
RESEARCH ARTICLE EVOLUTION OPEN ACCESS

Efficient Bayesian inference under the multispecies coalescent
with migration
Tomáš Flouria , Xiyun Jiaob , Jun Huangc , Bruce Rannalad,1 ID , and Ziheng Yanga,1 ID

Edited by Rasmus Nielsen, University of California, Berkeley, CA; received June 25, 2023; accepted August 15, 2023

Analyses of genome sequence data have revealed pervasive interspecific gene flow and
enriched our understanding of the role of gene flow in speciation and adaptation.
Inference of gene flow using genomic data requires powerful statistical methods. Yet
current likelihood-based methods involve heavy computation and are feasible for small
datasets only. Here, we implement the multispecies-coalescent-with-migration model
in the Bayesian program bpp, which can be used to test for gene flow and estimate
migration rates, as well as species divergence times and population sizes. We develop
Markov chain Monte Carlo algorithms for efficient sampling from the posterior,
enabling the analysis of genome-scale datasets with thousands of loci. Implementation
of both introgression and migration models in the same program allows us to test
whether gene flow occurred continuously over time or in pulses. Analyses of genomic
data from Anopheles mosquitoes demonstrate rich information in typical genomic
datasets about the mode and rate of gene flow.
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One of the most important findings arising from comparative analyses of sequenced
genomes during the past two decades is the prevalence of interspecific gene flow.
Hybridization has been inferred in both plants [e.g., Arabidopsis (1)] and animals,
including Anopheles mosquitoes (2), Panthera cats (3), cichlid fishes (4), and Hominins
(5). Hybridization transfers genetic variation across species and by creating new allelic
combinations at multiple loci may contribute to ecological adaptation (6, 7). Inference
of gene flow can further our understanding of speciation (8, 9), help delineate species
boundaries (10, 11), and guide efforts to conserve biodiversity and detect invasive species.

Gene flow is often inferred using simple summaries of genomic data. For example, the
D statistic (12) and HYDE (13) test for gene flow using genome-wide site-pattern counts
in a species quartet, while SNAQ (14, 15) uses the reconstructed gene tree topologies.
These methods have low power and are often unable to identify gene flow between sister
lineages, or to infer the direction, timing, and strength of gene flow (16–18).

Likelihood methods based on the multispecies coalescent (MSC) model (19) make full
use of information in the data, providing rich inference using genomic datasets (20). Two
simple models of gene flow have been developed under the MSC, representing different
modes of gene flow (16, 17). The MSC-with-introgression [MSC-I; (21)] model, also
known as multispecies network coalescent [MSNC, (22, 23)], assumes that gene flow
occurs at a particular time point in the past. The MSC-with-migration (MSC-M) model,
also known as the isolation-with-migration (IM) model, assumes that gene flow occurs
continuously at a certain rate every generation after species divergence (24, 25). In both
models the rate of gene flow should be considered an ‘effective’ rate, reflecting the
combined effects of gene flow and natural selection on introgressed alleles, influenced by
genetic drift and local recombination rate (9). The two models are simple extremes as in
reality the rate of gene flow may be expected to vary over time (26). Here, we focus on
MSC-M.

Under the MSC-M model, the gene genealogy at any locus includes not only the
tree topology and coalescent times (branch lengths) but also detailed migration history
(the number, directions, and timings of migration events). There may be no upper
limit to the number of migration events at each gene locus. Likelihood inference
has to average over the gene genealogy underlying the sequence data at each locus,
including the migration history. There have been two approaches to dealing with the
migration history (16). The first relies on a theory developed in the structured coalescent
framework, in which the backward-in-time process of coalescence and migration is
described using a continuous-time Markov chain, to integrate out the migration history at
each locus analytically (27–30). However, the number of states in the Markov chain grows
explosively with the increase in the number of species and the number of sequences (30).
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Thus, this approach is feasible for very small numbers of species
and sequences but can deal with many loci. The maximum
likelihood program 3S (29, 31) is limited to three species and
three sequences per locus. The program MIST (32) is implemented
for two species/populations only and can handle eight sequences
per locus. Both programs can handle >10,000 loci.

The second approach uses Markov chain Monte Carlo
(MCMC) to average over the gene trees including the migration
history numerically. Both IMA3 (24, 25) and G-PHOCS (33) take
this strategy. While G-PHOCS assumes that the MSC-M model
is fixed, IMA3 also allows the species phylogeny to change during
the MCMC. Both programs involve a high computational load:
IMA3 has been used to analyze data of a few hundred loci while
G-PHOCS has been used to analyze data of a few thousand.

Population genetic models of population subdivision and
migration (34) have been implemented in the program MIGRATE
(35–37). A major difference of these models from MSC-M is that
they do not account for the population/species phylogeny or the
history of population divergences. They can be considered special
cases of MSC-M with divergence times approaching ∞ (see
below). The structured coalescent model was also implemented
in the program BEAST2 as the MULTITYPETREE package (38),
and approximations were made to improve computation in the
MASCOT package (39). These are designed for phylodynamic
analysis of viral sequence data, treating geographical locations
as subpopulations, with the aim of estimating migration rates,
reconstructing transmission histories, and tracing the emergence
of outbreaks in a pandemic (38). The so-called “mugration”
model treats migrations between geographical regions as a
continuous-time Markov chain, such as used to model mutations,
and assumes that the migration process does not influence
the shape of the genealogical tree. The model thus has major
deviations from the structured coalescent or MSC-M, leading to
unreliable inference of migration rates and high sensitivity of the
inferred root location to sampling biases (40). They do not appear
to be suitable for analysis of multilocus sequence alignments from
different species under the MSC.

