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Abstract
Genomic data are informative about the history of species divergence and interspecific gene flow, including the dir-
ection, timing, and strength of gene flow. However, gene flow in opposite directions generates similar patterns in 
multilocus sequence data, such as reduced sequence divergence between the hybridizing species. As a result, infer-
ence of the direction of gene flow is challenging. Here, we investigate the information about the direction of gene flow 
present in genomic sequence data using likelihood-based methods under the multispecies-coalescent-with- 
introgression model. We analyze the case of two species, and use simulation to examine cases with three or four spe-
cies. We find that it is easier to infer gene flow from a small population to a large one than in the opposite direction, 
and easier to infer inflow (gene flow from outgroup species to an ingroup species) than outflow (gene flow from an 
ingroup species to an outgroup species). It is also easier to infer gene flow if there is a longer time of separate evo-
lution between the initial divergence and subsequent introgression. When introgression is assumed to occur in the 
wrong direction, the time of introgression tends to be correctly estimated and the Bayesian test of gene flow is often 
significant, while estimates of introgression probability can be even greater than the true probability. We analyze 
genomic sequences from Heliconius butterflies to demonstrate that typical genomic datasets are informative about 
the direction of interspecific gene flow, as well as its timing and strength.
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Introduction
Gene flow between species occurs as a result of hybridiza-
tion followed by backcrossing in one of the hybridizing 
species. While interspecific gene flow has a predominantly 
homogenizing effect, it may create new beneficial combi-
nations of alleles at multiple loci, facilitating species diver-
sification and adaptation (Arnold and Kunte 2017; 
Campbell et al. 2018; Feurtey and Stukenbrock 2018; 
Marques et al. 2019; Edelman and Mallet 2021). The out-
come of introgression in each direction is influenced by 
multiple factors including mate choice (Peters et al. 
2017), ecological selection, and hybrid incompatibility 
(for reviews, see Coyne and Orr 2004; Martin and Jiggins 
2017; Moran et al. 2021). Given that these factors typically 
differ between species and that selection on introgressed 
material acts independently in different recipient species, 
it is likely that gene flow is often asymmetrical, being 
more prevalent in one direction than in the other. 
Reliable inference of the direction of introgression, as well 
as its timing and rate, will advance our understanding of 
this important evolutionary process and its consequences, 

including the role of gene flow during speciation and the 
adaptive nature of introgressed alleles.

Two models of interspecific gene flow have been devel-
oped in the multispecies coalescent (MSC) framework, re-
presenting different modes of gene flow (Jiao et al. 2021; 
Hibbins and Hahn 2022). The MSC-with-introgression 
(MSC-I; Flouri et al. 2020) model, also known as multispe-
cies network coalescent (MSNC, Yu et al. 2012; Wen and 
Nakhleh 2018; Zhang et al. 2018), assumes that gene 
flow occurs at a particular time point in the past. The mag-
nitude of gene flow is measured by the introgression prob-
ability (φ), the proportion of immigrants in the recipient 
population at the time of introgression. The MSC-with- 
migration (MSC-M) model, also known as the isolation- 
with-migration (IM) model, assumes that gene flow occurs 
continuously at a certain rate every generation after spe-
cies divergence (Nielsen and Wakeley 2001; Hey et al. 
2018). The rate of gene flow is measured by the expected 
number of immigrants from populations A to B per gener-
ation, MAB = NBmAB, where NB is the (effective) population 
size of population B and mAB is the proportion of 
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immigrants in population B from A. In both models, the 
rates of gene flow (φ or M) are “effective” rates, reflecting 
combined effects of gene flow and negative or positive nat-
ural selection on introgressed alleles, influenced by the lo-
cal recombination rate (Petry 1983; Barton and Bengtsson 
1986).

