled migration rate 𝜛𝐶𝑆 from the gamma prior G(10, 0.25) and
calculated the population migration rate as 𝑀𝐶𝑆 = 𝜃𝑆𝜛𝐶𝑆/4. The sampled parameter values were used to generate a control file to simulate
sequence data at 𝐿 = 250 loci using the simulate option of bpp. Each dataset was then analyzed using G-PhoCS with the same priors: i.e.,
𝜛𝐶𝑆 ∼ G(10, 0.25), 𝜃 ∼ G(10, 1000), 𝜏𝑅 ∼ G(10, 1000) and 𝜏𝑆 ∼ G(10, 2000), with the truncation 𝜏𝑅 > 𝜏𝑆 applied implicitly by G-PhoCS.
We simulated and analyzed 500 replicate datasets. We used a burnin of 105 iterations, and took 104 samples, sampling every 200 iterations.
Analysis of each replicate dataset took ∼10 hours using one thread.

Three species, eight migration rates. The second MSC-M model we used was a saturated model allowing for migration between every pair of
contemporary species on the three-species tree, with eight migration rate parameters (fig. S7a). Migration rates involving the ancestral species
𝑆 (𝑀𝐶𝑆 , 𝑀𝑆𝐶 ) are hard to estimate, and in small datasets (with 𝐿 = 250 loci, say), the posterior for those parameters tends to be dominated by
the prior, making Bayesian simulation ineffective. Thus we used 𝐿 = 1000 loci, and simulated 500 replicate datasets. The other settings were
the same as for the model of one migration rate. We used a burnin of 32,000 iterations, and then took 104 samples, sampling every 50 iterations.
Running time varied, with the median to be ∼ 30 hours using 2 threads. We did not include G-PhoCS in the test under the saturated model
because of the heavy computational load, but analyzed a dataset of 2000 loci generated under the model for comparison with bpp (table S1).

Simulation under a saturated migration model for three species. We conducted simulations under the saturated migration model with
eight migration rates, using a fixed set of parameter values (fig. 3a), to examine whether thousands of loci contain enough information to
estimate so many migration rate parameters reliably. Each dataset consisted of 𝐿 = 250, 1000, or 4000 loci, with 𝑆 = 4 sequences per species
per locus and 𝑁 = 500 sites in the sequence. For each data size (𝐿), we generated 10 replicate datasets, with a total of 30 datasets simulated.

Each replicate dataset was analyzed using bpp under the MSC-M model to estimate the parameters (𝝉, 𝜽, and 𝑴). We assigned gamma
priors 𝜏𝑅 ∼ G(2, 100) with mean 0.02 for the age of the species-tree root, G(2, 100) with mean 0.02 for 𝜃s, and G(2, 10) with mean 0.2 for the
migration rates (𝑀s). The shape parameter 𝛼 = 2 means that the priors are diffuse. Pilot runs were conducted to determine the length of the
chain, and then the same setting was used in all runs. Convergence was confirmed by checking the consistency between runs. We used 32,000
iterations as burnin, and took 5 × 105 samples, sampling every 2 iterations.

Running time was ∼12 hours for 250 loci using two threads, and ∼30 hours and ∼120 hours for 1000 and 4000 loci, respectively, using four
threads. In addition, we analyzed a large dataset with 𝐿 =16,000 loci simulated under the model, taking 4 × 105 samples, sampling every
iteration. The run took 158 hours using 9 threads on a server (with Intel Xeon Gold 6136 CPUs).

Simulation under an MSC-M model with three species and two migration rates: comparison with IMa3. We compared bpp with
IMa3 by analyzing simulated datasets under the MSC-M models of figure 4a–c with a pair of migration rates on a species tree for three species.
For each species tree, 10 replicate datasets were generated under the JC model, each consisting of 𝐿 = 500 loci, 𝑆 = 4 sequences per species per
locus, and 𝑁 = 500 sites in the sequence.

Each replicate dataset was then analyzed using bpp and IMa3. For bpp, we assigned the gamma prior G(2, 100) with mean 0.02 for both 𝜏𝑅
and 𝜃. Note that given 𝜏𝑅 , 𝜏𝑆 is uniform over (0, 𝜏𝑅). The migration rates are assigned the gamma prior, 𝑀 ∼ G(2, 10), with mean 0.2. The
prior means may not match the true values but the priors are diffuse. We used a burn-in of 32,000 MCMC iterations, and took 104 samples,
sampling every 50 iterations. Analysis of each dataset took ∼30 hours using 2 threads.