Overall, current likelihood methods under the MSC-M model
for multilocus sequence data including both IMA3 and G-PHOCS
involve heavy computation and do not scale well with genomic
datasets. The algorithmic challenge is not mainly due to the
expanded state space because of migration histories at multiple
loci; rather, it lies in the extremely stringent constraints placed
by the gene trees on the species tree or on the MSC-M model.
For example, if we propose to modify a species divergence time
with all gene trees fixed, only tiny changes are permissible. In the
context of MSC without gene flow, we have found that smart
MCMC moves that make coordinated changes to both the species
tree and the gene trees can dramatically improve MCMC mixing
(19, 41, 42), making it possible to analyze datasets with >10,000
loci (21, 43).

Here, we implement the MSC-M model in BPP, a coalescent-
based Bayesian MCMC program (44, 45). We develop MCMC
algorithms for efficient mixing and conduct extensive simulations
to validate our algorithms. We also show that the MSC-M model
can be used to analyze classical population genetic models of
subdivision and structure such as the finite-island model (46, 47)
and the stepping-stone model (48) which are special cases of the
MSC-M model. We show that BPP outperforms existing methods
in both reliability and scalability. We applied both MSC-M and
MSC-I models to genomic data from the Anopheles gambiae
group of African mosquitoes (2, 43), to test for gene flow and to
estimate the rate of gene flow, as well as other major population
parameters such as species divergence times and population sizes.

Having both MSC-I and MSC-M in the same program allows us
to examine their differences when both are applied to the same
data and to compare their goodness of fit.

Results

Gene-tree Density under the MSC-M Model. Fig. 1A illustrates
the MSC-M model, which involves three sets of parameters:
species divergence times (�), population sizes (�), and migration
rates (M ), with Θ = {� ,�,M }. Time is scaled by mutations
so that one time unit is the expected time to accumulate one
mutation per site. Thus, both � and � are measured in expected
number of mutations per site. At this time scale, two sequences
from a population of size � coalesce at the rate of 2

� . Migration
rate Mij is defined as the expected number of migrants from
species i to j per generation, with Mij = Njmij, where Nj is the
(effective) population size of species j and mij is the proportion of
immigrants in population j from population i. Note that we use
the real-world view (with time running forward) to define the
migration rate parameter. Let X = {X (i)

} denote the data, with
X (i) to be the sequence alignment at locus i. Let G = {G(i)

} be
the gene trees, where G(i) includes the rooted tree, the coalescent
times, and the migration history at the locus (including the
number, directions, and timings of migration events). We assume
no recombination among sites in the sequence of the same locus
and free recombination between loci, so that all sites at the same
locus share the same gene tree while gene trees at multiple loci are
independent. A recent simulation suggests that inference under
the MSC is robust to moderate levels of recombination (49).

We implement MCMC algorithms to sample from the joint
conditional distribution of the parameters and the gene trees.

p(Θ, G|X ) ∝ p(Θ)p(G|Θ)p(X |G), [1]

where p(Θ) is the joint prior, p(G|Θ) is the probability density
of the gene trees given the parameters in the MSC-M model, and
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Fig. 1. (A) A species tree for three species (A, B, C) with migration between
species B and C showing model parameters, Θ = (�R , �S , �A, �B , �C , �R , �S , MBC ,
MCB). There are three sets of parameters in the model: species divergence
times (�R ≡ �ABC , �S ≡ �AB), population sizes (�A, �B , �C , �R , �S ), and migration
rates (MBC , MCB). Both � and � are measured in the expected number of
mutations per site. The (population) migration rate is defined as Mij = Njmij ,
the expected number of migrants from species i to j per generation, where
Nj is the (effective) population size of species j and mij is the proportion of
immigrants in population j from population i. (B) A possible gene tree with
the complete history of coalescent and migration events at a locus with two
sequences from each of the three species (a1 , a2 from A; b1 , b2 from B; and
c1 , c2 from C). In the backward-in-time process of coalescent and migration,
the five coalescent events occur at times t1–t5, while sequenceb2 experienced
two migration events from B to C at time s1 and back from C to B at time s2,
with t1 < t2 < s1 < s2 < t3 < t4 < t5.
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p(X |G) is the probability of the sequence data given the gene
trees or the phylogenetic likelihood (50).

The probability density of the gene trees under the MSC-
M model, p(G|Θ) in Eq. 1, is essentially given by the structured
coalescent process of coalescent and migration (24, 27, 28, 34, 35)
operating within each time interval between species divergences.
To accommodate the species phylogeny, we simply reset the
process when we reach a species divergence event, with an
update to the number of populations, migration rates, and other
population parameters. The MSC-M process is also a variable-
rate (piecewise constant-rate) Poisson process, in which the
coalescent and migration rates change at any coalescent event,
migration event, and species divergence event (51).

We break the time period for each species j into Kij time
segments at locus i, during which the coalescent and migration
rates are constant. Let tijk be the duration of the kth time segment,
and nijk be the number of lineages, with k = 1, · · · , Kij. Let wsji
be the number of migration events from species s to j at locus i
(with time running forward). We define the indicator Isjk to be 1
if migration from s to j is possible during time segment k (i.e., if
both species s and j exist in time segment k and are permitted to
exchange migrants) and 0 otherwise. The probability density for
the gene trees under MSC-M is then a product over species and
over loci, with the contribution from species j and locus i given
by the variable-rate Poisson process, equal to the Poisson rates
for coalescent and migration events that have occurred times the
probability of no events occurring during the total time duration.
Let Gj be parts of the gene trees in species j (over all loci), and
let G = {Gj}. Then,

p(G|Θ) =
∏
j

p(Gj|Θ) =
∏
j

∏
i

[( 2
�jhi

)cij ∏
s

(4Msj

�jhi

)wsji

× exp
{
−

Kij∑
k=1

(nijk(nijk − 1)
�jhi

+
nijk · 4

∑
s IsjkMsj

�jhi

)
tijk

}]
, [2]

where hi is the heredity/ploidy scalar for the ith locus (e.g., 1 for
autosomes, 3