Interspecific gene flow alters gene genealogies, causing 
fluctuations over the genome in the genealogical history 
of sequences sampled from extant species. Under both 
the MSC-M and MSC-I models, gene trees and coalescent 
times have probabilistic distributions specified by the mod-
el and parameters, including species divergence times, 
population sizes for extant and extinct species, and the 
rate of gene flow (see Yang 2014; Jiao et al. 2021 for reviews). 
Multilocus sequence alignments are informative about 
gene tree topologies and coalescent times, and thus about 
the direction of gene flow as well as its timing and strength. 
However, opposite directions of gene flow often create 
similar features in gene genealogies and in the sequence 
data. For example, gene flow in either direction reduces 
the average and minimum divergence between the hybrid-
izing species. In the special case of sampling one sequence 
per species per locus, the data cannot identify introgression 
direction between two sister species (say A and B), because 
the coalescent time (tab) between the two sequences at 
each locus (a, b) has the same distribution under the mod-
els with A→ B or B→ A introgression (Yang and Flouri 
2022, fig. 10; see also Discussion). If multiple sequences 
are sampled per species per locus, introgression direction 
becomes identifiable (Yang and Flouri 2022). Even so, infer-
ence of introgression direction may be expected to be a 
challenging task. This is particularly so for heuristic meth-
ods for inferring gene flow based on summary statistics. 
For example, the D statistic (Green et al. 2010; Durand 
et al. 2011) operates on species quartets and cannot iden-
tify the direction of gene flow. Although heuristic methods 
exist for inferring the direction of gene flow, based on esti-
mated local genomic divergences (Green et al. 2010, fig. 
S39) or genome-wide site-pattern counts DFOIL (Pease 
and Hahn 2015), they do not make efficient use of informa-
tion in the data, often require a specific species phylogeny 
and sampling setup, and cannot infer gene flow between 
sister lineages. For recent discussions of the strengths and 
weaknesses of heuristic versus likelihood methods, see 
Jiao et al. (2021), Hibbins and Hahn (2022), Huang et al. 
(2022), and Yang and Flouri (2022).

Here, we study the inference of introgression direction, 
focusing on the Bayesian method under the MSC-I model 
(Flouri et al. 2020). Suppose introgression occurs from spe-
cies A→ B but we analyze genomic data assuming B→ A 
introgression. We address the following questions. (a) Will 
we often detect introgression despite the assumed wrong 
direction? (b) How will the estimated introgression prob-
ability (φ̂B→A) compare with the true introgression prob-
ability (φA→B)? (c) How reliable will estimates of the 
time of introgression be, as well as other parameters 
such as species divergence times and population sizes? 
(d) Does the method behavior differ depending on 

whether gene flow is between sister lineages or between 
nonsister lineages, and whether gene flow is from a small 
population to a large one, or in the opposite direction? 
(e) How can we infer the direction of introgression 
(A→ B vs. B→ A)? (f) Are typical genomic data inform-
ative about the direction of gene flow? We focus on both 
Bayesian estimation of parameters, in particular the intro-
gression probability (Flouri et al. 2020), and on Bayesian 
tests of introgression (Ji et al. 2023).

We use a combination of mathematical analysis and 
computer simulation to characterize features of sequence 
data that are informative about the direction of gene flow. 
We first study the case of two species (A, B) by examining 
the distribution of coalescent times (taa, tab, tbb) under the 
MSC-I model. The theory allows us to compare and quan-
tify the amount of information in the data under different 
scenarios. Next, we explore the amount of information 
gained when a third species is added to branches of the 
species tree for two species and study the impact of intro-
gression direction when gene flow involves nonsister spe-
cies. Finally, we test these methods with genomic 
sequences from three species of Heliconius butterflies to 
verify the applicability of our results derived from the the-
oretical analysis and computer simulation and to demon-
strate how the framework can be applied to infer the 
direction of gene flow, as well as its timing and strength. 
Our results provide practical guidelines for inferring intro-
gression and its direction from genomic sequence data.

Results
Notation and Problem Setup
We use the MSC-I model of figure 1a with A→ B intro-
gression to introduce the notation and set up the problem. 
Species A and B diverged at time τR and hybridized later at 
time τX . The magnitude of introgression is measured by the 
introgression probability or admixture proportion φY , 
which is the proportion of immigrants in population B 
from A at the time of introgression. There are three types 
of parameters in the model: species divergence times or 
introgression times (τR, τX), population sizes for extant 
and extinct species (θA, θB, θX , θY , θR), and the introgres-
sion probability (φY). We measure divergence time (τ) by 
the expected number of mutations per site, with τ = Tμ, 
where T is the divergence time in generations and μ is 
the mutation rate per site per generation. As time T and 
rate μ are confounded in analysis of sequence data, only 
τ is estimable. Each branch on the species tree represents 
a species or population and is associated with a population 
size parameter, θ = 4Neμ, where Ne is the (effective) popu-
lation size of the species. A branch on the species tree is 
also referred to by its daughter node so that branch RX 
is also branch X, with population size θX . Both τ and θ 
are measured as expected number of mutations per site; 
that is, one time unit is the expected time to accumulate 
one mutation per site. At this time scale, coalescence oc-
curs between any two sequences in a population of size 
θ as a Poisson process with rate 2

