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Abstract 

Phylogenetic trees based on copy number profiles from multiple samples of a patient 
are helpful to understand cancer evolution. Here, we develop a new maximum likeli-
hood method, CNETML, to infer phylogenies from such data. CNETML is the first pro-
gram to jointly infer the tree topology, node ages, and mutation rates from total copy 
numbers of longitudinal samples. Our extensive simulations suggest CNETML performs 
well on copy numbers relative to ploidy and under slight violation of model assump-
tions. The application of CNETML to real data generates results consistent with previous 
discoveries and provides novel early copy number events for further investigation.
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Background
Phylogenetic trees have been widely used in the study of cancer, providing important 
insights into carcinogenesis [1]. Various markers have been used for phylogeny infer-
ence, including data derived from comparative genomic hybridization (CGH), single 
nucleotide polymorphism (SNP) array, fluorescence in  situ hybridization (FISH), and 
next-generation sequencing (NGS) technologies. The rapid advances of NGS, such as 
whole genome sequencing (WGS) and whole exome sequencing (WES), allow the gen-
eration of huge amounts of genomic data from patient samples. NGS-derived somatic 
variants, mainly single nucleotide variants (SNVs) and copy number alterations (CNAs), 
have become common markers for phylogeny inference. CNAs are more complex than 
SNVs and often related to chromosomal instability (CIN) which may generate different 
types of structural variations (SVs) or aneuploidy [2]. Although most phylogeny infer-
ence approaches use SNVs, a number of methods are based solely on CNAs [1, 3–10]. 
One reason is that it is hard to detect point mutations for some cancers mainly driven 
by SVs or CIN [11], such as high grade serous ovarian cancer [12], oesophageal cancer 
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[13], and osteosarcoma [14]. Another reason is that it is difficult to detect SNVs from 
low-coverage data whereas the larger sizes of CNAs provide more signal for reliable 
detection.

Given different input data and aims, trees reconstructed from CNAs called from a sin-
gle patient are of four major types: (1) mutation tree when the order and evolutionary 
history of mutational events are of interest [15], as in SCICoNE [5] and CONET [7], 
where each tip represents copy number events and cells are attached to each node; (2) 
clone tree when clonal deconvolution is feasible, as in CNT-MD [4] and DEVOLUTION 
[8], where each tip represents a clone; (3) single cell tree when CNAs can be called for 
each cell, as in FISHtree [16, 17], sitka [6], and NestedBD [10], where each tip represents 
a cell; (4) bulk sample tree when each bulk sample is assumed to be homogeneous, as in 
MEDICC [18] and PISCA [3], where each tip represents a bulk sample. Here, we distin-
guish single cell tree and bulk sample tree mainly because of intra-tumour heterogeneity 
(ITH) in bulk samples and scalability in phylogeny inference of hundreds to thousands of 
single cells which are typical in practice, although some methods can reconstruct both 
types of trees, such as MEDICC2 [9].

ITH causes difficulty in analysing bulk DNA sequencing (bulk-seq) data, where only 
the aggregated signals can be observed. Therefore, phylogeny inference from bulk-
seq data is often coupled with clonal deconvolution that determines the number and 
fraction of clones in a sample [1]. Reliable quantification of subclonal CNAs and ITH 
requires deep sequencing on samples of good quality and is expensive. Single cell DNA 
sequencing (sc-seq) circumvents the need to infer clone structure, but the data are still 
very noisy and more expensive than bulk-seq [15, 19]. Low-coverage bulk-seq, such 
as shallow WGS (sWGS), are instead more cost-effective and accessible, especially for 
SV-driven cancers [11]. They have been widely applied to detect CNAs, particularly 
on formalin-fixed paraffin-embedded samples, which are commonly available for diag-
nostics but have low DNA quality [13, 20–23], and cell-free DNA in plasma [24, 25]. 
In addition to multi-regional sWGS samples at one time point, there have been sWGS 
data for patient samples taken over time and space during a longer time period, such 
as in the surveillance of Barrett’s oesophagus (BE) [13] and inflammatory bowel disease 
[23]. There are also longitudinal sWGS data from experimental evolution studies that 
use organoids to study the process of tumorigenesis [26], which seem promising to track 
cancer evolution [27]. The recent development of non-invasive liquid biopsy approaches 
allows the generation of sWGS data from cell-free DNA samples at multiple time points 
throughout the disease progression [25, 28]. Potentially, more longitudinal samples will 
be sequenced by the human tumour atlas network that aims to obtain multiparamet-
ric spatio-temporal data of cancers during their evolution from precancerous lesions to 
advanced disease [29]. These longitudinal samples contain temporal information that 
can be used to estimate the timing and rates of CNAs, which are important parameters 
in carcinogenesis, yet rarely studied. However, only a few reliable methods exist to detect 
CNAs from sWGS data and the detected copy numbers are often relative to the ploidy 
of the genome, called relative copy numbers [30]. Most of the previous sample phylog-
eny inference methods are designed for absolute allele-specific integer copy numbers 
which are often called from SNP arrays and high-coverage NGS data, such as MEDICC 
[18], MEDICC2 [9], and PISCA [3]. To better understand cancer progression from these 
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sWGS data, it is important to have methods that can build bulk sample trees based solely 
on (relative) total copy numbers, which will be addressed in this paper.

The model of CNA evolution is critical for phylogeny inference, but it is challenging 
to propose a model which maintains a good trade-off between biological realism and 
complexity [19]. The underlying mechanisms of CNAs are often very complicated, such 
as chromothripsis, breakage fusion bridges, and failure in cell cycle control [22]. As a 
result, CNAs vary from small focal duplication/deletion to chromosome-level gain/
loss and whole genome doubling (WGD) at different rates [31], which creates complex 
dependencies across the genome, such as overlaps, back mutations, convergent and par-
allel evolution [32]. Therefore, the infinite sites or perfect phylogeny assumption, which 
is commonly used in inferring phylogeny from SNVs, is often violated, as is the infinite 
alleles or multi-state perfect phylogeny assumption [19]. The models for genome rear-
rangement, microsatellite, and multigene families seem relevant yet hard to transfer to 
CNAs [19, 33].

Some methods transform original copy number calls into presence or absence of 
changes (breakpoints) [6, 34], which are less likely to overlap, so that the infinite sites 
assumption is well approximated. Although this representation simplifies the complex 
spatial correlations across sites, it does not use the full copy number data. Other meth-
ods represent the genome as a vector of copy number values, often called copy num-
ber profile (CNP) [4]. Based on CNPs, some methods build trees without a model, such 
as the maximum parsimony method with the Fitch algorithm [23, 35] and distance 
matrix methods based on Euclidean [36] or Manhattan [37] distances, and hence they 
may underestimate the true evolutionary distance as no correction of hidden changes 
is applied [9, 34]. Other methods use copy number transformation (CNT) models that 
allow the computation of minimum evolutionary distance between CNPs, which is the 
shortest sequence of events that transform one CNP to the other. One such model was 
implemented in FISHtree [16, 17], which assumes each event (single gene gain/loss, 
chromosome gain/loss, or WGD) affects a single unit (gene or chromosome or genome) 
independently, with or without weights for different types of events. Another well-stud-
ied model, within MEDICC [18], assumes an event (segment duplication/deletion) may 
affect contiguous segments of variable size. This model deals with horizontal dependen-
cies caused by overlapping CNAs and hence is less likely affected by convergent evo-
lution. It has been extended to allow weights on CNAs of different position, size, and 
type (duplication/deletion) [38] and WGD [9, 39]. The weighted versions of both models 
allow the estimation of CNA rates in term of event probabilities [17, 38], but mutation 
rates by calendar time cannot be estimated. A few CNP-based methods use the finite 
sites models, or continuous-time Markov chains, which have good theoretical proper-
ties and are frequently used to model nucleotide changes [40]. Although Markov chains 
often assume independent sites to simplify computation, which is violated by overlap-
ping CNAs, it corrects multiple hits at the same site and serves as a workable model of 
CNAs. For example, SCONCE used a Markovian approximation that combines the tem-
poral Markov process with a spatial hidden Markov model to detect CNAs in sc-seq data 
[41]; Elizalde et al. used the product of 23 Markov chains to model numerical CIN of 
individual chromosomes in clonally expanding populations [42]. Markov model makes it 
possible to use statistical methods to infer CNA-based trees, mutation rates by time, and 
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ancestral genomes, such as maximum likelihood (ML) method and Bayesian method. 
PISCA used such a Markov chain to model gain, loss, and conversion of haplotype-spe-
cific copy numbers called from SNP array data [3]. NestedBD used a birth-death model, 
a special type of Markov chain where transitions from state i can only go to state i + 1 
or i − 1 , for total copy numbers called from sc-seq data, where a birth (death) event cor-
responds to copy number amplification (deletion) [10]. Both PISCA and NestedBD are 
implemented as packages in the popular Bayesian evolutionary analysis platform BEAST 
[43, 44], and hence are not easily adapted for more bespoke mutation models that will 
be required for understanding carcinogenesis. In addition, most phylogeny inference 
methods based on CNPs cannot handle multiple scales of chromosomal changes due to 
the inherent complexity. Notable exceptions are FISHtree, which was designed for FISH 
data and is not scalable for longer CNPs [16, 17], and MEDICC2 which incorporates 
WGD into the previous model of segment duplication/deletion and implicitly accounts 
for chromosome or arm level gain/loss by grouping segments on the same chromosome 
or arm together [9].