4 for X-linked, 1
4 for Y-linked or mtDNA loci), and

cij is the number of coalescent events in species j at locus i. Here
2
�jhi is the coalescent rate per time unit for a pair of sequences in

species j at locus i and 4Msj
�jhi is the (mutation-scaled) migration

rate from species s to j, with time running forward.
For example, the density for the gene tree of Fig. 1B for a locus

with six sequences is

p(G|Θ) =
[

2
�A e−

2
�A

t1
]
×

[
e−

2
�B

(s1+�S−s2)

·
4MCB
�B e−

4MCB
�B

[2(s1+�S−s2)+(s2−s1)]
]

×

[
2
�C e−

2
�C

(t2+s2−s1)

·
4MBC
�C e−

4MBC
�C [2(t2+s2−s1)+(s1−t2)+(�S−s2)]

]
×

[
2
�S e−

6
�S

(t3−�S)− 2
�S

(�R−t3)
]

×

[
2
�R ·

2
�R e−

6
�R

(t4−�R)− 2
�R

(t5−t4)
]
. [3]

The five terms in the square brackets correspond to contributions
from the five populations: A, B, C, S, and R, respectively. For

species A, the contribution is 2
�A e−

2
�A

t1 , as there is one coalescent
event, between a1 and a2 at time t1. In species B, there is no
coalescent, so the probability of having no coalescent when there
were two sequences during the time periods (0, s1) and (s2, �S)

is e−
2
�B

(s1+�S−s2). There is a migration event; hence, the rate
4MCB
�B , while the probability that no migration occurs during

time periods (0, s1), (s1, s2), and (s2, �S), when there are 2, 1,
and 2 sequences, respectively, is exp

{
−

4MCB
�B

[
2(s1 + �S − s2) +

(s2 − s1)
]}

. Contributions from species C, S, R similarly consist
of coalescent and migration components.

Given the MSC-model and parameters, the gene trees are
assumed to be independent among loci, so that the density for
all gene trees is a product over the loci. Bayesian estimation of
parameters in the model (Θ) involves averaging over all possible
gene trees for all loci, which is achieved by the MCMC algorithm.

Overview of MCMC Algorithms under the MSC-M Model. We
modified the MCMC proposals in ref. 19. We added sliding-
window moves to update the migration rates (M ) and the
migration times on the gene trees. The subtree-pruning-and-
regrafting (SPR) proposal for changing the gene-tree topology
(19) was modified to accommodate migration events on the gene
tree. We prune off a subtree and regraft it back to the gene-
tree backbone by simulating the backward-in-time process of
coalescent and migration using the current values of parameters
(� ,�,M ). This proposal was originally implemented in MIGRATE
(35) and used in G-PHOCS (33). The proposal that updates
population sizes (�) remains unchanged. The mixing move is
modified to rescale both migration times and coalescent times on
the gene trees, together with the species divergence times (�).

Note that in this paper, the MSC-M model (including the
species phylogeny, the number of migration rate parameters and
the direction and populations involved in migration) is fixed. We
leave it to future work to implement cross-model algorithms to
move in the space of MSC-M models.

We introduce two major changes to the rubber-band algorithm
for updating species divergence times (19).
Composite-space algorithm for migration-rate parameters. First,
we implement a trans-model MCMC algorithm to deal with the
disappearance and reappearance of a migration-rate parameter
when species divergence times change in the proposal. This is
necessary because migration rate Mij exists only when popu-
lations i and j are contemporary and changes in � may cause
contemporary populations to become noncontemporary or vice
versa. As a result, a migration rate parameter which exists in the
current model may not exist in the proposed model. Consider the
species tree ((A, B), (C,D)) of Fig. 2, with migration rate MSC
from S to C . This exists only if �S < �T , when species S and
C coexist during the time interval (�S , �T ). Otherwise, the two
species are not contemporary, and MSC is not a parameter in the
model. The problem also appears when migration occurs in the
opposite direction (C → S) or in both directions (C � S), and
in large species trees with migration involving ancestral species.

In effect, the species tree represents two different models, de-
pending on whether �S < �T , and the rubber-band algorithm for
updating the species divergence time (�), which is a within-model
proposal under MSC with no gene flow, becomes trans-model
and trans-dimensional under MSC-M. We combine different
strategies of trans-dimensional MCMC algorithms (52–54),
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Fig. 2. A balanced tree for four species with migration from S → C at the
rate MSC . The migration rate parameter MSC exists when (A) �S < �T but
disappears when (B) �S ≥ �T .

and implement a Carlin-Chib-Green-O’Hagan-metropolized
(CCGOm) algorithm. See SI Appendix, Methods and Materials
for details.
Extended rubber-band algorithm for the MSC-M model. Second,
we extend the rubber-band proposal (19) to accommodate
migration events on gene trees. In G-PHOCS (33), a simple
modification to the algorithm was introduced, whereby the
rubber-band proposal is executed ignoring migration events but
the proposal is abandoned if the proposed changes to coalescent
times are in conflict with the migration events. Such a rejection
approach may lead to poor mixing of the MCMC when there
are many migration events on the gene trees as may happen at
high migration rates or in large datasets with many loci. Here,
we instead extend the rubber-band proposal to accommodate
migration events explicitly, avoiding rejection. We identify a
time interval (�l , �u) affected by the proposal and populations in
the time interval affected by migration, and then rescale affected
migration times in the time interval according to the rubber-band
algorithm (SI Appendix, Fig. S1). See SI Appendix, Methods and
Materials for details.