θ.
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Each dataset consists of sequence alignments at L loci, 
with nA sequences from A and nB sequences from B at 
each locus, and with N sites in each sequence. Underlying 
the sequences at each locus is a gene tree with branch 
lengths (coalescent times), with its probability distribution 
specified by the MSC-I model (Yu et al. 2014). We assume 
no recombination among sites in the sequence of the 
same locus and free recombination between loci; a recent 
simulation suggests that inference under the MSC is robust 
to moderate levels of recombination (Zhu et al. 2022). 
Under these assumptions, gene trees and sequence align-
ments are independent among loci. The data are analyzed 
under three MSC-I models that differ in introgression 
direction: model I with A→ B introgression, model O 
with B→ A introgression, and model B with bidirectional 
introgression (A ⇆ B) (fig. 1a–c). The “inflow” (I) and “out-
flow” (O) labels are used here in anticipation of models in-
volving more than two species to be analyzed later. We use 
the multilocus sequence data to estimate parameters in the 
MSC-I model (Flouri et al. 2020). We also use the Bayesian 
test to detect the presence of gene flow, comparing an 
MSC-I model (fig. 1a–c) with the null model of MSC with 
no gene flow (fig. 1d) (Ji et al. 2023).

The Case of Two Species
Distributions of Coalescent Times and Identifiability of 
Introgression Direction
We study the distributions of coalescent times between 
two sequences sampled from the same population 
(taa, tbb) or from different populations (tab). These are ana-
lytically tractable and are given in Appendix. Note that 
likelihood methods under the MSC-I model average over 
the full distribution of the gene tree (G) and coalescent 
times (t) for sampled sequences at every locus. However, 
this distribution depends on the number of sequences 
sampled per species (nA, nB) and is too complex to analyze. 
Instead, we examine the pairwise coalescent times 

(taa, tab, tbb) as important summaries of the data, and 
use their distributions to demonstrate the identifiability 
of introgression direction, to characterize the information 
content in estimation of introgression probability, and to 
predict the behavior of Bayesian parameter estimation 
(Flouri et al. 2020) and Bayesian test of gene flow 
(Ji et al. 2023). Note that our theory for coalescent times 
applies to arbitrary sample configurations (nA, nB); for ex-
ample, if multiple sequences are sampled per species, tab 
will refer to any pair of sequences, one from A another 
from B.

First, we ask whether introgression direction can be in-
ferred using sequence data sampled from extant species. 
From equation (A2), we have fI(tab) = fO(tab) for all 
tab > 0, with the parameter mapping τ(O)

R = τ(I)
R , τ(O)

X = τ(I)
X , 

θ(O)
Y = θ(I)

X , θ(O)
R = θ(I)

R , and φX = φY , where the superscripts 
indicate the assumed model. Thus, tab alone cannot distin-
guish models I and O. In other words, in the case of two spe-
cies, introgression direction is unidentifiable using data of 
only one sequence per species per locus (Yang and Flouri 
2022, fig. 10; see also Discussion).

However, introgression direction is identifiable if mul-
tiple sequences are sampled from A and B. Information 
for distinguishing models I and O comes mostly from co-
alescent times between sequences sampled from the 
same species (taa, tbb). If gene flow is A→ B, the coales-
cent time for sequences from the donor species, taa, is 
not affected by the A→ B introgression. If different popu-
lations on the species tree have the same size 
(θA = θX = θR), taa will have a smooth exponential distri-
bution (e.g., fig. 2a, model I). Otherwise the distribution 
is discontinuous at time points τX and τR, because of popu-
lation size changes. In contrast, tbb has a mixture distribu-
tion, depending on the hybridizing species to which each 
of the two B sequences is traced back on the gene geneal-
ogy (i.e., either parental species RX or RY at node Y, fig. 1a). 
Thus, the two models make different predictions about 
coalescent times taa and tbb, and the direction of 

(a) (b) (c) (d)

FIG. 1. (a–c) MSC-I models for two species with different introgression directions showing model parameters: (a) A→ B introgression (I for 
“inflow”) with ΘI = (τR , τX , θA , θB , θX, θY , θR , φY), (b) B→ A introgression (O for “outflow”) with ΘO = (τR , τX, θA , θB , θX , θY , θR , φX), or (c) bi-
directional introgression (B) with ΘB = (τR , τX, θA , θB , θX , θY , θR , φX , φY). The magnitude of introgression is measured by the introgression prob-
ability: φY ≡ φA→B in a and c or φX ≡ φB→A in b and c. Note that in the MSC-I models studied in this paper, branches RX and XA represent 
distinct populations with different population size parameters (θX, θA), as are branches RY and YB. Horizontal arrows (XY and YX) represent 
introgression events rather than real populations and have no θ associated with them. The arrow points to introgression direction in the 
real world (forward in time). (d ) MSC model with no gene flow, with Θø = (τR , θA , θB , θR).
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introgression is identifiable when multiple sequences are 
sampled per species per locus.