We used a special version of IMa3, prepared by Professor Jody Hey and available from https://github.com/jodyhey/ima3/tree/ZY/
(accessed on 25 May 2023), which assumes the JC mutation model (11) instead of HKY (13) and a constant mutation rate for all loci and which
can handle larger datasets than the standard version. The following command-line options was used to run the program:

mpirun -np 10 ima3 -i mydata.txt -jhE -jh5 -s11 -c 3 -g priors.txt -j2 -b1000 -L4000 -hn20 -ha0.998 -hb 0.4 \
-o IMa3.out

Diffuse priors were used with the prior means matching the true parameter values as much as possible. IMa3 uses mutation rate per generation
for the whole locus (whereas in bpp 𝜇 is the mutation rate per generation per site) so that divergence time and population size parameters
(𝜃 and 𝜏) are multiplied by the sequence length (𝑁 = 500). We assigned uniform prior U(0, 15) with mean 7.5 for 𝑁𝜃𝐴 and 𝑁𝜃𝑆 (with the
true value 0.015 × 500 = 7.5), and U(0, 25) for 𝑁𝜃𝐵, 𝑁𝜃𝐶 , and 𝑁𝜃𝑅 . We used U(0, 20) for 𝑁𝜏𝑅 , and U(0, 10) for 𝑁𝜏𝑆 . Because of the
truncation (𝜏𝑅 > 𝜏𝑆), the prior means are 110

9 = 12.22 and 40
9 = 4.44 (cf: true values 10 and 5). IMa3 defines the migration rate under the

backwards-in-time coalescent view, scaled by the mutation rate per locus; in the notation here, this is 𝑤′
𝑖 𝑗

= 𝑚 𝑗𝑖/(𝑁𝜇) = 4𝑀 𝑗𝑖/(𝑁𝜃𝑖). We
assigned exponential priors, with the means to be the true values, as follows.
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Model bpp rate IMa3 rate

Fig. 4a 𝑀𝐴𝐵 = 0.1 𝜛′
𝐵𝐴

= 4 × 0.1/(500 × 0.025) = 0.032
𝑀𝐵𝐴 = 0.2 𝜛′

𝐴𝐵
= 4 × 0.2/(500 × 0.015) = 0.107

Fig. 4b 𝑀𝐵𝐶 = 0.1 𝜛′
𝐶𝐵

= 4 × 0.1/(500 × 0.025) = 0.032
𝑀𝐶𝐵 = 0.2 𝜛′

𝐵𝐶
= 4 × 0.2/(500 × 0.025) = 0.064

Fig. 4c 𝑀𝐶𝑆 = 0.1 𝜛′
𝑆𝐶

= 4 × 0.1/(500 × 0.015) = 0.053
𝑀𝑆𝐶 = 0.2 𝜛′

𝐶𝑆
= 4 × 0.2/(500 × 0.025) = 0.064

We ran IMa3 with 20 chains on 10 cores, using 1000 burnin steps, 4000 genealogies to save, 100 steps between sampling genealogies, 0.998
for heating curve shape parameter, and 0.4 for lower heating value. Analysis of each replicate dataset using 10 threads took ∼40 hours.

Simulation under the stepping-stone and island models. We simulated multilocus sequence data under the stepping-stone and island
models of figure 5a&b, and analyzed the data using both bpp and migrate (14). Those population-subdivision models are special cases of
the MSC-M (or IM) model, with species divergence times at 𝜏 = ∞. We thus used very large 𝜏s to simulate data under the MSC-M model
(fig. 5a&b), to ensure that all sequences at the locus have coalesced before reaching species divergences when we trace the genealogy of
sequences at each locus backwards in time.

Each replicate dataset consists of 𝐿 = 250, 1000, or 4000 loci, with 𝑆 = 4 sequences per species per locus and 𝑁 = 500 sites in the sequence.
The number of replicates is 10.

Each replicate dataset was analyzed using bpp under the MSC-M model to estimate the parameters: 𝜏s, 𝜃s, and 𝑀s. We use gamma priors
𝜃 ∼ G(2, 1000) for the population sizes and 𝜏𝑅 ∼ G(2, 20) for the age of the root in the species tree. The migration rates are assigned the
gamma prior 𝑀 ∼ G(2, 2/0.15). We used 32,000 MCMC iterations as burnin, and took 2 × 105 samples, sampling every 2 iterations. Running
time using 8 threads was 33, 142, and 354 hours at 250, 1000, and 4000 loci for the stepping-stone model, and 8, 47, and 235 hours for the
island model.