We implemented the rejection algorithm (33) as well. Both
the rejection and extended rubber-band algorithms showed good
mixing when there are not many migration events on the gene
trees across all loci, as in the analysis of small 100-loci datasets
from the Anopheles genomes (Fig. 6A). However, in analyses of
large datasets of Anopheles chromosomal arms, migration events
were common, and the rejection algorithm mixed poorly due
to frequent rejections, as seen from large differences among
replicate runs (SI Appendix, Fig. S2). The extended rubber-band
algorithm had better mixing properties for these data, producing
consistent results among runs (SI Appendix, Fig. S3). Trace plots
and posterior summaries for the two algorithms are shown for one
dataset with 2223 coding loci on chromosome 2L1 (SI Appendix,
Figs. S4 and S5).

Bayesian Simulation to Validate the MCMC Algorithms. Ex-
tensive tests have been conducted to validate our MCMC
implementation (51). If no sequence data are used or if the
likelihood is always set to 1, the MCMC algorithm should be
sampling from the prior distribution, which is either known or
analytically tractable. This test was effective in revealing most
errors during the debugging stage.

Bayesian simulation was used to validate the algorithm more
rigorously. Parameters are sampled from the prior and used to

simulate each replicate dataset under the likelihood model, which
is then analyzed using the same prior to generate the posterior.
The average posterior over replicate datasets should then match
the prior (55). For the test to be most effective, the datasets should
be sufficiently large to allow the posterior for each dataset to be
influenced by both the prior and the likelihood (data) and thus
to differ among datasets, but small enough to allow inexpensive
computation. Bayesian simulation tests both the simulation and
inference components of the program.

The first MSC-M model used in our Bayesian simulation
assumes one migration event from C → S on the species tree
for three species of SI Appendix, Fig. S6A. Each dataset consists
of L = 250 loci, with S = 4 sequences per species per locus,
and N = 500 sites in the sequence. We included G-PHOCS in
the test. For BPP, we observed a close match between the prior
and the average posterior for all eight parameters (SI Appendix,
Fig. S6B). While the posterior differed among replicate datasets
(SI Appendix, Fig. S6C ), as the datasets were generated by using
different parameter values and influenced by random sampling
errors due to the finite data size, the average posterior over
replicate datasets matched the priors, as expected.

G-PHOCS is an extension of an earlier version of BPP (19, 56)
and uses a different parametrization of the MSC model, so that
the two programs implement the same likelihood model, but use
different priors. We sampled parameter values from the priors
used in G-PHOCS to simulate replicate datasets, and analyzed
them using G-PHOCS. See SI Appendix, Methods and Materials.
There was a close match between the prior and the average
posterior for all parameters (SI Appendix, Fig. S6 D and E).

The second MSC-M model used was a saturated model for
three species with eight migration rates (SI Appendix, Fig. S7A).
This is parameter-rich, and the rates for ancestral migration
(MSC and MCS) are particularly challenging to estimate. We
used L = 1,000 loci, with S = 4 sequences per species per
locus and N = 500 sites in the sequence. For BPP, we observed
a close match between the prior and the average posterior for all
15 parameters (SI Appendix, Fig. S7).

There was great disparity in information content among
the parameters in the model: species divergence times (�)
and population sizes (�) were very well estimated with sharp
posteriors, whereas the posterior of migration rates was diffuse
(SI Appendix, Fig. S7C ). The six migration rates involving extant
species were more precisely estimated than the two migration
rates involving the ancestral species S. Also MCS was better
estimated than MSC , with sharper posteriors, apparently because
twice as many sequences (from A and B) reach node S in the
species tree as sequences from C reaching �S in lineage C , when
we trace the genealogy of the sampled sequences backward in
time. While the simulation validates the program, datasets with
1,000 loci were not informative enough to estimate all eight
migration rates with high precision. We did not use G-PHOCS
in this test under the saturated model due to the computational
cost, but instead analyzed one dataset of 2,000 loci for comparison
with BPP (see below).

Simulation under a Saturated MSC-M Model for Three Species.
To examine the statistical performance of our method, we
simulated replicate datasets under the saturated MSC-M model
of figure 3a using increasing numbers of loci (L= 250, 1,000
and 4,000 loci) with S = 4 sequences per species per locus.
We have two objectives: i) to confirm the correctness of our
implementation—indicated by the convergence of Bayesian
estimates of parameters to their true values with increasing
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Fig. 3. (A) The saturated migration model for three species with eight migration rates, used to simulate data for analysis by BPP. The parameters used are
�R = 0.02, �S = 0.01, �A = �S = 0.015, and �B = �C = �R = 0.025. The eight migration rates are MAB = 0.12, MBA = 0.21, MAC = 0.13, MCA = 0.31, MBC = 0.23,
MCB = 0.32, MCS = 0.2, and MSC = 0.1. (B) Posterior means and 95% HPD CIs of parameters in 10 replicate datasets of different sizes, with L = 250, 1,000, 4,000
loci. Horizontal lines represent the true parameter values. A large dataset of L = 16,000 loci is analyzed in SI Appendix, Table S1.

numbers of loci, and ii) to address the practical question of
whether typical genomic datasets contain enough information to
allow reliable estimation of the eight migration rates (and other
parameters in the model).