If the introgression direction is specified (i.e., under 
the unidirectional introgression model), introgression 
probability (e.g., φY given model I) is identifiable using 
data of one sequence per species per locus. However, the 
bidirectional introgression model (model B) involves an 
unidentifiability of the label-switching type, with two un-
identifiable modes or “towers” in the posterior surface if 
multiple sequences are sampled per species (Yang and 
Flouri 2022), or four unidentifiable modes if a single se-
quence is sampled per species; see Discussion for details.

Asymptotic Analysis and Best-Fitting Parameter Values
We consider multilocus datasets generated under model I 
with A→ B introgression (fig. 1a) and analyzed under 
both model I and the misspecified model O with B→ A 
introgression. We used four sets of parameter values 
in model I (fig. 1a) in the numerical calculation, referred 
to as cases a–d (fig. 2, supplementary table S1, 
Supplementary Material online). When the amount of 
data (the number of loci) L→∞, the maximum likeli-
hood estimates (MLEs) under model I (Θ̂I) will converge 
to the true parameter values, that is, Θ̂I → ΘI. Under 
model O, the MLEs Θ̂O will converge to the best-fitting 

or pseudo-true parameter values (Θ∗O), which minimize 
the Kullback–Leibler (KL) divergence from the true model 
to the fitting model: Θ̂O → Θ∗O (e.g., Yang and Zhu 2018). 
With arbitrary data configurations, it does not seem pos-
sible to calculate Θ∗O analytically. Instead, we use as a sub-
stitute the averages of posterior means of parameters in BPP 

analysis of simulated large datasets (with L = 4, 000 loci, 
nA = nB = 4 sequences per species per locus and N = 500 
sites per sequence), shown in supplementary table S1, 
Supplementary Material online. At this data size, average 
estimates under the true model I are extremely close to 
the true values, that is, E(Θ̂I) ≈ ΘI (supplementary table 
S1, Supplementary Material online), suggesting that the 
average estimate under model O may also be very close 
to the infinite-data limits, E(Θ̂O) ≈ Θ∗O. We aim to under-
stand the estimates Θ∗O by comparing the true distribu-
tions of coalescent times under model I, fI(taa), fI(tab), 
and fI(tbb) (eqs. A1–A3), with fitted distributions 
fO(taa), fO(tab), and fO(tbb), calculated using Θ∗O. In other 
words, we treat the true distributions of coalescent times 
under model I as data, and attempt to derive parameter 
estimates under the fitting model O to achieve the best fit.

Our theory is summarized in table 1. Note that para-
meters τR, τX , θA, θB, θR in model O are typically well esti-
mated. Introgression time τ(O)

X is largely determined by the 

(a)

(b)

(c)

(d)

FIG. 2. The true (solid line for 
model I) and fitted (dashed 
line for model O) distributions 
of coalescent times 
(taa , tab , tbb) for four sets of 
parameter values (cases a–d; 
panels [a]-[d]). Data are gener-
ated under model I and ana-
lyzed under model O of figure 
1a and b. Densities for model 
I are calculated using the true 
parameter values (ΘI in 
supplementary table S1, 
Supplementary Material on-
line); see equations (A1)–(A3), 
while those for model O are 
calculated using the best- 
fitting parameter values, ap-
proximated by average esti-
mates in BPP analysis of 
simulated large datasets (with 
L = 4, 000 loci, n = 4 sequences 
per species per locus and N = 
500 sites in the sequence) (Θ∗O 
in supplementary table S1, 
Supplementary Material on-
line). Vertical dotted lines indi-
cate discontinuity points at τX 
and τR .
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smallest coalescent time between sequences from the two 
species (tab), while the discontinuity in the distributions of 
taa, tab, tbb should be informative about τ(O)

R . Thus, we ex-
pect estimates of those parameters to be close to the true 
values despite the model misspecification: τ∗(O)

R ≈ τ(I)
R and 

τ∗(O)
X ≈ τ(I)

X . Population sizes θ(O)
A and θ(O)

B for the extant 
species should be well estimated from multiple samples 
from the same species, while θ(O)

R should be well estimated 
based on coalescent events in the root population. Below 
we focus on parameters θ(O)