In this paper, we developed an approach based on a novel Markov model of duplication 
and deletion, CNETML, to do maximum likelihood inference of single patient phylogeny 
from total copy numbers of multiple samples. To the best of our knowledge, this is the 
first method to jointly infer the tree topology, node ages, and mutation rates of temporal 
patient samples from (relative) total CNPs called from sWGS data. CNETML is applica-
ble to haplotype-specific CNPs as well, which is the basis of our model and considered as 
missing information when total CNPs are taken as input. We also developed a program 
to simulate CNAs from patient samples, CNETS (Copy Number Evolutionary Tree Sim-
ulation), which was used to validate sample phylogeny inference methods. The results 
on extensive simulations suggest that CNETML accurately recovered the tree topology, 
node ages, mutation rates, and ancestral CNPs when there were sufficient CNAs present 
in the data with at least two sampling time points whose time difference may be smaller 
than three years. CNETML on total CNPs performed as well as haplotype-specific CNPs 
when less than 10% of copy-neutral CNAs existed in the simulated data. CNETML also 
had good accuracy when applied to relative CNPs from simulated data with subclonal 
WGDs, which is desirable for applications to sWGS data. Moreover, the simulations sug-
gest CNETML was robust to slight violations of model assumptions and that it obtained 
reasonable inferences on data of typical focal CNA size. We applied CNETML on rela-
tive CNPs called from two BE patients in existing literature and obtained results con-
sistent with previous findings and novel early CNAs from reconstructed ancestral CNPs 
which are worth further validations, suggesting the utility of CNETML.

Results
Overview of CNETML

The input of CNETML (Fig. 1) includes a set of integer total/haplotype-specific CNPs 
for multiple samples of a patient and/or sampling timing information (in year) if 
available (see the ‘Methods’ section for details on input preparation). The length of 
each CNP is the number of sites in a sampled genome, which can be either bins or 
segments, and we assume all genomes have the same sites. Here, a bin is a genomic 
region of fixed size and a segment is a genomic region of variable size which may be 
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obtained by joint segmentation across samples, namely merging consecutive bins with 
the same copy number in a sample with change points aligned across all the samples. 
In CNA detection, the general steps include binning, bias removal, segmentation, and 
copy number assignment [19, 45]. In binning, the genome is divided into bins of cer-
tain size, usually fixed, and reads aligned to each bin are counted. In segmentation, 
the genome is partitioned into a series of segments whose copy number is different 
from that of the adjacent segment. Therefore, although a site is not as well defined as 
when modelling SNVs where the site is natually the individual nucleotide, it is feasible 
to consider a bin or a segment as a site. We will discuss the ramifications of using bin 
or segment as a site in Results.

We treat an integer copy number at each site as a discrete trait whose states are 
dependent on the maximum possible copy number. To maintain model simplicity, we 
assume copy numbers at the sites of a genome change independently of each other 
(independent sites assumption) and the change of copy number at each site follows a 
continuous-time non-reversible Markov chain. The Markov chain naturally starts from 
the normal diploid copy number and has an absorbing state when no copy remains. Due 
to the difficulty in incorporating CNAs of different scales, we propose a model of site 
duplication and deletion at haplotype-specific level, which is similar to that in PISCA [3] 

Fig. 1 The schematic overview of CNETML. Samples may be taken from a patient at different locations and 
times during surveillance and get sequenced (with sWGS) and analysed to generate copy numbers (CNs). 
Given the CNPs and/or sampling times of all the patient samples, CNETML aims to infer a sample tree in 
which tips correspond to observed CNPs in samples and internal nodes correspond to ancestral CNPs. From 
the root, which represents the last unaltered common ancestor with normal copy number state (LUCA), there 
is a branch of length zero (dashed line), which leads to a tip representing the normal CNP to get a binary 
tree. LUCA is connected to the most recent common ancestor (MRCA) of the patient samples. We added 
an additional node before LUCA to show the CNP at the birth time, which was used to constrain the age of 
LUCA in inference. The state transition diagram of the Markov chain shows the duplication (red arrow) and 
deletion (blue arrow) of haplotype-specific copy number, with the maximum total copy number being 3 and 
the value in each oval representing a possible combination of copy number for haplotype A and B, denoted 
by cA/cB . The Markov model allows the computation of tree likelihood by taking the product over all sites 
along the genome. The CNPs of internal nodes (including MRCA) are unknown and inferred with ancestral 
reconstruction algorithms. Samples taken at different time points ( T0 , T1 , and T2 ) are denoted by different 
colours
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yet designed for processing total CNPs. Moreover, we consider CNA rate (or mutation 
rate) per haplotype per site per year and allow user-specified maximum copy number.

Suppose cmax is the maximum total copy number, then each site has S possible states 
{0, 1, 2, ..., S − 1} , where

The change of haplotype-specific copy numbers on each site via duplication (deletion) 
at rate u (e) per haplotype per site per year is specified by the rate matrix Q (see Addi-
tional file 1: Table S1 for Q at cmax = 4 ). In Q, we list haplotype-specific copy numbers 
in order of increasing total and haplotype A copy number so that each combination of 
cA and cB , (cA, cB) , corresponds to a unique state, where cA and cB represent the copy 
numbers for two haplotypes respectively. For example, normal copy number (1, 1) is rep-
resented by state 4, and copy number (4, 0) is represented by state 14. Note that ( cA, cB ) 
and ( cB, cA ) are distinguishable in the data when haplotype-specific copy numbers are 
provided. Suppose a genome j has m sites and cij is the copy number state at site i, which 
is either the total copy number or the state corresponding to the haplotype-specific copy 
number in Q. Then its observed CNP is denoted by (c1j , c2j , ..., cmj) . The CNPs for all the 
n sampled genomes form a data matrix of n rows and m columns, denoted by D. The 
observed copy number states across all samples at a site i is called a site pattern, denoted 
by si = (ci1, c

i
2, ..., c

i
n) . We say site i is invariant if si is composed of normal copy num-

ber states only, and variant otherwise. We call variant sites with unique site patterns as 
unique variant sites.

The likelihood for a tree T of n samples with parameters θ , L(T , θ) , is the probability of 
observing D at the tips of T given θ . The Markov model specified by Q allows the compu-
tation of L(T , θ) by taking the products of probabilities at individual sites:

where D(i) is the ith column of D. When taking total CNPs as input, we revise L(T , θ) to 
incorporate haplotype-specific copy numbers as missing information, which is similar to 
the handling of ambiguities in a nucleotide substitution model [40]:

where H is a data matrix of unknown haplotype-specific copy number states that are 
compatible with D, H (i) is the ith column of H, and there may be multiple such matri-
ces for D. For example, the probability of observing total copy number 3 is a sum over 
all compatible haplotype-specific copy numbers (0, 3), (1, 2), (2, 1), and (3, 0). In other 
words, the haplotype-specific copy numbers are latent variables, and the likelihood is an 
average over them.