The 95% highest probability density (HPD) credible intervals
(CIs) for parameters included the true values and became
narrower with the increase of data size (Fig. 3B), as expected
from the consistency of Bayesian estimation. The divergence
times (�) and population sizes (�) were very well estimated,
but the migration rates (especially MCS and MSC ) involved
large uncertainties even with L = 4,000 loci. For further
confirmation, we simulated a large dataset of 16,000 loci and
found that the estimates of migration rates became much more
precise (SI Appendix, Table S1). Overall, the results (Fig. 3B and
SI Appendix, Table S1) suggest the correctness of our MCMC
implementation. They also suggest that genomic datasets with
>104 loci may contain sufficient information to allow precise
and accurate estimation of all migration rates in the saturated
model (as well as species divergence times and population
sizes).

We analyzed a dataset of 2,000 loci simulated under the sat-
urated model extensively using BPP and G-PHOCS (SI Appendix,
Table S1). Estimates of population sizes were similar between the
two programs, but large differences existed in estimates of species
divergence times and migration rates. Relative to BPP estimates
and to true parameter values, G-PHOCS estimates of �R and �S ,
and of MSC and MCS , were too small while those of �S were
too large (SI Appendix, Table S1). The differences do not appear
to be due to the minor differences between the priors used by
the two programs or to mixing issues of the MCMC algorithms
in G-PHOCS, and instead suggest that implementation of the
MSC-M model in G-PHOCS was not correct.

Simulation under anMSC-MModel with Three Species and Two
Migration Rates: Comparison with IMA3. We compared BPP with
IMA3 by analyzing datasets simulated under the MSC-M models
of Fig. 4 A–C on a species tree for three species. As IMA3 assumes
bidirectional migration, each model has a pair of migration rates.
We generated 10 replicate datasets under the JC mutation model,
each consisting of L = 500 loci, S = 4 sequences per species
per locus, and N = 500 sites in the sequence. The results are
presented in Fig. 4 D–F.

The BPP results are as expected, with most of the 95% CIs
bracketing the true values (Fig. 4 D–F ). Migration rates between
sister lineages are harder to estimate than between nonsister
lineages, and those involving ancestral species are harder than
those between extant species. Indeed, the estimates in model B

(B–C migration) had the narrowest CIs while those in model C
(S–C migration) had the widest (Fig. 4 D–F ).

Overall, IMA3 produced similar posterior results to BPP (Fig. 4
D–F ). The correlation between the point estimates (posterior
means) from the two programs was 0.997, 1.000, and 0.984,
for models A, B, and C, respectively. Under models A and B,
the estimates were particularly similar, although IMA3 appeared
to overestimate �S and underestimate �S slightly. Under the
more challenging model C (C -S migration), most � parameters
were well estimated by IMA3, but �R was underestimated with
the CIs excluding the true value, and the migration rates were
underestimated. These “biases” do not appear to be due to mixing
issues or to reflect the impact of the prior and instead indicate
implementation problems. Note that the prior mean for �R was
0.024, larger than the true value 0.02, while the prior means
of MCS and MSC were equal to the true values (SI Appendix,
Methods and Materials).

We conclude that IMA3 and BPP produced very similar results
under simple migration models with migration involving extant
species (Fig. 4 D and E), while BPP was more reliable under
challenging models with migration involving ancestral species
(Fig. 4F ). Also BPP had a computational advantage in large
datasets. Note that IMA3 includes cross-model moves that change
the species phylogeny (57), whereas the model is fixed in BPP and
G-PHOCS.

Simulation under the Stepping-stone and Island Models: Com-
parison with MIGRATE. Our BPP implementation of the MSC-
M model may also be used to perform inference under classical
population genetic models of subdivision with migration. Models
of population subdivision are typically applied to different pop-
ulations of the same species and do not incorporate a phylogeny
for the populations. They may be viewed as a special case of
the MSC-M model with ancient species divergences (e.g., with
� → ∞). In other words, if the probability is essentially 100%
that all sequences sampled from the extant species have coalesced
or reached their most recent common ancestor (MRCA) before
the time of the most recent species divergence (with time running
backward), the two classes of models will be equivalent. The
MSC-M model is thus an extension of the structured coalescent
model to incorporate a species/population phylogeny.

We conducted a simulation under the stepping-stone and
island models (Fig. 5 A and B) and analyzed the data using both
BPP and MIGRATE (58). Very large divergence times were used
to simulate data so that sequences sampled from all species at
any locus coalesce with near certainty before reaching any species
divergence event. Under these conditions, we expect BPP estimates
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Fig. 4. (A–C) Three MSC-M models for three species with (A) A–B migration (between sister species), (B) B–C migration (between nonsister species), and (C) C–S
migration (between sister species and involving one ancestor) used for simulating data, for analysis using BPP and IMA3. The parameters used are �R = 0.02,
�S = 0.01, �A = �S = 0.015, �B = �C = �R = 0.025, with migration rates M = 0.1 in one direction and 0.2 in the opposite direction. (D–F ) Posterior means and
95% CIs for the nine parameters in the model obtained using BPP (blue) and IMA3 (red) in 10 replicate datasets. Black horizontal lines represent true values.
IMA3 uses mutation rate per locus, not per site; estimates from IMA3 are thus divided by the sequence length. IMA3 outputs the population migration rate 2M;
the estimates are divided by 2.

of species divergence times to be very large (and uncertain) and
the posterior distribution of ancestral population sizes to match
the prior, while migration rates and populations sizes for extant
species should be reliably estimated.

Parameter estimates from BPP under the stepping-stone model
are summarized in Fig. 5C and SI Appendix, Table S2. As
expected, the posteriors for � for ancestral populations were nearly
the same as the prior. There appeared to be a minimal amount of
information about species divergence times (�) as the CIs became
narrower with more loci. The estimates were smaller than the
true values, due to the influence of the priors. Our interest is in
estimation of population sizes for extant species (�A, �B, �C , �D)
and migration rates (M ). These were well estimated, with the
posterior means fluctuating around the true values (Fig. 5C )
and with the CI becoming narrower with an increase in the
number of loci (L). The 95% HPD CIs matched the large-
sample expectation that quadrupling the number of loci halves
the CI width (SI Appendix, Table S2). We note that estimates of
migration rates involved considerable uncertainty even in large
datasets of L = 4,000 loci.