X , θ(O)
Y , and φX , which are hard-

er to estimate.
First, by considering the distributions of taa, we predict 

θ∗(O)
X < θ(I)

X (table 1). In the true model I, both A sequences 
enter X and may coalesce during (τX , τR). In the fitting mod-
el O, the two A sequences may be separated into different 
populations due to introgression (one in X and the other in 
Y), so they may not coalesce in (τX , τR) as often. Thus, having 
θ∗(O)

X < θ(I)
X will increase the coalescent rate in X and help to 

fit model O to f(taa) over (τX , τR).
Next from tbb, we predict θ∗(O)

Y > θ(I)
Y (table 1). In the 

true model, A→ B introgression reduces the chance of 
coalescence between sequences from B during (τX , τR). In 
the fitting model, both B sequences enter Y, leading to a 
higher chance of coalescence during (τX , τR). Thus, 
having θ∗(O)

Y > θ(I)
Y helps to reduce the chance of coales-

cence in (τX , τR).
Finally, by matching the amount of coalescence be-

tween sequences a and b over the time interval (τX , τR), 
or by matching the probability densities fI(tab) and 
fO(tab) over τX < tab < τR, we have approximately

φ∗X(1 − e−2Δτ/θ∗(O)
Y ) ≈ φY(1 − e−2Δτ/θ(I)

X ), (1) 

where Δτ = τR − τX is assumed to be the same under mod-
els I and O based on the arguments above. Equation (1) 
predicts that more gene flow will be inferred under model 
O (φ∗X > φY) when θ∗(O)

Y > θ(I)
X ; if the coalescent rate be-

tween sequences a and b during (τX , τR) is lower in the fit-
ting model than in the true model, a higher φ∗X than the 
true φY will increase the chance of such coalescence and 
achieve a better fit to fI(tab). Similarly, less gene flow is ex-
pected (with φ∗X < φY) if θ∗(O)

Y < θ(I)
X .

Equation (1) predicts φ∗X to be 0.31, 0.35, 0.44, and 0.22 
for cases a–d, respectively, compared with the inferred va-
lues φ∗X of 0.27, 0.30, 0.98, and 0.17 (supplementary table S1, 
Supplementary Material online). The approximation is rea-
sonably good except for case c, where φ∗X was very high. We 
discuss these cases further when describing simulation re-
sults below.

Simulation Results Under the True Models I and B: 
Parameter Estimates Have Drastically Different Precisions
To verify and extend our theoretical analysis, we simulated 
datasets under model I (fig. 1a) and analyzed them under 
models I, O, and B (fig. 1a–c) using four sets of parameter 
values. Each dataset consists of L = 250, 1,000 or 4,000 
loci, with nA = nB = 4 sequences sampled per species per lo-
cus and N = 500 sites in the sequence. Posterior means and 
95% highest-probability-density (HPD) credibility intervals 

Table 1. Features of the Data that are Informative About Parameters in the Wrong Model O When Data are Generated Under Model I with Parameter 
Θ(I) (fig. 1a).

Parameter Estimates in Model O Information in Data Notes

(a) Introgression time:  
τ̂(O)

X ≈ τ(I)
X

min {tab} In the fitting model O, tab > τ(O)
X . Thus, introgression time τ(O)

X is 
determined by the minimum between-species coalescent 
time (tab)

(b) Species divergence time:  
τ̂(O)

R ≈ τ(I)
R

Discontinuities in f(taa), 
f(tab), and f(tbb)

Species divergence time is informed by the discontinuities in the 
coalescent times (taa , tab , tbb)

(c) Population sizes for extant species:  
θ̂(O)

A ≈ θ(I)
A , θ̂(O)

B ≈ θ(I)
B

f(taa) and f(tbb) over 
(0, τX)

Population size for an extant species is easily estimated by the 
heterozygosity in the species

(d) Population sizes for ancestral species  
not involved in introgression:  
θ̂(O)

R ≈ θ(I)
R

f(taa), f(tab), and f(tbb) 
over (τX , ∞)

Population sizes for ancestral species not involved in 
introgression are determined by coalescent times in the 
ancestral species

(e) Ancestral population size:  
θ̂(O)

X < θ(I)
X

f(taa) over (τX , τR) The fitting model O predicts a deficit of coalescence of A 
sequences (taa) over (τX , τR) due to introgression but there is 
no such deficit in the true model I or in the data. Having a 
larger coalescent rate (or smaller population size θ(O)

X ) in 
model O thus helps to improve the model fit to coalescence of 
A sequences in the data

(f) Ancestral population size:  
θ̂(O)