The small datasets of 𝐿 = 250 loci were also analyzed using migrate 5.0.4 (14) under the stepping-stone and island models (fig. 5e&f). Note
that both programs estimate the migration rates (𝑴) and the population sizes (𝜽) for extant populations but bpp in addition estimates the species
divergence times (𝝉) and ancestral population sizes. migrate uses the mutation-scaled migration rate, defined as 𝜛𝑖 𝑗 = 𝑚𝑖 𝑗/𝜇 = 4𝑀𝑖 𝑗/𝜃 𝑗 . We
used the gamma prior 𝑤 ∼ G(2, 2/300), constrained to be in the range (0, 3000). The population sizes were assigned the same gamma prior as
in bpp, G(2, 1000), but constrained in the range (0, 0.05). Those bounds are loose and had virtually no effects.

Analysis of the Anopheles mosquito genomic data. We analyzed genomic sequence data from six species of African mosquitoes in the
Anopheles gambiae species complex. Coding and noncoding sequence alignments were compiled from the genomic data of ref. (15) in ref. (16).
There are 12 sequences per locus, with two sequences per species. The species tree of figure 6b with two introgression events was built in
refs. (10, 16). We replaced introgression by migration to form an MSC-M model (fig. 6a).

We analyzed blocks of 100 loci, as in ref. (16), and then combined loci for each of the eight chromosomal arms/regions: 2L1, 2La (the
inversion region on 2L), 2L2, 2R, 3L1, 3La (the inversion region on 3L), 3L2, and 3R. The X chromosome was not used. The priors were 𝜏𝑜 ∼
G(3, 30) with mean 0.1 for the age of the root, 𝜃 ∼ G(3, 150) with mean 0.02, and 𝑀 ∼ G(2, 10) with mean 0.2. We used a burn-in of 105

iterations, and took 5 × 105 samples, sampling every 2 iterations.
For comparison, we re-analyzed the same data using the MSC-I model implemented in bpp. In the analysis of ref. (10) under the MSC-I

model, inverse gamma priors were used for 𝜏 and 𝜃 and two separate population size parameters for the same branch before and after
introgression on the species tree (e.g., 𝜃𝑏 and 𝜃 𝑓 in fig. 6b) were assumed. Here we used gamma priors and assumed the same 𝜃 before and
after the introgression event. We assigned gamma priors 𝜏0 ∼G(3, 150) and 𝜃 ∼ G(3, 30), while the introgression probability was assigned the
U(0, 1) prior.

We then analyzed all loci for each chromosomal arm as one large dataset. We ran each analysis 10 times, to assess the mixing issues.
Each analysis of the 100-loci block took at most two hours. The analysis of the 16 large datasets for the chromosomal arms (table 1) using