The results under the island model (Fig. 5D and SI Appendix,
Table S2) similarly suggest little information in the data con-
cerning the species divergence times (�R , �S , �T ) and ancestral
population sizes (�R , �S , �T ), but population sizes for extant
species (�A, �B, �C , �D) were well estimated, as were the migration
rates (MAB,MAC ,MAD).

For comparison, we used MIGRATE (58) to analyze the small
datasets of L = 250 loci. For the stepping-stone model, MIGRATE

estimates 4 �s and 6 M parameters, while BPP estimates 7 �s, 3 �s,
and 6 M rates. We focus on the shared parameters. While both
programs use the same definitions of divergence times (�) and
population sizes (�), MIGRATE uses the mutation-scaled migration
rate, which is $ij = 4Mij/�j in the notation of this paper.
We assigned gamma priors on $ij similar to priors used in
the BPP analysis (SI Appendix, Methods and Materials). For easy
comparison with BPP, we then converted the MIGRATE estimates
of migration rates into M̂ij = $̂ij�̂j/4, using the posterior mean
�̂j. Estimates of migration rates under the stepping-stone model
were very similar between the two programs (Fig. 5E), although
the MIGRATE estimates had slightly wider CIs. MIGRATE estimates
of � for extant species were too small with wide CIs, compared
with the BPP estimates and with the true values. For the island
model, MIGRATE estimates 4 �s and 3 migration rates (M ), while
BPP estimates 7 �s, 3 �s, and 3 migration rates. Estimates of
migration rates were similar between the two programs (Fig. 5F ).
MIGRATE estimates of �B, �C , and �D were centered around the
true values but had wider CIs than the BPP estimates. MIGRATE
estimates of �A were much too small relative to BPP estimates or
the true values (Fig. 5F ).

The results suggest problems with the MIGRATE implemen-
tation of the stepping-stone and island models. MIGRATE does
not write the sampled parameter values into a disk file but
collects them into pre-defined bins based on the priors, and the
resulting histograms are then smoothed to estimate the posterior
probability densities and to calculate the posterior means and
HPD intervals. This may cause inaccurate posterior summaries if
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F

Fig. 5. (A) Stepping-stone and (B) island models used for simulating data, for analysis by using BPP and MIGRATE. The population genetic models (Top) are
approximated by the MSC-M models with very large divergence times (Bottom). All population sizes are �0 = 0.002 except that �A = 10�0 in the island model.
The migration rate was M = 0.15 migrants per generation. (C and D) Posterior means and 95% HPD CIs of parameters in BPP analyses of 10 replicate datasets
(each of L = 250, 1,000, or 4,000 loci) simulated under the models. The horizontal lines represent the true values. (E and F ) The datasets of 250 loci are
also analyzed using MIGRATE (red), in comparison with BPP (blue). MIGRATE uses the mutation-scaled migration rate, $ij = 4Mij/�j in the notation here; this is
transformed to M̂ij = $̂ij �̂j/4 by using the posterior mean �̂j .

the number of bins is small and if the prior and the posterior are
very different. We used a large number of bins (3,000 or 10,000)
and found the results to be stable. Similarly, we rule out issues in
kernel density smoothing and differences in reparametrizations
and the prior as the main reasons for the differences, because
the estimated migration rates were similar between the two
programs and the large differences were in the population
sizes for extant species (�A–�D), which should be easy to
estimate (59).

Analysis of Genomic Data from the A. gambiaeMosquitoes. We
used the MSC-M model as well as the MSC-I model (21) to
analyze the coding and noncoding data from six species of African
mosquitoes in theA. gambiae species complex. The MSC-I model
constructed in ref. 43 includes two introgression events (Fig. 6B),
which are replaced by migration to form an MSC-M model
(Fig. 6A).

Bayesian test of gene flow using blocks of 100 loci. First, we
analyzed blocks of 100 loci to test for the presence of gene
flow (Fig. 7). We calculated Bayes factors using thermodynamic
integration with Gaussian quadrature (42, 60) to compare three
models of gene flow:
H0: MSC with no gene flow;
H1: MSC + A→ GC gene flow;
H2: MSC + A→ GC and R→ Q gene flow.
B20(m) and B20(i) are Bayes factors in support of H2 over

H0, with migration under the MSC-M and introgression under
the MSC-I, respectively (Fig. 7). We considered B > 100 or
B < 0.01 (or

∣∣logB
∣∣ > 4.6) to be “significant”; this is similar to

a 1% “significance level.” There is strong evidence for gene flow
as B20 > 100 in every block and under both MSC-M and MSC-I
models. In most blocks, B20(i) > B20(m), with the introgression
model fitting the data better than the migration model.
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A B

Fig. 6. (A) MSC-M and (B) MSC-I models for six species of African mosquitoes
in the A. gambiae species complex: A. gambiae (G), A. coluzzii (C), A. arabiensis
(A), A. melas (L), A. merus (R), and A. quadriannulatus (Q).