We computed L(T , θ) with Felsenstein’s pruning algorithm [46] with a few adapta-
tions described in Methods. L(T , θ) was maximized by minimizing its negative log-
arithm function with L-BFGS-B algorithm [47], a numerical iterative method with 

(1)S =
cmax + 1 total CNP input,
(cmax+1)∗(cmax+2)

2 haplotype-specific CNP input.

(2)L(T , θ) = P(D|T , θ) =

m
∏

i=1

P(D(i)|T , θ),

(3)L(T , θ) =

m
∏

i=1

∑

H (i)

P(H (i)|T , θ),
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bound constraints. Due to the super-exponentially increasing number of trees with 
the number of tips, we implemented two approaches to search the tree space and 
get the ML tree. One is exhaustive search which enumerates all the possible tree 
topologies, which is efficient for trees of no more than seven samples. The other is 
heuristic search, which is adapted from the approach in IQ-TREE [48], a popular ML 
phylogeny inference program, and efficient for larger trees.

When there are at least three samples taken at no less than two time points, it is 
feasible to estimate mutation rates according to the differences of CNPs and sam-
pling times, similar to the dating of virus divergences [40]. Although mutation rates 
during neoplastic progression are likely to change over time due to CIN [3], there 
are few studies on the rates of CNAs and how they change. Given insufficient infor-
mation in the data, it is unlikely that reliable estimates of parameters resulting from 
rate changes can be obtained in the current maximum likelihood framework. There-
fore, we assumed constant mutation rates under a global clock as a reasonable trade-
off, which helps to get approximate early CNA timing information that is indicative 
of the potential disease onset time [49]. We jointly estimated the tree topology, 
mutation rates, and node ages (starting from 0 at birth time) with the following con-
straints in optimization: (1) The age of each internal node must be smaller than all 
its descents; (2) The age of root node must be smaller than the patient age at the 
first sample time or the tree height in year is smaller than the patient age at the last 
sample time. We transformed node age variables to encode the constraints imposed 
by patient ages at different sampling times so that θ = (x1, x2, ..., xn,u, e) , where xi is 
the transformed variable for age of an internal node i and converted back to branch 
length in year later (see Methods for more details). When all the samples are taken 
at the same time, the model is unidentifiable as there is no information to estimate 
mutation rates and node ages separately [40]. Therefore, θ = (l1, l2, ..., l2n−1) , where 
li = (u0 + e0)ti is the length of branch i measured by expected number of CNAs per 
site, u0 ( e0 ) is the pre-specified duplication (deletion) rate per haplotype per site per 
year, and ti is the time in year covered by branch i. Here, we separate (u0 + e0) and ti 
for the convenience of implementation within CNETML.

Ancestral reconstruction may suggest early CNAs that are likely cancer driver 
events and useful for early diagnostics. Therefore, we reconstructed ancestral 
states at unique variant sites based on the obtained ML tree using classical meth-
ods, including both marginal reconstruction of the most recent common ancestor 
(MRCA) node and joint reconstruction of all ancestral nodes [50, 51]. For marginal 
reconstruction, we computed the posterior probability of each possible copy number 
state for MRCA and assigned the state with highest probability to each site. For joint 
reconstruction, we assumed the best reconstruction is obtained when the root has 
normal diploid copy number states.

We used bootstrapping to measure the uncertainties of an estimated ML tree Tm 
[40]. To get a bootstrap tree, we sampled sites from the input data matrix D with 
replacement to get a pseudo-sample D′ with the same dimension as D and built a ML 
tree from D′ . The branch support value in Tm is defined as the percentage of boot-
strap trees including this branch (split) and computed with function pro.clade in 
R library ape [52].
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Validation on simulated data

Data simulation and comparison metrics

To validate CNETML, we developed CNETS to simulate CNAs along a phylogenetic 
tree of multiple patient samples (Fig. 2, see the ‘Methods’ section for more details). In 
CNETS, we first generated a coalescence tree to represent the genealogical relationships 
among samples, the subtree starting from MRCA, under either the basic coalescent or 
an exponential growth model with rate β . We then added another node before MRCA to 
represent the last unaltered common ancestor with normal copy number state (LUCA) 
and a branch of length zero from LUCA to a new tip which represents a normal genome 
to obtain a binary tree. The time from LUCA to MRCA was sampled from an expo-
nential distribution with rate which was either based on the exponential growth rate β 
or sampled from an uniform distribution U(0, 1) . To get different sampling times, we 
increased the terminal branch lengths by random integer multiples of dt (in year), with 
the maximum multiple being the number of samples. We implemented two modes of 
simulating CNPs which differ in the types of CNAs and recorded details. When only 
site-level CNAs are considered and the exact mutational events are not of interest, CNPs 
were simulated directly along each branch of the tree according to the rate matrix Q 
with each site being a segment of variable size [40]. When CNAs of multiple scales are 
considered, events were simulated by generating exponential waiting times with each 
site being a bin of fixed size (500 Kbp by default), which allows more complex models of 
evolution and the recording of more detailed information for each event. CNETS gener-
ates files that record haplotype-specific/total CNPs, sampling times in year, tree topol-
ogy, and CNAs along the branches respectively. The simulated CNPs at the tips and/or 
the tip timing information serve as input for CNETML.

In tests, we simulated trees with parameters used in [3], which approximate an expo-
nentially expanding haploid cancer cell population with MRCA being 20 years from the 

Fig. 2 The schematic overview of CNETS. A Two modes of simulation implemented in CNETS. One is 
simulating CNPs directly for site duplication/deletion based on segments of variable size, which follows 
exactly the Markov model used for phylogeny inference. The other is simulating waiting times for events of 
multiple scales based on bins of fixed size, in which at most five types of events (site duplication/deletion, 
chromosome gain/loss, and WGD) are allowed and the duplication/deletion size in the number of bins is 
sampled from an exponential distribution of the user-specified mean size. B The simulated tree and CNPs 
(red: duplication, blue: deletion, brown: normal), where coloured tips represent patient samples taken at 
different time points T0 , T1 = T0 + n1 ∗ dt , and T2 = T1 + n2 ∗ dt , with dt, n1 , and n2 being integers and 
1 <= n1, n2 <= 6 (the number of samples)
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present (Additional file 1: Table S2). To ensure that the model used for simulation and 
phylogeny inference are the same, we used the simulation mode of evolving CNPs when 
only site-level mutations were considered. We simulated trees with n = 5 samples when 
not testing the performance of tree searching, as it is fast to enumerate all the possi-
ble trees for such small trees. Without loss of generality, we set cmax = 6 and used the 
same rates for duplication and deletion. To get a reasonable range of mutation rates suit-
able for phylogeny inference, we performed tests with u = e ∈ {0.0001, 0.001, 0.01, 0.1, 1} 
(per haplotype per site per year) (Additional file 1: Fig. S1). This analysis suggests that 
intermediate rates {0.001, 0.01} (per haplotype per site per year) are more informative for 
phylogeny inference, which were used in our subsequent tests.

The accuracy of tree inference was measured by normalized Robinson–Foulds (RF) 
distance [53] and branch score distance [54]. The normalized RF distance is commonly 
used to quantify the topological differences between trees due to easy computation. 
Each branch in the tree divides the tips into two sets, called a partition. RF distance 
is simply the number of partitions present in one tree but not the other, whose value 
ranges from 0 (complete agreement) to twice the number of internal branches ( 2n− 4 
for a rooted tree with n tips). The normalized RF distance is RF distance divided by the 
maximum possible value. The branch score difference is the square root of squared dif-
ferences between branch lengths in the two trees, which can evaluate the accuracy of 
branch length (divergence time). The smaller values of the normalized RF distance and 
branch score difference indicate more accurate estimation. These distances were com-
puted with function treedist in R library phangorn [55]. The branch length was 
measured by time in year in the computation of branch score distance. When the muta-
tion rates were not estimated, u0 and e0 were set to be real values used for simulation. 
We also computed the differences between the estimated and true values of duplication/
deletion rates and LUCA age to check the accuracy of their estimation. To measure the 
accuracy of ancestral reconstruction, we computed the fraction of correctly recovered 
states over the number of unique variant sites for each internal node and the mean frac-
tion over all internal nodes under joint reconstruction.