Y > θ(I)
Y

f(tbb) over (τX , τR) There is a deficit of coalescence of B sequences (tbb) over (τX , τR) 
in the true model I or in the data. Having a smaller coalescent 
rate (or larger population size θ(O)

Y ) in model O thus helps 
with the model fit

(g) Introgression probability:  
φ̂X(1 − e−2Δτ/θ̂(O)

Y ) ≈ φY(1 − e−2Δτ/θ(I)
X ) (eq. 1):  

φ̂X > φY if θ̂(O)
Y > θ(I)

X ,  
φ̂X < φY if θ̂(O)

Y < θ(I)
X .

f(tab) over (τX , τR) Introgression probability is informed by the amount of 
between-species coalescence (tab) over (τX , τR). Equation (1) 
means the same amount of coalescence in species Y in the 
fitting model as in species X in the true model

NOTE.—The introgression model assumes different population sizes (θs) for species on the tree (fig. 1); the behavior of the method may differ if all populations are assumed to 
have the same size. Also the reasoning here is based on coalescent times and ignores sampling errors in gene trees and estimated coalescent times in the analysis of sequence 
data.
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(CIs) are plotted in figure 3 (see also supplementary table S1, 
Supplementary Material online for L = 4, 000).

Model I is the true model, so that the performance un-
der this model constitutes the best-case scenario. Indeed 
all parameters are well estimated, with the posterior 
means approaching true values and the CI width ap-
proaching 0 when the amount of data L→∞ (fig. 3
and supplementary table S1, Supplementary Material on-
line, cases a-d, model I). However, the amount of informa-
tion in the data varies hugely for different parameters, as 
reflected in the relative error, measured, for example, by 
the CI width divided by the true value. Population sizes 
for extant species (θA, θB) are much better estimated 
than those for ancestral species (θX , θY). Divergence times 
(τR, τX) are well estimated as well. Introgression probability 
(φY) has substantial uncertainties with wide CIs but with 
L = 4, 000 loci in the data, the estimates are fairly precise, 
suggesting that thousands of loci are necessary to estimate 
introgression probability precisely. The results parallel 
those found in a previous simulation examining the impact 
of data size (such as the number of loci, the number se-
quences per species, and the number of sites) on inference 
under the MSC-I model (Huang et al. 2020).

Model B allows bidirectional introgression and thus is a 
correct model, although it is overparametrized with an ex-
tra parameter φX . As the amount of data increases, φ̂Y 
should converge to the true value while φ̂X to 
0. Estimates of other parameters are very similar to those 
under model I, and the CI widths under models I and B 
are also very similar. In particular, φY is estimated with 
similar precision in the two models. In large datasets of L = 
4, 000 loci, the average CI width is 0.07, 0.12, 0.08, and 0.16 
for cases a–d under model I, compared with 0.07, 0.12, 
0.09, 0.17 under model B. Even in small or intermediate da-
tasets with L = 250 or 1,000 loci, the CIs for φY are similar 
between the two models. Thus, overparametrization in-
curred little cost to statistical performance of model 
B. This might seem surprising, because, given the difficulty 
of inferring introgression direction, one might expect the 
assumed incorrect B→ A introgression in model B would 
interfere with estimation of φY in the correct direction, so 
that φ̂Y would have a much larger variance under model B 
than under model I. However, information concerning φY 
is largely determined by 1) the number of sequences reach-
ing the hybridization node Y and 2) the ease with which 
one can tell the parental path taken by each B sequence 
at Y (see the next subsection for detailed discussions). 
Thus, there may be little difference in information content 
about φY between models I and B. Computationally, model 
B is much more expensive than model I due to sampling an 
extra parameter in the Markov chain Monte Carlo 
(MCMC) algorithm and to MCMC mixing issues (Yang 
and Flouri 2022).

Information Content for Estimating Introgression Probability 
Under the True Model
Here, we consider estimation of introgression probability 
φY in model I in the four cases (fig. 3, cases a–d, model I). 

We characterize the amount of information concerning 
φY when the correct model is assumed, and explain why 
φY was much better estimated in case a (same θ tall 
tree) than in case b (same θ short tree), and in case c (small 
to large) than in case d (large to small) (fig. 3; 
supplementary table S1, Supplementary Material online: 
cases a–d, model I), even though the data size is the 
same and the true φY is the same (0.2) in all cases. The the-
ory is also useful for understanding later simulation results 
for larger species trees.