from 4 to 9 threads on various servers took from 34 to 581 hours (table S3).
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Fig. S1. Four MSC-M models used to illustrate the determination of the bounds (𝜏𝑙 , 𝜏𝑢 ) when species divergence time 𝜏𝑋 is updated in the extended rubber-band algorithm.
Red arrows represent migration in the model with rate 𝑀 > 0. Thin red arrows (e.g., the one from 𝑋 to 𝑆 in a) indicate that no migration event occurs at any locus (gene tree)
even if such migration is allowed in the model, while thick arrows indicate presence of migration events at one or more loci. Thick arrows or migrant events are used to identify
bounds on 𝜏𝑋 in the algorithm. (a) The initial bounds are (𝜏𝑙 , 𝜏𝑢 ) = (𝜏𝑉 , 𝜏𝑌 ) , the linked populations are (𝑆𝑇, 𝑅𝐴), and the sets are L = (𝜏𝑉 , 𝜏𝑇 , 𝜏𝐴) , U = (𝜏𝑌 , 𝜏𝑆 , 𝜏𝑅 ) .
The new bounds are 𝜏𝑙 = max(L) = 𝜏𝑇 , 𝜏𝑢 = min(U) = 𝜏𝑆 . The final bounds are (𝜏𝑇 , 𝜏𝑆 ). The affected populations are (𝑋,𝑈, 𝑉, 𝑇, 𝐴) . Note that the upper bound
𝜏𝑢 is 𝜏𝑆 rather than 𝜏𝑌 as using 𝜏𝑌 as the upper bound might lead to 𝜏𝑋 and the time of migration from populations 𝑋𝑈 → 𝑆𝑇 exceeding 𝜏𝑆 . Also gene-tree node ages
in population 𝑇 older or younger than 𝜏𝑋 are rescaled according to eqs. A7&A8 in ref. (6), respectively, as are those in population 𝐴. Even if there are no migration events
in 𝑇 in (𝜏𝑋 , 𝜏𝑆 ) , node ages in 𝑇 in that time interval are changed as well. (b) The initial bounds are (𝜏𝑉 , 𝜏𝑌 ), there are no linked populations, and the final bounds are
(𝜏𝑉 , 𝜏𝑌 ) . The extended algorithm will then be equivalent to the original algorithm of ref. (6). (c) The initial bounds are (𝜏𝑉 , 𝜏𝑌 ), the linked populations are (𝑆𝑇, 𝑅𝐴), and the
sets are L = (𝜏𝑉 , 𝜏𝑇 , 𝜏𝐴) , U = (𝜏𝑌 , 𝜏𝑆 , 𝜏𝑅 ) . The new bounds are (𝜏𝑇 , 𝜏𝑆 ) . The affected populations are (𝑋,𝑈, 𝑉, 𝑇, 𝐴) . (d) The initial bounds are (𝜏𝑉 , 𝜏𝑌 ), the linked
populations are (𝑇𝐷, 𝑆𝑇, 𝑅𝐴), and the sets are L = (𝜏𝑉 , 𝜏𝑇 , 𝜏𝑇 , 𝜏𝐴) , U = (𝜏𝑌 , 𝜏𝑆 , 𝜏𝑅 ) . The new bounds are (𝜏𝑇 , 𝜏𝑆 ) . The affected populations are (𝑋,𝑈, 𝑉, 𝑇, 𝐴) .
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Fig. S2. Rejection algorithm. Estimated species divergence times and migration rates under the MSC-M model from 10 replicate bpp runs of the rejection algorithm in the
analysis of the (a) coding and (b) noncoding datasets from the eight chromosomal arms (fig. S12). The 𝑦-axis (and vertical bars for the CIs) indicates the divergence times (𝜏)
while the colour intensity of the horizontal arrows indicates the migration rate (𝑀). The 10 runs for each analysis are in the columns. Trace and box plots for the first dataset (2L1
coding) are shown in figure S4.
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Fig. S3. Extended rubber-band algorithm. Estimated species divergence times and migration rates using the extended rubber-band algorithm for the same data of figure S2.
Trace and box plots for the first dataset (2L1 coding) are shown in figure S5.
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Fig. S4. Rejection algorithm. (a) Trace and (b) box plots for parameters in the MSC-M model in 10 bpp runs using the rejection algorithm for updating 𝜏 in the analysis of the
2223 coding loci from chromosomal arm 2L1 (fig. 6a). The large differences among runs suggest mixing issues.
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Fig. S5. Extended rubber-band algorithm. (a) Trace and (b) box plots for parameters in the MSC-M model in 10 bpp runs using the extended rubber-band algorithm in the
analysis of the same data as in figure S4.
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Fig. S6. (a) MSC-M model for three species with 𝐶 → 𝑆 migration, used in Bayesian simulation to validate bpp and G-PhoCS. (b) Prior (black dashed line) and average
posterior (red solid line) distributions of eight parameters in the model in bpp analysis of the data. The prior for 𝜏𝑆 is given by eq. 2. (c) Posterior distributions from three replicate
datasets from bpp. Averaging over posterior distributions over replicate datasets recovers the prior in (b). (d) Prior (black dashed line) and average posterior (red solid line) for
G-PhoCS. The priors for 𝜏𝑅 and 𝜏𝑆 were generated by simulating 106 pairs of gamma variables and applying truncation so that 𝜏𝑅 > 𝜏𝑆 . The migration rate is defined as
𝜛𝐶𝑆 = 4𝑀𝐶𝑆/𝜃𝑆 . (e) Three posterior distributions for three datasets by G-PhoCS.
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Fig. S7. (a) Saturated migration model for three species with eight migration rates, used in Bayesian simulation to validate bpp. (b) Prior (black dashed line) and average posterior
(red solid line) for 15 parameters in bpp analysis of the data. (c) Posterior distributions from three replicate datasets.
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Fig. S8. (a) MSC-M. Posterior means and 95% HPD CIs of migration rates, 𝑀𝐴→𝐺𝐶 and 𝑀𝑅→𝑄 (fig. 6a), obtained from bpp analysis of the 100-loci blocks. (b) MSC-I.
Introgression probabilities (𝜑𝐴→𝐺𝐶 , 𝜑𝑅→𝑄 in the MSC-I model, fig. 6b) under the MSC-I model. The MSC-I results are very similar to those of ref. (10, fig. 6), where inverse
gamma priors were used for 𝜏 and 𝜃 . Here we used gamma priors, and assumed the same population size before and after each introgression event (𝜃𝑅 = 𝜃𝑔 , 𝜃𝑏 = 𝜃 𝑓 , etc.;
fig. 6b).
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Fig. S9. Posterior mean introgression probability (𝜑̂) under the MSC-I model plotted against posterior mean migration rate (𝑀̂) under the MSC-M model in bpp analysis of the
100-loci blocks. Note that 𝑀̂ is on logarithmic scale. The estimates are shown along the chromosomes in figure S8a.
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Fig. S10. Posterior mean introgression probability under the MSC-I model (𝜑̂) plotted against the expected introgression probability (𝜑0) calculated using parameter estimates
under the MSC-M model in bpp analysis of the 100-loci blocks: 𝜑0,𝐴→𝐺𝐶 = 1 − exp