Performance on reconstructing trees and ancestral states

In principle, ML phylogeny inference is statistically consistent, which means that the 
ML tree will converge to the true tree when the size of the data (the number of sites) 
increases [40]. To check the consistency of CNETML, we applied it on data simulated 
with different number of sites and mutation rates. To reduce confounding effects, we 
simulated trees with n = 5 samples at the same time and did not infer mutation rates. 
As shown in Fig. 3A, all the simulated trees were better recovered with more sites and 
higher mutation rates, which confirms the statistical consistency of CNETML. Because 
what is informative for inference is the number of (unique) variant sites, we also counted 
the number of (unique) variant sites in the simulated data, which suggested that topol-
ogies of more than 80% of simulated trees were correctly reconstructed with between 
90 and 180 variant sites (between 16 and 32 unique variant sites) when m = 1000 and 
u = e = 0.001 (per haplotype per site per year) (Additional file 1: Fig. S2, Table S3). In 
the subsequent simulations, we fixed the number of sites m = 1000 when not stated.



Page 10 of 28Lu et al. Genome Biology          (2023) 24:144 

We tested the consistency of the exhaustive and heuristic tree search algorithm on 
simulated data with 5, 6, and 7 samples under different mutation rates. Although the 
heuristic search had decreased performance with increasing number of samples, as 
reflected by the increase of minimal negative log likelihood values compared with those 
obtained from the exhaustive search (Additional file  1: Fig. S3), it reconstructed the 
same tree topologies as the exhaustive search on data with 5 samples and around 70% 
of the same tree topologies on data with 7 samples (Additional file  1: Table  S4), with 
slightly larger errors on the branch length estimation (Additional file  1: Fig. S4). To 
check how the heuristic tree search algorithm performed on data with a larger number 
of samples, we applied it on simulated data with 10, 20, 30, 50, 100, and 200 samples 
under different mutation rates (Additional file 1: Fig. S5). In general, the reconstructed 
trees were more similar to the ground truth with more mutations and the distances of 
reconstructed trees to simulated true trees increased almost linearly with the number of 
samples, with the coefficient being around 0.01 for normalized RF distance and around 
0.36 (0.8) for branch score distance when mutation rate was high (low). Therefore, the 
topologies of reconstructed trees were less affected by the increasing number of sam-
ples, whereas the branch lengths were more affected especially when there were fewer 
observed mutations.

We also checked the performance of CNETML on reconstructing ancestral states on 
the simulated data with 1000 sites under different mutation rates by supplying the simu-
lated true tree and real mutation rates as input. The results suggest that more than 90% 
of the unique variant sites were accurately reconstructed, except when doing marginal 
reconstruction (Fig. 3B). The fraction of accurately reconstructed sites decreased with 
larger mutation rate due to the presence of more variant unique sites. Joint reconstruc-
tion appeared more accurate, probably because it computes the joint probability of all 
the internal nodes [40].

With total copy numbers, copy-neutral loss of heterogeneity (cn-LOH) and mirrored 
subclonal allelic imbalance (MSAI) events (CNAs affecting different alleles of the same 
sites in different samples) cannot be detected. To see how total CNPs impact the infer-
ence, we applied CNETML on haplotype-specific CNPs and found that the results were 
not largely different except when there were more than 10% sites with cn-LOH or MSAI 
events (Fig. 3A, C). However, the accuracy of reconstructing ancestral states was better 
with haplotype-specific CNPs (Fig. 3B). The analysis on PCAWG dataset [56] shows that 
around 80% samples have no more than 10% of the genome with cn-LOH (Additional 
file 1: Fig. S6), and hence these results suggest that total CNPs can provide good approxi-
mations in practice despite information loss.

Performance on jointly estimating the tree and mutation rates

One major utility of CNETML is to jointly estimate the tree topology, node ages, and 
mutation rates when the samples were taken at different time points. The reliability of 
rate estimation depends on the extent of time differences at the tips, with larger differ-
ences providing more information for inference [57]. Since the sampling time differences 
for a patient may range from one year to 15 years as in a BE dataset [13], we simulated 
data under different temporal signal strengths, dt ∈ {1, 3, 5} (years), where the range of 
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simulated sampling times approximated real data and samples simulated under a larger 
dt generally had larger time differences (Additional file  1: Fig. S7). We also simulated 
data with 10,000 sites to check the consistency of CNETML during joint estimation. We 
grouped the simulated data by the mean pairwise absolute difference of tip relative times 
(denoted by Tm ) into three groups: “small” difference when Tm < 3 , “intermediate” differ-
ence when 3 <= Tm < 7 , and “large” difference when Tm >= 7 . The numbers of samples 
in each group are shown in Additional file 1: Table S5. Because the L-BFGS-B optimiza-
tion algorithm is iterative, the initial values of parameters θ0 = (x01, x

0
2, ..., x

0
n,u

0, e0) are 
required, where (x01, x

0
2, ..., x

0
n) is derived from the initial tree (see Methods on how to get 

initial trees)) and (u0, e0) has to be specified manually. Since the L-BFGS-B algorithm 
may converge to a local peak on the likelihood surface of a tree, we tried different ini-
tial values, u0 = e0 ∈ {0.0005, 0.001, 0.005, 0.01} (per haplotype per site per year), and 
found that CNETML was robust, except when the real mutation rate was low (0.001) 
and a high initial mutation rate (0.005 or 0.01) was supplied (Additional file 1: Fig. S8). 

Fig. 3 The performance of CNETML on reconstructing trees and ancestral states with total or 
haplotype-specific CNPs when samples are taken at the same time. A The accuracy of phylogeny inference 
on data simulated with different number of sites and mutation rates, measured by the normalized RF 
distance and branch score distance, respectively. B The accuracy of ancestral state reconstruction on 
simulated data with 1000 sites under different mutation rates, measured by the fraction of correctly 
reconstructed unique variant sites. C The fraction of cn-LOH and MSAI events in the simulated data. There are 
five samples in each simulated tree and 100 datasets for each parameter setting. The plots are grouped by 
mutation rates. The box plots show the median (centre), 1st (lower hinge), and 3rd (upper hinge) quartiles of 
the data; the whiskers extend to 1.5× of the interquartile range (distance between the 1st and 3rd quartiles); 
data beyond the interquartile range are plotted individually
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Therefore, we recommend starting from smaller initial mutation rates in real data when 
the range of rates is unknown and reported the results with u0 = e0 = 0.0005 (per hap-
lotype per site per year) in Fig. 4.

The joint estimation was generally better with higher mutation rates and a larger 
number of sites (Fig. 4A, B). As shown in Fig. 4A, the sampling time differences did not 
affect much the inference of tree topologies but yielded better branch length estima-
tion when being larger, and the estimated median LUCA ages were closer to real values 
when the sampling time differences were not small despite larger variances, which was 
probably caused by a wider range of the simulated LUCA ages (Additional file  1: Fig. 
S9). The mutation rates (Fig. 4B) were slightly underestimated with fewer mutations and 
small sampling time differences and more accurately estimated otherwise. In summary, 
CNETML inferred phylogenies well when there was sufficient information in the data, 
with larger mutation rates or sampling time differences leading to higher accuracy. We 
also ran CNETML on haplotype-specific CNPs of data simulated with dt = 5 years and 
1000 sites to compare with the results when using total CNPs (Fig. 4C), but similar to 
our previous results in Fig. 3, we did not observe large differences.

To see how the joint estimation affects the inference of parameters, we also ran 
CNETML on the data with tree topology fixed. The results (Additional file 1: Fig. S10) 
suggest that joint estimation performed almost as well as when the tree topology was 
fixed.