Consider tracing the genealogical history of sequences at 
a locus backwards in time. When sequences from B reach 
the hybridization node Y (fig. 1a), there is a binomial sam-
pling process, with each sequence taking the horizontal 
(introgression) parental path (into RX) with probability φY 
and the vertical parental path (into RY) with 1 − φY . 
However, there are two differences from a typical binomial 
sampling. First, the number of B sequences reaching node Y 
is a random variable. Second, the outcome of the sampling 
process (i.e., the parental path taken by the sequence) is not 
observed but instead reflected in the gene tree and coales-
cent times (and thus in mutations in the sequences). Using a 
coin-tossing analogy, the number of coin tosses is random, 
and the outcome of the toss is visible only probabilistically. If 
a B sequence coalesces with an A sequence during the time 
interval (τX , τR), it will be clear that the B sequence has taken 
the introgression parental path.

Thus, the amount of information in the data concerning 
φY is determined by two factors: 1) the number of B se-
quences reaching Y and 2) the ease with which one can 
tell the parental path taken by each B sequence at Y. 
The number of B sequences reaching Y at the locus is given 
as nB − cB, where nB is the number of B sequences sampled 
at the locus and cB is the number of coalescent events 
among them in B before reaching Y. The distribution of 
nB − cB can be easily calculated as a function of nB and 
2τY/θB, the length of branch B measured in coalescent 
units (Tavaré 1984: eqs. 6.1 and 6.2; Wakeley 2009: eqs. 
3.39 and 3.41). More B sequences will reach Y the larger 
nB is and the smaller 2τY/θB is. As a result, it will be harder 
to estimate φY if introgression is older (larger τY).

The second factor—the ease with which one can tell the 
parental path taken by each B sequence at Y—concerns 
the probability that two sequences entering X coalesce 
in X before reaching R; there is more information about 
φY the longer the internal branch RX is or the smaller 
the population size θX is (fig. 1a). This may be seen by con-
sidering the special case where the data consist of one se-
quence per species per locus and where the true 
coalescent time (tab) is available at each locus. Then the in-
formation content for estimating φY may be measured by 
the Fisher information, given by

II,tab (φY) ≈ E −
∂2

∂φ2
Y

log fI(tab)
􏼔 􏼕

=
PX

φY(1 − φYPX)
, (2) 

where the expectation is with respect to tab (eq. A3), and 
where PX = 1 − e−(2/θX)(τR−τX) is the probability that two 
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sequences (a, b) entering population X coalesce in X. The 
asymptotic variance of the estimate (φ̂Y) is

V(φ̂Y) ≈
1
IL

=
φY(1 − φYPX)

LPX
≥

φY(1 − φY)
L

, (3) 

with equality holding if PX = 1. There is thus more 

information for estimating φY the closer PX is to 1, or in 
other words if the branch length in coalescent units, 
(2/θX)(τR − τX), is greater. Increasing the number of se-
quences reaching Y per locus (nB − cB) may be expected 
to have a similar effect to increasing the number of loci 
(L) as both increases the binomial sample size. Equation 

(a) (b) (c) (d)

FIG. 3. The 95% HPD CIs for parameters in 100 replicate datasets (each of L loci) simulated under model I and analyzed under models I, O, and B of 
figure 1a–c. Four sets of parameter values are used (cases a–d; panels [a]-[d]) (supplementary table S1, Supplementary Material online). 
Parameters θs and τs are multiplied by 103. Black solid lines indicate the true values. Dotted lines for φX in model O indicate the true value 
of φY in model I.
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(3) thus suggests that increasing PX is more effective in re-
ducing V(φ̂Y) than increasing the number of loci (L) by the 
same factor, which is in turn more effective than increasing 
the number of sampled sequences per locus (nB) by the 
same factor. For example, doubling nB − cB reduces the 
variance for φ̂Y by a half, but doubling PX reduces the vari-
ance by more than a half.

In our simulation (fig. 3, model I), the introgression 
probability φY was better estimated in case a (same θ 
tall tree) than in case b (same θ short tree). At 
L = 4, 000, the 95% HPD CI width was 0.07 for case a, 
and 0.12 for case b. Consider the two factors. First, in 
case a (tall tree), branch YB is longer, with length 2τY/θB 
in coalescent units, with a smaller number of sequences 
reaching Y than in case b (short tree). Indeed, given nB = 
4 sequences from B, the probability that nB − cB= 1, 2, 3, 
and 4 sequences remain by time τY is 0.388, 0.515, 0.095, 
and 0.002, respectively in case a, with an average of 1.71 
(supplementary fig. S1, Supplementary Material online). 
For the short tree of case b, the corresponding probabil-
ities are 0.122, 0.481, 0.347, and 0.050, with average 2.32. 
The average number of sequences reaching Y differ by a 
factor 1.36. Second, in case a (tall tree), any B sequence 
reaching Y and taking the left parental path is more likely 
to coalesce with A sequences in X than in case b (short 
tree), with PX = 1 − e−1 = 0.632 in case a and PX = 1 − 
e−0.5 = 0.393 in case b, differing by a factor of 1.61. As in-
creasing PX is more effective than increasing nB − cB (eq. 3), 
φY was more precisely estimated (with smaller variance) 
in case a than in b (fig. 3; supplementary table S1, 
Supplementary Material online).