{
− 4𝑀𝐴→𝐺𝐶

𝜃𝑏
(𝜏𝑑 − 𝜏𝑏 )

}
and 𝜑0,𝑅→𝑄 = 1 − exp

{
−

4𝑀𝑅→𝑄

𝜃𝑄
𝜏𝑑

}
(ref. (17), eq. 10).
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Fig. S11. Posterior means of parameters under three models from the 100-loci blocks of the (a) coding and (b) noncoding data from Anopheles: the MSC model with no gene flow,
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Fig. S12. (a&b) Species trees showing estimated divergence times and migration rates (indicated by the intensity of the colour) under the MSC-M model in bpp analysis of the (a)
coding and (b) noncoding loci from the chromosomal arms. (c&d) Estimates under the MSC-I model. See table 1 for estimates of all parameters.
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Table S1. Posterior means and 95% HPD CIs (in parentheses) for parameters obtained in bpp and G-PhoCS analyses of two datasets (of 𝐿 = 2000
or 16,000 loci) simulated under the saturated migration model of figure 3a.

𝐿 = 2000, G-PhoCS

Truth 𝐿 = 16000, bpp 𝐿 = 2000, bpp Truth run 1 run 2

𝜃𝐴 0.015 0.0148 (0.0145, 0.0151) 0.0153 (0.0145, 0.0162) 0.015 0.0151 (0.0142, 0.0159) 0.0151 (0.0143, 0.0160)
𝜃𝐵 0.025 0.0254 (0.0249, 0.0258) 0.0260 (0.0247, 0.0273) 0.025 0.0264 (0.0250, 0.0277) 0.0265 (0.0252, 0.0278)
𝜃𝐶 0.025 0.0247 (0.0243, 0.0252) 0.0238 (0.0227, 0.0250) 0.025 0.0239 (0.0227, 0.0251) 0.0237 (0.0226, 0.0250)
𝜃𝑅 0.025 0.0250 (0.0246, 0.0254) 0.0244 (0.0232, 0.0255) 0.025 0.0257 (0.0245, 0.0269) 0.0259 (0.0247, 0.0270)
𝜃𝑆 0.015 0.0151 (0.0142, 0.0160) 0.0166 (0.0142, 0.0189) 0.015 0.0200 (0.0175, 0.0226) 0.0206 (0.0180, 0.0231)

𝜏𝑅 0.020 0.0203 (0.0200, 0.0207) 0.0204 (0.0196, 0.0212) 0.020 0.0183 (0.0175, 0.0190) 0.0181 (0.0174, 0.0188)
𝜏𝑆 0.010 0.0102 (0.0099, 0.0104) 0.0101 (0.0096, 0.0107) 0.010 0.0092 (0.0086, 0.0097) 0.0091 (0.0085, 0.0096)