Performance on relative copy numbers

CNAs called from sWGS data with common tools, such as QDNAseq [20], are often val-
ues relative to ploidy, which are hard to interpret, but they provide a way to mitigate the 
effect of WGD in phylogeny inference. For example, PISCA used a baseline strategy to 
convert absolute haplotype-specific copy numbers to relative values, which lead to better 
phylogeny inference and more accurate rate estimation on simulated data with WGD [3]. 
The basic idea is to divide the observed copy numbers by an estimated baseline (rounded 
mean copy number) for each haplotype and then round the values up or down randomly 
to reduce bias when the remainder is not zero. This is a simple strategy to process the 
absolute CNPs for reasonable phylogeny inference when WGD is present, as it is just 
one event changing ploidy, and the normalization by baseline copy number may cancel 
its effect. We adopted some similar strategies in CNETS to simulate relative copy num-
bers by using baseline and rounding after scaling with baseline. We tested using either 
2NWGD or rounded mean copy number as baseline, where NWGD is the number of WGD 
events in a genome. For haplotype-specific copy numbers, we used the rounded mean 
copy number for each haplotype as baseline. For total copy numbers, we used half the 
rounded mean copy number as baseline. We tested both direct rounding to the nearest 
integer and random rounding as in [3]. CNETS output simulated relative total CNPs by 
reducing the normalized copy numbers by the normal ploidy, with values smaller than 
-2 and larger than 2 set to -2 and 2 respectively for consistency with QDNAseq output.

We ran CNETML on relative total and haplotype-specific CNPs simulated with 
cmax = 8 , dt = 1 year, u = e = 0.001 per haplotype per site per year, and WGD rate 
0.05 per year, which generated data of four types according to the distribution of WGD 
among samples: clonal WGD where WGD appears in all samples, multiple WGDs where 
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there are more than one WGD across the tree but each sample has at most one WGD, 
single WGD where there is only one WGD across the tree, and no WGD. When running 
CNETML on relative total CNPs, we added the copy numbers with normal ploidy so 
that all values are positive. As a comparison, we also ran MEDICC2 [9], the only method 
to infer CNA-based phylogenies from NGS data at the presence of WGDs, on allele-
specific CNPs which were converted from haplotype-specific CNPs by custom R scripts 
and CNETML on total CNPs respectively.

The results are grouped into four types by WGD distribution in the data (Fig. 5, Addi-
tional file  1: Fig. S11 and S12). When using random rounding, CNETML on relative 
CNPs inferred less accurate tree topologies on datasets with clonal WGDs. When using 
direct rounding, the results were similar when using either 2NWGD or the rounded mean 
copy number as the base line. Since it is hard to know NWGD in real data, we report 
the results of using the rounded mean copy number as baseline here. As expected, 
CNETML on absolute total CNPs reconstructed inaccurate phylogenies and misesti-
mated mutation rates in most cases whenever WGD was present, with duplication rates 

Fig. 4 The performance of CNETML on jointly estimating the tree topology, node ages, and mutation rates 
on data simulated with different sampling times and mutation rates. A The accuracy of phylogeny inference, 
measured by the normalized RF distance, branch score distance, and difference of estimated and real LUCA 
age, respectively. B The accuracy of mutation rate estimation, measured by the difference of estimated and 
real rate. C The accuracy in estimation of the mutation rate and LUCA age with total or haplotype-specific 
CNPs on simulated data with dt = 5 years, measured by the difference of estimated and real rate and 
difference of estimated and real LUCA age, respectively. There are five samples in each simulated tree and 100 
datasets for each parameter setting. Grey dashed line: real values. Box plots have the same interpretations as 
those in Fig. 3



Page 14 of 28Lu et al. Genome Biology          (2023) 24:144 

largely overestimated especially on data with clonal WGD and deletion rates slightly 
underestimated. On data without WGD, CNETML performed similarly on all types of 
data, which suggests using relative copy numbers still conserves the information for phy-
logeny inference and rate estimation. On data with clonal WGD, CNETML on relative 
CNPs reconstructed phylogenies mostly similar to the truth and MEDICC2 on abso-
lute allele-specific CNPs, although the deletion rates were largely underestimated along 
with slightly overestimated duplication rates, which is probably due to greater signal loss 
when converting all the copy numbers relative to the baseline. On data with multiple 
subclonal WGDs, CNETML on relative CNPs achieved slightly better performance than 
MEDICC2 and the mutation rate estimates were mostly accurate with slight underesti-
mation of deletion rates. On data with single WGD, CNETML on relative CNPs achieved 
similar performance to MEDICC2 and accurate mutation rate estimation with slightly 
larger variance compared to cases with no WGD. In summary, it seems entirely feasi-
ble to recover the phylogeny directly from relative copy numbers, such as those from 
QDNAseq, and absolute copy numbers which have been scaled appropriately to mitigate 
the effects of WGD. For further validation of the inference on relative copy numbers, 
empirical information or methods to detect WGD [58] or call absolute copy numbers 
[30] from sWGS data may be used to estimate the presence of WGD and understand its 
effect on the results.

Fig. 5 The performance of CNETML on relative copy number data. The relative copy numbers were obtained 
by using the rounded mean copy number as baseline and direct rounding. There are 500 simulated datasets 
in total, which are divided into four groups by the types of WGDs. The number of datasets in each group 
is shown in brackets. MEDICC2 was excluded when comparing branch score distance because the branch 
length in a tree built by it has a different meaning (the number of events between CNPs of two nodes based 
on CNT model) and it is hard to compare fairly. Ninety-one outlier data points with values larger than the 
maximum of x-axis on datasets with subclonal WGDs are excluded in the plot of mutation rates for better 
visualization of the majority data. Box plots have the same interpretations as those in Fig. 3
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Performance under violation of model assumption

ML inference of phylogenetic trees using sequence data was shown to be highly robust 
to violations of assumptions [40]. As our model of CNA evolution strongly depends on 
the independent sites assumption, we ran CNETS using the waiting time approach to 
generate duplications and deletions of different sizes to examine how overlapping CNAs 
affect the performance of CNETML. We simulated trees with dt = 1 year so that rate 
estimation is feasible and introduced duplications/deletions along the tree with rate 
u = e = 0.001 per haplotype per site per year and mean size being 1, 10, and 100 bins 
(500 Kbp, 5 Mbp, and 50 Mbp), respectively. These sizes were chosen because focal 
CNAs are typically defined as CNAs of size no larger than 3 Mbp [59] and 50 Mbp is 
larger than p-arm size of 15 autosomes and q-arm size of 4 autosomes to include arm-
level CNAs. We built trees with CNETML using original bin-level data (site as bin) 
and post-processed segment-level data (site as segment, see Methods for details of the 
post-processing).

As expected, the inferred phylogenies and mutation rates were more dissimilar to the 
ground truth with larger CNA sizes due to information loss as a result of overlaps, with 
overestimated branch lengths and mutation rates and slightly underestimated LUCA age 
(Fig.  6A). However, even when the mean duplication/deletion size was 5 Mbp, longer 
than the typical size to define focal CNA (3 Mbp [59]), the bias was not very large, and 
the tree topologies were still recovered well. In addition, when we scaled the estimated 
rates by the mean duplication/deletion size, the estimation errors were much smaller 
(Fig.  6B). These results suggest that slight violation of the independent sites assump-
tion seems acceptable in phylogeny inference, and the estimated mutation rates may be 
scaled to account for the size of CNAs. On the other hand, the differences of using bin-
level and segment-level data were small because the site patterns in the input data were 
similar in both cases, except that bin-level data might contain more sites and a larger 
number of the same pattern which lead to longer computing time. With larger CNAs, 
the estimated rates obtained using bin-level data generally had slightly higher values and 
larger variances than those obtained using segment-level data (Fig. 6B, Additional file 1: 
Fig. S13). This increase in estimator bias and variance is likely due to violation of inde-
pendent sites assumption which causes more pairwise site correlation [60] and higher 
among site rate variation [61]. Therefore, we recommend using segment-level data for 
faster computation, less correlation between segments, and better interpretability in 
practice.