B21 is the Bayes factor in support of H2 over H1 and tests
for R → Q gene flow when the model already accommodates
A → GC gene flow. This test was significant for most 100-
loci blocks in the 3La inversion region and the 3L2 region, but
not in most blocks on chromosome 2. The pattern was similar
between the MSC-M and MSC-I models. In most blocks, B21(i)
> B21(m), with stronger evidence for R → Q gene flow under
MSC-I than under MSC-M. Indeed, B21(m) < 0.01 in many
blocks on chromosome 2, with strong support for the null model
of no R → Q gene flow. Note that Bayesian model selection
may strongly support the null model, unlike the likelihood ratio
test, which may fail to reject the null but never strongly supports

it. In sum, both MSC-I and MSC-M models strongly support
A→ GC gene flow, with evidence for R→ Q gene flow mostly
involving chromosome 3.
Variable rates of gene flow across blocks of 100 loci. Next, we
examine the estimated migration rates. MA→GC and MR→Q
under MSC-M varied among the blocks or across the genome, as
did the corresponding introgression probabilities under MSC-I
(SI Appendix, Fig. S8). There was overall consistency between
the coding and noncoding data. MA→GC was high (>0.1) in
most blocks except those on 2L1 and 3L1. MR→Q was low for
most blocks except those from 3La and 3R. Estimates of 'A→GC
and 'R→Q under MSC-I were similar to those in figure 6 of
ref. 21, where inverse-gamma priors were used for � and �. Here,
we used gamma priors and assumed the same � before and after
each introgression event for each branch on the species tree. Both
introgression probabilities varied considerably across the genome,
with 'A→GC ≈ 100% in most blocks.

As the evidence for A → GC gene flow was overwhelming,
we focus on the R→ Q gene flow under H2. There was no good
correspondence between the estimated migration rate M̂R→Q
and introgression probability '̂R→Q (SI Appendix, Fig. S9). The
MSC-M model predicts that the probability that any sequence
from Q is traced to population R to be (26)

'0,RQ = 1− e−4MRQ�d /�Q . [4]

If MSC-M is the true model, Eq. 4 is expected to give an upper
bound for the estimate when the data are analyzed under MSC-I:
'̂ < '0 [(26): figure 1]. However, our estimates displayed very
poor matches between '0,RQ under MSC-M and '̂RQ under
MSC-I (SI Appendix, Fig. S10), even though estimates of �d
and �Q were very similar under the two models (SI Appendix,
Fig. S11). The reasons for this lack of correspondence are unclear.

A

B

Fig. 7. The logarithm of the Bayes factor for testing gene flow obtained from BPP analysis of the 100-loci blocks of the (A) coding and (B) noncoding data from
the Anopheles mosquitoes (Fig. 6A), calculated using thermodynamic integration with Gaussian quadrature (42). Gene flow is accounted for using either the
introgression model (i for MSC-I) or the migration model (m for MSC-M). Model H0 is the MSC model with no gene flow. Model H1 assumes the A→ GC gene
flow, with rate MA→GC under MSC-M or 'A→GC under MSC-I. Model H2 accommodates both gene-flow events, with rates MA→GC and MR→Q under MSC-M or
'A→GC and 'R→Q under MSC-I. Bayes factor B20 measures the support for H2 over H0, while B21 measures the support for H2 over H1. The test is significant
when

∣∣logB
∣∣ > 4.6 (i.e., if B > 100 or B < 0.01). For example, logB21(m) < −4.6 means that the data strongly support the one-rate model with the A → GC

migration (with rate MA→GC ) over the two-rates model with both the A→ GC and the R→ Q migrations. Different scales are used for the y-axis over the intervals
(−50,−10), (−10,10), (10,50), (50,700).
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One possibility is that the MSC-M model (Fig. 6A) is a poor fit to
the genomic data: The rate of gene flow might vary over time, but
on average, the MSC-I model assuming a pulse of gene flow was
closer to reality than the MSC-M model assuming a constant
rate over the whole time period. In other words, introgression
events detected from the genome data may be largely historical.
Estimated frequencies of A. gambiae × A. arabiensis F1 hybrids
for modern species where the two species are sympatric were low,
around 0.15–0.22% [(61) and references therein].

While the MSC-M and MSC-I models make very different
assumptions about the mode of gene flow, they produced
highly similar estimates of species divergence times (�o, �a, �c , �d )
(SI Appendix, Fig. S11). The results are consistent with the
simulation study of ref. 26, which found that species diver-
gence times were well estimated when the mode of gene flow
was misspecified. In contrast, the MSC model of no gene
flow seriously underestimated divergence times, as found in
simulations (62).
Parameter estimation for chromosomal arms. Finally, we ana-
lyzed all loci for each chromosomal arm as one dataset. The
posterior means and 95% HPD CIs for the migration rates are in
Table 1, while species divergence times and migration rates are
summarized in SI Appendix, Fig. S12 A–D. We have used those
large datasets to illustrate mixing properties of the rejection and
extended rubber-band algorithms in SI Appendix, Figs. S2–S5.

Similarly to the analyses of the 100-loci blocks, migration
rates and introgression probabilities varied considerably among
chromosomal arms. M̂A→GC was high for all chromosomal arms,
with the smallest being∼ 0.2 for 3L1 (coding), while '̂A→GC >
0.9 for all chromosomal arms except 2La (coding and noncoding)
and 2L2 (coding). Note that the A → GC gene flow is so
prevalent for the autosomes that the predominant autosomal
gene tree has a different topology from the species phylogeny
(2, 43). The R → Q gene flow mostly affected 3La and 3L2,
while 2L2 and 3R were affected to a lesser extent.

Estimates of species divergence times were highly consistent
among the chromosomal arms and between the coding and
noncoding data (SI Appendix, Figs. S12 A–D and S13). Most
estimates (in particular, those from the noncoding data) had

tight CIs because of the large data sizes, although �a had wider
CI bars as the estimates were affected by the estimated rate of
A→ GC gene flow.