𝑀𝐴𝐵 0.12 0.1193 (0.1067, 0.1317) 0.1299 (0.0949, 0.1661) 𝜛𝐴𝐵 = 19 12.5 (7.7, 17.3) 12.5 (7.6, 17.2)
𝑀𝐴𝐶 0.13 0.1341 (0.1238, 0.1451) 0.1189 (0.0883, 0.1500) 𝜛𝐴𝐶 = 21 16.0 (11.2, 20.7) 16.6 (12.2, 21.2)
𝑀𝐵𝐴 0.21 0.2214 (0.2115, 0.2312) 0.2297 (0.2008, 0.2589) 𝜛𝐵𝐴 = 56 58.8 (50.0, 68.2) 58.9 (50.1, 67.8)
𝑀𝐵𝐶 0.23 0.2361 (0.2234, 0.2495) 0.2399 (0.2050, 0.2741) 𝜛𝐵𝐶 = 37 38.6 (33.3, 44.0) 39.1 (33.8, 44.7)
𝑀𝐶𝐴 0.31 0.3011 (0.2904, 0.3117) 0.2851 (0.2554, 0.3149) 𝜛𝐶𝐴 = 83 75.2 (67.2, 83.2) 74.5 (67.1, 82.3)
𝑀𝐶𝐵 0.32 0.3227 (0.3080, 0.3377) 0.2990 (0.2632, 0.3358) 𝜛𝐶𝐵 = 51 45.9 (40.4, 51.5) 45.5 (40.1, 51.1)
𝑀𝐶𝑆 0.20 0.2075 (0.1728, 0.2386) 0.1998 (0.1112, 0.2834) 𝜛𝐶𝑆 = 53 8.2 (0.1, 17.4) 7.4 (0.5, 16.5)
𝑀𝑆𝐶 0.10 0.1381 (0.0868, 0.1816) 0.1220 (0.0219, 0.2291) 𝜛𝑆𝐶 = 16 3.9 (0.1, 9.3) 3.9 (0.1, 9.6)

Note.— The 16,000-loci dataset is analyzed using bpp only, while the 2000-loci dataset is analyzed using both bpp and G-PhoCS. G-PhoCS uses the same
definitions of 𝜏s and 𝜃s, but the mutation-scaled migration rate: 𝜛𝑖 𝑗 = 𝑚𝑖 𝑗/𝜇 = 4𝑀𝑖 𝑗/𝜃 𝑗 . In the G-PhoCS analysis, the priors are chosen to be close to those

used by bpp: 𝜏𝑅 ∼ G(2, 100) , 𝜏𝑆 ∼ G(2, 200) , 𝜃 ∼ G(2, 100) for all populations, and 𝜛 ∼ G(2, 0.05) with mean 40 for all 𝜛𝑖 𝑗 .
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Table S2. Posterior means, 95% HPD CI width, and CI coverage for parameters in the stepping-stone and island models (fig. 5a&b) averaged over
10 replicate datasets

𝐿 = 250 loci 𝐿 = 1,000 loci 𝐿 = 4,000 loci

Truth mean CI width coverage mean CI width coverage mean CI width coverage

Stepping-stone model (fig. 5a)
𝜃𝐴 0.002 0.00202 0.000527 0.9 0.00195 0.000255 0.7 0.00205 0.000128 0.6
𝜃𝐵 0.002 0.00201 0.000564 1.0 0.00200 0.000294 0.7 0.00196 0.000139 0.4
𝜃𝐶 0.002 0.00200 0.000579 0.9 0.00205 0.000292 0.7 0.00202 0.000145 0.6
𝜃𝐷 0.002 0.00200 0.000524 0.9 0.00203 0.000262 0.7 0.00198 0.000130 0.5

𝜃𝑅 0.002 0.00200 0.00473 1.0 0.00198 0.00468 1.0 0.00195 0.00467 1.0
𝜃𝑇 0.002 0.00199 0.00471 1.0 0.00198 0.00468 1.0 0.00190 0.00451 1.0
𝜃𝑆 0.002 0.00200 0.00473 1.0 0.00199 0.00471 1.0 0.00204 0.00478 1.0
𝜏𝑅 0.100 0.1128 0.10242 0.8 0.1168 0.09600 0.7 0.1083 0.07441 0.8
𝜏𝑇 0.098 0.0837 0.03146 0.3 0.0884 0.01637 0.2 0.0865 0.01031 0.3
𝜏𝑆 0.096 0.0630 0.02992 0.3 0.0619 0.01455 0.0 0.0666 0.00949 0.0

𝑀𝐴𝐵 0.15 0.1429 0.0572 1.0 0.1469 0.0289 0.8 0.1567 0.0149 0.4
𝑀𝐵𝐴 0.15 0.1490 0.0561 0.9 0.1546 0.0285 0.7 0.1442 0.0132 0.5
𝑀𝐵𝐶 0.15 0.1587 0.0564 0.9 0.1499 0.0274 0.8 0.1493 0.0136 0.6
𝑀𝐶𝐵 0.15 0.1487 0.0531 0.8 0.1535 0.0280 0.7 0.1542 0.0140 0.4
𝑀𝐶𝐷 0.15 0.1498 0.0555 1.0 0.1486 0.0276 0.8 0.1560 0.0146 0.7
𝑀𝐷𝐶 0.15 0.1567 0.0614 0.8 0.1516 0.0292 0.5 0.1468 0.0142 0.7