In addition, we assume the input CNPs are complete and accurate, which is often 
violated in reality. Errors in copy number calls, which may arise from poor calling or 
missing data, directly affect the inference, since just one wrong copy number called at 
a site of a sample may lead to a unique site pattern and bias likelihood computation. To 
check the sensitivity of CNETML to errors in copy number calling, we simulated data of 
5 samples with increasing fraction of sites with error (0, 0.1, 0.3, 0.5, 0.7, see the ‘Meth-
ods’ section for details). The results (Additional file 1: Fig. S14) suggest that more than 
70% of the tree topologies were correctly recovered with relatively small branch length 
estimation errors when the samples were at the same time point and the mutation rate 
was high, although the performance of CNETML generally decreased with the increas-
ing error rates especially when the mutation rate was low. We further checked how 
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CNETML performed when the samples were at different time points ( dt = 1 year) under 
high mutation rates ( u = e = 0.01 per haplotype per site per year) (Additional file  1: 
Fig. S15). CNETML still correctly reconstructed no less than 70% of the tree topologies 
although the branch length estimation errors became larger. With increasing error rates, 
the estimated duplication rate and LUCA age decreased, whereas the estimated deletion 
rate slightly increased.

Moreover, we assume each sample is homogeneous with only one clone and do not 
deal with clonal deconvolution. This is reasonable to some extent as CNAs detected from 
sWGS data typically represent the dominant clone in a sample, which is different from 

Fig. 6 The performance of CNETML with different types of sites on data simulated with mean duplication/
deletion of different sizes. A The accuracy of phylogeny inference, measured by the normalized RF distance, 
branch score distance, and difference of estimated and real LUCA age, respectively. B The accuracy of 
mutation rate estimation before and after scaling, measured by the difference of estimated and real rate. 
There are five samples in each simulated tree and 100 datasets for each parameter setting. Box plots have the 
same interpretations as those in Fig. 3
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sample trees built from SNVs that often represent highly admixed cell lineages [62]. To 
check the sensitivity of CNETML to the monoclonal assumption, we postprocessed the 
data simulated by CNETS to get data with subclonal structure (see the ‘Methods’ section 
for details). We simulated data with all the samples having the same number of clones 
n ∈ {3, 4} (including the normal clone). For each sample, we fixed the fraction of the orig-
inal clone (the clone with the same identifier as the sample) to fd ∈ {1, 0.8, 0.6, 0.5, 0.4} 
and sampled the fractions of the other clones from uniform Dirichlet distribution whose 
sum was 1− fd . The results (Additional file 1: Fig. S16) suggest that CNETML performed 
well when the original clone was dominant with a larger fraction than the other clones in 
the sample when the samples were at the same time point, with no less than 70% of the 
tree topologies correctly recovered. Since CNETML performed similarly with a sample 
having either 3 or 4 clones, we then checked its performance on simulated samples at 
different time points ( dt = 1 year) with each sample having 4 clones (Additional file 1: 
Fig. S17). More than 55% of the tree topologies were still correctly recovered when the 
original clone was dominant. When the mutation rate was low, the estimated duplica-
tion and deletion rates were close to the true values when the original clone was dom-
inant, whereas the estimated LUCA age slightly increased with decreasing fraction of 
original clone. When the mutation rate was high, the estimated duplication and deletion 
rates were more affected by ITH and declined almost linearly with decreasing fraction of 
original clone, whereas the LUCA age was generally underestimated.

Application to Barrett’s oesophagus patients

To demonstrate the applicability of CNETML on real data, we applied it to data for two 
BE patients in Fig.  1 of [13], where CIN was used to predict risk progression (Fig. 7). 
QDNAseq was applied on sWGS data to get relative CNPs in 589 bins of fixed size (about 
5 Mbp) for each patient, which were normalized across the cohort of 777 endoscopy 
samples from 88 patients. One nonprogressor patient, 51, has 15 samples taken from 
2006 to 2011, which shows similar CNPs across samples. The other progressor patient, 
20, has 12 samples taken from 1998 to 2008, which shows more copy number variation 
across samples. Although WGD was shown to be prevalent in BE patients [3], it seems 
less likely to have clonal WGDs for these two patients given the large span of sampling 
times and diverse sampling locations. We rounded the provided fractional copy num-
bers to the nearest integers, set those smaller than − 2 to − 2 and larger than 2 to 2, and 
merged consecutive bins with the same copy numbers across all samples into segments. 
Since the exact patient ages were not provided, the patient age at the first sampling time 
was set to be 60 for patient 51 and 62 for patient 20, the mean age of all nonprogres-
sors and progressors in the cohort at diagnosis of BE, respectively, which provides good 
approximations of the upper bounds of the tree heights during optimization.

We first ran CNETML 100 times on the input data, selected the tree with larg-
est likelihood, Tb , and did 100 bootstraps to get branch support values for Tb . Then 
we fixed the tree topology to Tb and optimized node ages and mutation rates to get 
T ′
b , with the initial mutation rates set to the estimated rates on Tb . We ran another 

100 nonparametric bootstraps with the topology of T ′
b to get the confidence inter-

vals (2.5th and 97.5th percentile) of node ages and mutation rates in T ′
b . Lastly, we 

reconstructed ancestral CNPs based on T ′
b and checked the biological significance by 
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computing their overlap with cancer-related genes from COSMIC Cancer Mutation 
Census with keyword “oesophag” in the description of disease [63] and 75 regions 
selected by the elastic-net regression model as being predictive of BE progression 
(predictive regions) in [13].

The tree topology for patient 20 had bootstrap support values of more than 
80% except for two branches (Fig.  7A). Although the branch connecting the sam-
ples taken at 12 months location 2 and 108 months location 1 (times before final 
endoscopy) had only 46% of support, they shared a loss of gene SMAD4, which was 
shown to promote tumorigenesis from BE toward esophageal cancer [64] and hence 
suggested the reliability of this branch. The tree topology for patient 51 had much 
poorer support due to the lack of changes in copy numbers (Fig. 7B). The estimated 
mutation rate of patient 20 was slightly higher than that of patient 51, around 0.006 
and 0.004 per haplotype per site per year respectively, which is as excepted because 
progressors tend to have higher mutation rates and seems consistent with previous 
results for BE patients [3]. The LUCA age approximates the onset time of BE, since 
CNAs are likely to begin after BE establishes in the oesophagus. The results suggest 
patient 20 had BE about 40 years before the first sample, about 10 years earlier than 
patient 51, which also seems consistent with previous results where two progressors 

Fig. 7 The ML trees and ancestral states reconstructed by CNETML for patient 20 (A) and 51 (B). The 
bootstrap support values are shown in coloured rectangles with lighter colours suggesting stronger support. 
The coloured bars at the internal nodes show the confidence intervals of node ages. Each sample is denoted 
by “patientID_timeID_locationID”, where timeID is the month before final endoscopy and locationID is the 
relative esophageal sample location. There are two sets of samples taken at the same time and location for 
patient 51, which are indicated by “_2” at the end. For patient 20, the samples taken at 12 months before 
final endoscopy location 2 (20_12_2) is Indeterminate (ID), the final endoscopy at location 2 (20_0_2) is 
Low-Grade Dysplasia (LGD), and all the other samples are Non-dysplastic BE (NDBE). For patient 51, the 
samples taken at 36 months before final endoscopy location 2 and 3 (51_36_2 and 51_36_3) are IDs, the 
sample taken at 60 months before final endoscopy at location 2 (51_60_2) is LGD, and all the other samples 
are NDBE. The cancer-related genes overlapping with the reconstructed CNPs are shown on the branches 
(red: copy number gain, blue: copy number loss). The confidence intervals of duplication/deletion rates are 
shown in parentheses in the title of the plot for each patient
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had younger LUCA ages than two nonprogressors [3]. The estimated phylogenies 
also show a longer dwell time (the time a patient has lived with the precursor) of BE 
in the progressor (patient 20) than the non-progressor (patient 51), which is con-
sistent with previous modelling results [49]. From the reconstructed CNPs of the 
MRCAs of both patients (node 25 for patient 20 in Fig. 7A and node 31 for patient 
51 in Fig. 7B), we found gene LRP1B included in a region on chr 2q with copy num-
ber gain (see Additional file 2: Table S6 for the complete list of overlaps). The origi-
nal average relative copy number for patient 20 (1.4) across all samples in this region 
is about twice that for patient 51 (0.6), suggesting more gains in patient 20. Although 
most common alterations involving LRP1B are simple somatic mutations or copy 
number losses, 4.89% cases have copy number gains in the TCGA-ESCA cohort with 
185 cases [65]. The CNP of the MRCA of patient 20 also had a region of gain on 
chr 4, which overlapped with the predictive region whose associated coefficient of 
variation for the relative risk (CV) is 1.018 (ranked 15th among 75 regions) [13]. The 
CNPs of the MRCA of patient 51 and the ancestors of the top and bottom lineages of 
patient 20 (node 20 and 22 in Fig. 7A) overlapped with the predictive region whose 
associated CV is 5.090 (ranked 6th among 75 regions) [13]. The CNP of the ancestor 
of the bottom lineage of patient 20 also had a region of gain overlapping with gene 
NFE2L2 on chr 2q, which has about 11.41% cases with copy number gains in TCGA-
ESCA cohort [65]. For patient 51, the lineage starting from node 21 had a region 
of gain overlapping with gene ZNF814, which has 13.04% cases with copy number 
gains in TCGA-ESCA cohort [65]. All these findings suggest that the phylogenies 
and mutation rates inferred by CNETML are biologically meaningful and additional 
insights into carcinogenesis can be gained from the reconstructed ancestral CNPs.