Discussion

Models of population subdivision and migration developed in
population genetics are special cases of the MSC-M model.
The stepping-stone and island models (Fig. 5 A and B) are
instances of the MSC-M model with population divergence
times approaching ∞. Our results (Fig. 5) suggest that BPP
is an efficient and reliable implementation of such population
genetic models, allowing them to be fitted to genomic data.
We note that other specialized models may also be special cases
of the MSC-M model. For example, the isolation-with-initial-
migration (IIM) model assumes that migration occurred initially
after species divergence but stopped at a certain time point, for
example, when reproductive isolation is fully established (63–
65). In the secondary contact (SC) model (65), two species
initially experienced complete isolation after divergence but came
into contact at a certain time point, with subsequent ongoing
migration. Both IIM and SC models can be fitted to genomic data
as instances of the MSC-M model by including an unsampled
ghost species (26).

The MSC-M model extends models of population subdivision
to incorporate a population/species phylogeny (16, 66, 67).
Besides improving the biological realism of the model, this exten-
sion also opens up opportunities for addressing many important
questions in evolutionary biology, such as detecting gene flow
during and after speciation, delineating species boundaries in the
presence of gene flow, inferring historical demographic changes or
estimating population sizes for extinct ancestral species, detecting
gene flow from extinct species that may and may not have
extant descendents (16). Likelihood-based implementations of
the MSC-M model have involved heavy computation and are
impractical for genome-scale data of thousands of loci, although
large genomic datasets are routinely generated and are indeed
necessary for precise and accurate estimation of the rate of gene
flow. Furthermore, it is challenging to implement the model

Table 1. Bayesian estimates of migration rates (M) and of introgression probabilities (') from the Anopheles
genomic data (Fig. 6)

A. arabiensis→ A. gambiae + A. coluzzii A. merus→ A. quadriannulatus

Dataset Loci M̂A→GC '̂A→GC M̂R→Q '̂R→Q

2L1 coding 2,223 0.404 (0.366, 0.443) 0.955 (0.933, 0.975) 0.002 (0.000, 0.003) 0.029 (0.016, 0.043)
2L1 noncoding 4,133 0.311 (0.293, 0.329) 0.963 (0.950, 0.975) 0.000 (0.000, 0.001) 0.016 (0.008, 0.024)
2La coding 2,776 2.451 (2.122, 2.789) 0.791 (0.768, 0.813) 0.005 (0.002, 0.008) 0.038 (0.006, 0.074)
2La noncoding 6,732 2.289 (2.116, 2.466) 0.696 (0.684, 0.708) 0.001 (0.000, 0.001) 0.015 (0.007, 0.022)
2L2 coding 1,362 1.053 (0.874, 1.233) 0.879 (0.847, 0.910) 0.030 (0.020, 0.041) 0.180 (0.134, 0.228)
2L2 noncoding 2,330 0.618 (0.565, 0.672) 0.955 (0.936, 0.974) 0.008 (0.005, 0.012) 0.074 (0.056, 0.091)
2R coding 6,849 0.909 (0.844, 0.977) 0.971 (0.962, 0.979) 0.010 (0.008, 0.013) 0.074 (0.063, 0.085)
2R noncoding 17,027 0.739 (0.712, 0.771) 0.978 (0.974, 0.982) 0.003 (0.002, 0.003) 0.047 (0.042, 0.052)
3L1 coding 983 0.215 (0.189, 0.242) 0.967 (0.948, 0.985) 0.003 (0.001, 0.006) 0.058 (0.034, 0.084)
3L1 noncoding 2,496 0.234 (0.218, 0.249) 0.976 (0.965, 0.987) 0.001 (0.000, 0.002) 0.033 (0.019, 0.047)
3La coding 1,998 1.708 (1.454, 1.971) 0.929 (0.914, 0.945) 0.153 (0.131, 0.176) 0.600 (0.569, 0.631)
3La noncoding 6,208 1.399 (1.299, 1.498) 0.973 (0.968, 0.978) 0.083 (0.077, 0.090) 0.619 (0.604, 0.634)
3L2 coding 764 1.577 (1.261, 1.913) 0.923 (0.896, 0.948) 0.043 (0.029, 0.057) 0.306 (0.234, 0.378)
3L2 noncoding 1,823 2.003 (1.700, 2.300) 0.951 (0.937, 0.964) 0.012 (0.008, 0.017) 0.161 (0.131, 0.192)
3R coding 4,977 0.788 (0.727, 0.853) 0.939 (0.927, 0.952) 0.028 (0.023, 0.034) 0.168 (0.149, 0.188)
3R noncoding 14,323 0.636 (0.612, 0.663) 0.959 (0.953, 0.965) 0.012 (0.011, 0.014) 0.103 (0.095, 0.111)
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correctly: While both G-PHOCS (33) and MIGRATE (58) have
undergone extensive testing and validation, our simulation and
test suggest errors in implementation.

Here, our stringent tests using Bayesian simulation and con-
ventional methods for evaluating mixing and statistical properties
of estimates suggest that the MCMC algorithms in BPP are
correctly sampling from the posterior and that our algorithms
have improved mixing. While it is computationally demanding,
BPP has been applied to datasets of >10,000 loci (Table 1, SI
Appendix, Table S1). We suggest that our implementation of
the MSC-M model in BPP provides a useful tool for comparative
analysis of genomic data to infer gene flow between divergent
species or populations and a platform for engineering further
algorithmic improvements.

Materials and Methods

Detailed descriptions of algorithms, simulation conditions, and analyses of
simulated and Anopheles data are in online SI Appendix, Supplemental Text.

Data,Materials, and Software Availability. TheAnophelesgenomic data are
available at http://abacus.gene.ucl.ac.uk/ziheng/data/AnophelesData2020.tgz
(68). The MCMC algorithms are implemented in BPP, available under GPL3 at
https://github.com/bpp/ (69).
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