Island model (fig. 5b)
𝜃𝐴 0.020 0.01934 0.002373 0.7 0.01990 0.001226 0.9 0.01999 0.000615 1.0
𝜃𝐵 0.002 0.00207 0.000579 0.9 0.00203 0.000282 0.8 0.00200 0.000141 0.8
𝜃𝐶 0.002 0.00206 0.000572 1.0 0.00203 0.000288 0.9 0.00201 0.000141 0.9
𝜃𝐷 0.002 0.00205 0.000567 1.0 0.00198 0.000278 0.9 0.00198 0.000140 1.0

𝜃𝑅 0.002 0.00200 0.004713 1.0 0.00200 0.004727 1.0 0.00200 0.004725 1.0
𝜃𝑇 0.002 0.00200 0.004718 1.0 0.00200 0.004717 1.0 0.00201 0.004750 1.0
𝜃𝑆 0.002 0.00205 0.004836 1.0 0.00206 0.004870 1.0 0.00250 0.006704 1.0
𝜏𝑅 0.100 0.1592 0.2219 1.0 0.1687 0.2111 0.8 0.1686 0.2031 0.8
𝜏𝑇 0.098 0.1205 0.1596 1.0 0.1294 0.1454 1.0 0.1293 0.1343 1.0
𝜏𝑆 0.096 0.0819 0.0819 0.8 0.0910 0.0595 0.7 0.0900 0.0319 0.5

𝑀𝐴𝐵 0.15 0.1544 0.0480 1.0 0.1503 0.0235 0.9 0.1492 0.0118 1.0
𝑀𝐴𝐶 0.15 0.1521 0.0475 0.9 0.1550 0.0244 0.9 0.1502 0.0119 1.0
𝑀𝐴𝐷 0.15 0.1521 0.0473 1.0 0.1474 0.0233 0.8 0.1479 0.0117 0.9

Note.— The 95%HPD CIs from the replicate datasets are plotted in figure 5c&d.
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Machine Cores Time Machine Cores Time Machine Cores Time Machine Cores Time Machine Cores Time Machine Cores Time Machine Cores Time Machine Cores Time Machine Cores Time Machine Cores Time
okapi 4 78:02:39 indri 6 77:19:43 llama 4 43:09:29 okapi 4 248:42:40 potto 6 91:58:31 okapi 4 35:26:38 indri 6 55:45:29 okapi 4 30:45:36 potto 6 138:08:31 indri 6 46:47:25
okapi 4 77:43:27 indri 6 75:12:42 llama 4 43:01:01 okapi 4 245:54:26 potto 6 91:13:55 okapi 4 35:01:30 indri 6 57:56:54 okapi 4 30:45:04 potto 6 137:08:38 indri 6 46:11:03
okapi 4 77:03:22 indri 6 75:05:53 llama 4 42:59:39 okapi 4 242:22:11 potto 6 92:18:20 okapi 4 34:46:21 indri 6 54:36:42 okapi 4 30:46:52 potto 6 137:34:15 indri 6 46:05:43
okapi 4 78:43:13 indri 6 76:18:53 llama 4 43:06:09 okapi 4 244:26:02 potto 6 92:33:00 okapi 4 34:54:41 indri 6 55:11:29 okapi 4 30:49:05 potto 6 131:23:49 indri 6 46:23:53
okapi 4 77:31:35 indri 6 75:29:36 llama 4 43:21:24 okapi 4 239:25:02 potto 6 91:13:19 okapi 4 34:32:16 indri 6 54:43:59 okapi 4 30:36:35 potto 6 146:24:01 indri 6 45:49:15
okapi 4 77:26:30 indri 6 75:53:31 llama 4 43:03:30 okapi 4 240:09:53 potto 6 92:36:04 okapi 4 34:51:55 indri 6 55:13:23 okapi 4 30:47:48 potto 6 171:56:33 indri 6 45:50:45
okapi 4 78:11:11 indri 6 96:46:05 llama 4 43:16:46 okapi 4 240:53:03 potto 6 92:28:23 okapi 4 35:14:01 indri 6 55:20:27 okapi 4 30:49:11 potto 6 129:24:59 indri 6 40:43:59
okapi 4 77:19:10 indri 6 84:11:41 llama 4 43:14:58 okapi 4 240:07:06 potto 6 96:07:52 okapi 4 35:12:48 indri 6 54:12:12 okapi 4 30:36:06 potto 6 128:47:20 indri 6 46:30:21
okapi 4 78:03:52 indri 6 80:25:30 llama 4 43:07:55 okapi 4 240:39:01 potto 6 92:41:52 okapi 4 35:05:34 indri 6 55:16:32 okapi 4 30:43:56 potto 6 127:10:29 indri 6 45:54:05
okapi 4 77:25:40 indri 6 87:47:55 camel 6 41:10:03 okapi 4 239:30:33 potto 6 86:29:17 okapi 4 34:44:27 indri 6 54:42:14 okapi 4 30:33:14 potto 6 127:25:19 indri 6 46:22:14