Discussion
In summary, we developed CNETML, a new ML method designed to reconstruct the 
evolutionary history of multiple samples of a single patient which may be taken at dif-
ferent locations and/or times, which can take as input (relative) total integer copy 
numbers called from sWGS data. CNETML is capable of jointly estimating the node 
ages and mutation rates by year when patient samples were taken at two or more time 
points, which appears to become more available with the development of sequencing 
techniques. The estimation provides approximate timing of initiating CNAs and hence 
possible onset age of the disease such as BE in a patient, which cannot be detected 
clinically due to asymptomaticity but is important in carcinogenesis and may be help-
ful in cancer screening and surveillance programs [49]. This capability is derived from 
a novel Markov model of CNA evolution, which assumes the sites (bins or segments) 
in a CNP are independent and hence allows the usage of classical methods for phylog-
eny inference and ancestral reconstruction. We evaluated CNETML on data simulated 
with CNETS, our novel program of general utility to simulate CNAs along a phyloge-
netic tree. The simulations suggest that CNETML performed well when there were suf-
ficient CNAs and/or timing information (such as sampling time differences of more than 
5 months) in the data, even on relative CNPs with subclonal WGDs. The ability to work 
on relative CNPs makes CNETML applicable to a wide range of sWGS data obtained 
from cancer patients, which was demonstrated by its application on two BE patients, 
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where we inferred sample phylogenies along with ancestral CNPs which suggest the time 
LUCA arose and early CNAs driving the malignancy. Although caution is still required 
when interpreting the inference on relative CNPs without knowing the exact presence 
of clonal WGDs, the inference on relative copy numbers provide a reference for fur-
ther improvement. CNETML is also applicable to allele-specific CNPs if they have been 
phased to distinguish haplotypes, and the performances were similar to those on total 
CNPs when there were less than 10% of copy-neutral CNA events (such as cn-LOH and 
MSAI) across all sites. Despite the independent sites assumption, CNETML was robust 
to considerable amounts of overlaps among simulated focal CNAs.

Although CNETML aims to build a bulk sample tree where each tip is a CNP from 
a patient bulk sample, it can be used to build trees from CNPs of subclones or single 
cells, since the main input is simply an integer copy number matrix where the rows can 
represent subclones or cells. For example, we applied CNETML on total and haplotype-
specific copy numbers of subclones detected from single cell DNA sequencing of a 
breast cancer patient [66] (see the ‘Methods’ section for details on input preparation). 
The results (Additional file  1: Fig. S18 and S19) suggest that CNETML reconstructed 
phylogenies largely consistent with those in [66] and the uncertainties in the inference 
due to the lack of information were well reflected by the bootstrap support values. Due 
to the expensive computational cost of applying full model-based phylogenetic inference 
to thousands of single cells that give rise to a huge number of possible tree topologies 
[67], CNETML is only practical for hundreds of cells. As a demonstration, we applied 
CNETML on two single cell datasets from two breast cancer patients [37]. We randomly 
sampled 100 cells from each dataset and compared the reconstructed trees with those 
reported in [37] and the trees reconstructed by MEDICC2 [9] (Additional file 1: Fig. S20 
and S21, Additional file 3: Table S7). As seen from the alignments of tree topologies and 
relative total copy number heatmaps, CNETML generated three and five large groups 
of cells for the two patients respectively, similar to those obtained in [37] and [9]. The 
relationships among individual cells in each group and the exact tree topologies had 
large bootstrap uncertainties due to the large sample size and lack of mutational infor-
mation in the data. The input CNPs are assumed to be called from sWGS data and hence 
cover the whole genome, but it may be applicable to SNP array or WES data if the gaps 
between segments with atypical copy numbers are filled to avoid acquisition bias [68].

In principle, the likelihood-based approach adopted in CNETML is more sophisti-
cated than distance matrix and maximum parsimony methods. To deal with the specific 
properties of (relative) CNPs and allow for more flexible evolutionary models specific 
for carcinogenesis, we implemented a novel tool rather than using existing frameworks 
designed for traditional phylogenetic inferences, such as BEAST [43, 44]. Future devel-
opment of the model could include Markov chains at different scales to incorporate 
chromosomal and/or arm level gain/loss and WGD despite the challenging combinato-
rial complexity, and the use of penalized maximum likelihood estimation to incorpo-
rate prior knowledge on parameters when there are insufficient information in the data 
[69]. To apply CNETML to data of a much larger scale, such as CNAs from thousands of 
single cells, further optimizations, especially the acceleration of likelihood computation, 
are also required. Another development would be the estimation of varying mutation 
rates in different lineages under a relaxed local clock [70]. Finally we can extend to a fully 
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Bayesian approach, which can impose informative prior distributions and naturally pro-
vide a measure of uncertainty of the inference (posterior probabilities of sampled trees) 
despite a higher computational cost.

The inference of sample phylogeny from CNAs called from sWGS data is a very chal-
lenging problem. Although CNETML makes progresses in tackling some issues, it still 
has a few limitations in data handling. To improve the robustness of CNETML to errors 
in the input data, we consider incorporating an error model as future work, such as com-
bining CNA calling from raw read counts with phylogeny inference [5, 7] and incorpo-
rating false positives and false negatives into the model directly [6]. Although CNETML 
performed generally well when there was a dominant clone in each sample, given data of 
higher resolution, it would be helpful to quantify ITH and build clone trees.

Conclusions
In summary, we have provided a tool that can enhance the use of sWGS and allow for 
inferences of carcinogenesis in patients. Due to the relatively low cost of sWGS, we 
believe our approach will have increasing impact in understanding the biology of car-
cinogenesis and will underlie future clinical applications.

Methods
Preprocessing of input data

The input CNPs for CNETML are mainly obtained from common CNA calling meth-
ods for sWGS data. For example, QDNAseq [20] is often used to get relative copy num-
bers by computing read counts in fixed-sized bins, doing segmentation, and calling copy 
numbers with CGHcall [71] which classifies copy numbers into: double deletion (− 2), 
single deletion (− 1), normal (0), gain (1), and amplification (2). To get the data matrix 
D, we assumed the same binning or segmentation across all samples to get consistent 
sites. When raw copy number calls were at bin level, segments were obtained by merging 
consecutive variant bins on the same chromosome with the same copy number across all 
samples.

The input sampling dates were converted to years (divided by 365). For conveni-
ence, the time for the first sample was set to 0 and the time for other samples was then 
counted as the number of years starting from the first sample.

CNETML can also be applied to copy number data of subclones or single cells. Here, 
we show how we processed the haplotype-specific copy numbers of suclones detected 
from single cell data of a patient in [66]. WGD was identified as a clonal event in nearly 
all tumour cells of the patient. To mitigate the effect of WGD in the inference, we pro-
cessed the data to get relative haplotype-specific copy numbers by dividing the abso-
lute copy numbers of each haplotype by the rounded mean value for that haplotype and 
rounding the resultant values to the nearest integer. Then we obtained the relative total 
copy numbers by adding up the relative copy numbers of each haplotype. In terms of the 
single cell data from the two patients in [37], we used the allele-specific copy number 
data derived in [9]. As WGD was clonal for each patient, we computed relative allele-
specific copy numbers in a similar way to that for each haplotype and then added them 
up to get the relative total copy numbers.
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The computation of likelihood

The probabilities of observing data at a single site P(D(i)|T , θ) was computed with 
Felsenstein’s pruning algorithm by post-order traversal of T, in which each node is visited 
only after all its descendants have been visited [46]. The computation can be expressed 
as a recursion that computes Li(di) for each node i at each possible haplotype-specific 
copy number state di , the conditional probability of observing data at the descendant 
tips below i. Let pdidj (tj) represents the transition probability of di becoming dj after 
time tj , where i and j are two nodes in T connected by a branch of length tj . Suppose the 
root (LUCA node) is r with state dr = 4 since it is assumed to have normal diploid copy 
number, then:

where m is the MRCA node connected to r with a branch of length tm . When node i is an 
internal node with children node j and k,

where tj and tk are the lengths of the branch from node i to j and k respectively. When 
node i is a tip with observed haplotype-specific copy number state ci,

When the input copy numbers are total, there may be multiple haplotype-specific copy 
number states compatible with the observed value at tip i, denoted by set Si , and hence

To improve efficiency in likelihood computation, the transition probability matrix, 
P(tj) = eQtj , was computed once with scaling and squaring method [72] for each branch 
of length tj and used for all sites. Lr(dr) for two sites with the same site patterns were 
computed once too, as they have the same probability of being observed.

Statistical phylogeny inference with maximum likelihood method

An important aspect in optimization of likelihood function L(T) is the incorporation of 
bound constraints in L-BFGS-B algorithm. To avoid negative branch length, we define a 
minimal branch length lm (1e−3 year by default). To encode the constraints imposed by 
patient ages at different sampling times, we define a new variable xi for an internal node i 
with child j on a tree T of n samples:

(4)P(D(i)|T , θ) = Lr(dr) = pdrdm(tm)Lm(dm),

(5)Li(di) =
∑

dj

[pdidj (tj)Lj(dj)]
∑

dk

[pdidk (tk)Lk(dk)],

(6)Li(di) =

{

1 di = ci,
0 otherwise.

(7)Li(di) =

{

1 di ∈ Si,
0 otherwise.

(8)xi =

{

t1 i = 1,
tj−tmj −lm

ti−tmi −2lm
1 < i <= n− 1,
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where i is from 1 (the root) to n− 1 , ti is the age of node i, and tmi  is the maximum age of 
the tips below node i. Because the parent age should always be smaller than those of the 
children nodes, xi has bounds as below:

where A0 is the patient age at the first sample and d is the time difference between the 
last and first sample.

For exhaustive tree search, we enumerated all the possible tree topologies for the 
given number of samples and then found the ML tree by optimizing the parameters. For 
heuristic tree search, we started with a number of initial trees (100 by default), selected 
those with unique topologies, and computed their approximate likelihoods. Then we 
selected the top n1 (20 by default) trees ordered by decreasing likelihoods to do hill-
climbing nearest neighbour interchanges (NNIs) [48] and kept the top n2 (5 by default) 
trees with largest likelihoods for further optimization to get the ML tree. To avoid local 
optima, we built parsimony-based stepwise addition trees as initial trees, which were 
obtained by using function random.addition in R library ape [52] and transformed 
into the formats acceptable by CNETML. When the input data is haplotype-specific, we 
treat each haplotype as a new site and appended the copy numbers of haplotype B after 
those of haplotype A to build the stepwise addition tree.

Data simulation

The overall procedure of simulations in CNETS is as follows: 

1 Generate a random coalescence tree of n samples. Available trees can also be given as 
input.

2 Optionally simulate temporal samples for a patient of specified age. One way to 
generate samples at various time points with just one additional parameter, dt, is as 
below. Note that this simulation approach destroys the coalescence structure but it is 
sufficient to generate a sample phylogeny for the purpose of testing phylogeny infer-
ence methods like CNETML. 

(a) Assign random times (in year) to the tips by changing terminal branch lengths 
with multiples of dt.

(b) Rescale the internal branches of the tree so that the tree height is no larger than 
the patient age at the last sampling time.

3 Simulate CNPs on the tree with the Markov model of CNAs. 

(a) Generate the CNP for the root (normal diploid genome).
(b) Simulate CNPs directly at the end of each branch according to the transition 

probability matrix or simulate mutational events along each branch by using 
exponential waiting times.

4 Output result files.

(9)
d + nlm <= x1 <= A0 + d,

0.01 <= xi <= 0.99, 1 < i <= n− 1,
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When simulating CNPs directly given the total number of sites (segments), we distrib-
uted the sites roughly according to the size of each chromosome with Dirichlet distribu-
tion. Each genome with m sites was represented by its CNP (c1, c2, ..., cm) whose initial 
values at all sites are 2 for total copy number data or 4 for haplotype-specific copy num-
ber data. For a site i with state ci , we sampled its target state from the discrete distribu-
tion specified by row i of transition probability matrix P(l) for a branch of length l.

When simulating events of multiple scales by waiting times, we pre-specified the num-
ber of sites (bins) on each autosome of the reference genome with an array [367, 385, 
335, 316, 299, 277, 251, 243, 184, 210, 215, 213, 166, 150, 134, 118, 121, 127, 79, 106, 
51, 54], which were extracted from QDNAseq output on real data with 4,401 bins of 
500 Kbp. Each genome with m sites was initially represented by the set of sites, denoted 
by G = (l1, l2, ..., lm) . We denoted the diploid genome by Gd = [G,G] , which was imple-
mented by making a copy of G to represent the other haplotype. The final CNP of the 
genome (c1, c2, ..., cm) was computed for each site by adding up the number of copies 
across all the haplotypes when considering total copy number or across the specific 
haplotype when considering haplotype-specific copy number. Some constraints were 
imposed to get more realistic data: (1) Chromosomal gain and WGD were only possible 
when the resultant maximum copy number is smaller than the specified cmax ; (2) The 
duplication/deletion stopped at the end of a chromosome. For the simulation of specific 
mutational events along a branch of length l from initial time t = 0 , we used the follow-
ing steps: 

1 Generate a random waiting time e from the exponential distribution with rate r, 
where r is the total mutation rate across the genome, obtained by adding up the 
duplication and deletion rates across all sites along the genome, chromosomal gain 
and loss rates across all chromosomes, and WGD rate.

2 Generate a mutation, whose type is randomly chosen based on the relative rates of 
different event types. 

(a) For segment duplication/deletion, randomly choose the start bin based on the 
rates across sites, the haplotype, and the size in the number of bins, where a 
duplication can be either tandem (duplicated at the end of the current location) 
or interspersed (inserted at a random position of a random chromosome) with 
equal possibilities.

(b) For chromosome gain/loss, randomly select the chromosome according to the 
rates across chromosomes and the haplotype.

3 t = t + e.
4 Stop when t >= l.

To see how errors in the detected copy numbers affect phylogeny inference, we incor-
porated the simulation of data with different error rates, where errors may be caused 
by sequencing noise, sample purity, and ITH. When the fraction of sites with error fe 
is specified, we randomly selected round(m ∗ fe) sites to change their copy numbers. 
We sampled the new copy number from a Poisson distribution with the mean being 
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the original copy number at the site. If the new copy number is larger than cmax , we 
set it to cmax.

To see how ITH affects phylogeny inference, we added scripts to postprocess the 
data simulated by the main program to get data with subclonal structure. We assumed 
the originally simulated data is for clones rather than samples. Then we mixed clones 
to get the data for each sample by specifying the fraction of the original clone fd and 
sampling the fraction of the other clones (including the normal clone) with uniform 
Dirichlet distribution which is then multiplied by (1− fd).
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