Machine Cores Time Machine Cores Time Machine Cores Time Machine Cores Time Machine Cores Time Machine Cores Time Machine Cores Time Machine Cores Time Machine Cores Time Machine Cores Time
cluster 4 125:31:11 cluster 4 203:46:24 cluster 4 217:21:21 okapi 4 581:42:17 llama 6 227:23:12 cluster 4 87:55:48 camel 6 173:04:11 cluster 4 70:11:35 llama 6 361:54:46 potto 4 279:47:07
cluster 4 118:45:21 cluster 4 216:24:23 cluster 4 110:51:48 potto 6 471:45:02 llama 6 199:33:05 cluster 4 75:07:04 camel 6 171:13:15 cluster 4 70:32:17 llama 6 355:39:02 potto 4 126:33:14
cluster 4 138:01:50 cluster 4 278:58:09 cluster 4 93:35:35 potto 6 575:59:10 llama 6 203:56:24 cluster 4 83:11:04 potto 6 178:52:13 cluster 4 92:36:08 llama 6 356:04:45 potto 4 287:31:23
cluster 4 123:14:51 cluster 4 212:08:16 cluster 4 91:29:10 okapi 4 582:34:07 llama 6 194:59:37 cluster 4 86:28:45 potto 6 177:29:05 cluster 4 64:17:21 llama 6 355:10:58 potto 4 152:51:24
cluster 4 118:25:00 cluster 4 258:30:01 cluster 4 94:57:42 okapi 4 575:33:17 llama 6 217:38:11 cluster 4 72:49:50 potto 6 180:30:35 cluster 4 103:50:49 llama 6 353:35:49 potto 4 160:33:58
cluster 4 117:54:36 cluster 4 271:04:43 cluster 4 93:20:34 okapi 4 580:21:52 llama 6 200:40:22 cluster 4 86:54:38 potto 6 187:38:31 cluster 4 57:05:51 llama 6 354:30:29 potto 4 160:28:02
cluster 4 118:31:44 cluster 4 252:50:39 cluster 4 76:13:26 okapi 4 581:03:08 llama 6 194:32:47 cluster 4 91:40:41 potto 6 177:06:20 cluster 4 56:34:32 llama 6 355:06:15 indri 9 99:47:00
cluster 4 118:47:36 cluster 4 279:42:48 cluster 4 92:33:25 okapi 4 577:10:43 llama 6 203:36:59 cluster 4 92:04:16 potto 6 181:49:02 cluster 4 57:21:59 llama 6 359:58:01 indri 9 93:49:40
cluster 4 120:11:22 cluster 4 253:51:47 cluster 4 90:54:55 okapi 4 583:07:48 indri 9 239:49:30 cluster 4 97:35:20 potto 6 198:17:21 cluster 4 57:16:32 indri 9 331:12:26 indri 9 99:27:35
cluster 4 118:21:56 cluster 4 223:49:46 potto 6 75:06:28 okapi 4 580:39:45 indri 9 207:36:16 cluster 4 82:58:08 potto 8 204:56:50 cluster 4 56:40:49 indri 9 327:10:40 indri 9 98:50:56

Machine CPU
potto Intel Xeon Gold 6154 COU @ 3.00GHz
indri Intel Xeon Gold 6154 COU @ 3.00GHz
okapi Intel Xeon Gold 6230 CPU @ 2.10GHz
llama Intel Xeon Gold 6136 CPU @ 3.00GHz
camel Intel Xeon Gold 5118 CPU @ 2.30GHz
cluster heterogeneous CPUs

Noncoding
2L1 (4133) 2La (6732) 2L2 (2330) 2R (17027) 2L1+2 (6463) 3L1 (2496) 3La (6208) 3L2 (1823) 3R (14323) 3L1+2 (4319)

Table S3 Running times on different servers in analysis of the Anopheles genomic datasets
2L1 (2223) 2La (2776) 2L2 (1362) 2R (6849) 2L1+2 (3585) 3L1 (983) 3La (1998) 3L2 (764) 3R (4977) 3L1+2 (1747)
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