The difference between case c (small to large) and case 
d (large to small) was even greater, with φY much better 
estimated in c (fig. 3). At L = 4, 000, the CI width was 
0.08 for case c and 0.16 for case d (supplementary table 
S1, Supplementary Material online). In case c, more B se-
quences reach Y because of the large θB than in case d. 
Furthermore, B sequences reaching Y into X have a high 
chance of coalescence with other sequences in population 
X. Both effects make it easier to estimate φY in case c than 
in case d (eq. 3). It is thus easier to estimate φY if introgres-
sion is from a small population to a large one than in the 
opposite direction (supplementary fig. S2, Supplementary 
Material online). Note that φY is the proportion of immi-
grants in the recipient population, so that with the same 
φY , there are many more migrants in case c than in d.

Parameter Estimation Under Misspecified Introgression 
Direction
When model O was used to analyze data simulated under 
model I (fig. 1), the introgression direction is misspecified. 
As discussed above (table 1), species divergence and intro-
gression times (τR, τX) are well estimated despite misspeci-
fication, as are population sizes for extant species and for 
the root (θA, θB, θR). Indeed, those parameters are esti-
mated with the same precision under models O and I 
(fig. 3).

Here, we focus on parameters φX , θX , θY (fig. 3, model O). 
Our arguments from the asymptotic analysis (table 1) also 
apply, although in simulations the results are affected by 
random sampling errors due to finite data size.

In cases a and b, all populations have the same size. 
Biases in parameter estimates under model O are well pre-
dicted by the theory (table 1): based on coalescent times 
taa, tbb, and tab, we expect E(θ̂(O)

X ) < θ(I)
X , E(θ̂(O)

Y ) > θ(I)
Y , 

and E(φ̂X) > φY .
In case c (small to large), introgression is from a small 

population to a large one. As the coalescent rate for se-
quences a and b over (τX , τR) is much slower in the fitting 
model than in the true model, consideration of tab predicts 
a large φ̂X or a small θ̂(O)

Y (table 1). Consideration of tbb 
suggests θ̂(O)

Y > θ(I)
Y will compensate for reduced 

coalescence between B sequences caused by the A→ B 
introgression (table 1). Thus, predictions about θ̂(O)

Y based 
on tab and tbb are somewhat conflicting. In the simulation, 
θ̂(O)

Y is close to θ(I)
Y , much larger than θ(I)

X . The estimate is 
φ̂X ≈ 100% (supplementary table S1, Supplementary 
Material online). The extreme estimate causes small biases 
in τR and τX and poor estimates of θ̂(O)

X (fig. 3).
Case d (large to small) assumes introgression from a 

large population to a small one (fig. 1a). We expect θ̂(O)
X < 

θ(I)
X based on taa, and θ̂(O)

Y > θ(I)
Y based on tbb (table 1). 

Moreover, the larger source population in the true model 
(θ(I)

X ) means tab is less common in (τX , τR), with most co-
alescence occurring in the common ancestor R. Thus, 
based on tab we predict a larger θ̂(O)

Y or a smaller φ̂X to re-
duce the amount of coalescence in (τX , τR) in the fitting 
model (eq. 1). Thus, considerations of both tbb and tab sug-
gest θ̂(O)

Y > θ(I)
Y . Depending on whether θ̂(O)

Y is smaller or 
greater than θ(I)

X , the introgression probability φ̂X may be 
greater or smaller than the true φY , according to equation 
(1). In our setting, θ̂(O)

Y = 0.0107, slightly greater than 
θ(I)

X = 0.01, and φ̂X = 0.17, slightly smaller than φY = 0.2 
(supplementary table S1, Supplementary Material online).

Bayesian Test of Introgression: Power and False Positive Rate
We applied the Bayesian test of gene flow (Ji et al. 2023) to 
the data analyzed in figure 3. We are interested in the 
power of the test under the correct model I. Also we ask 
how often the test is significant if it is conducted under 
model O, with introgression direction misspecified.

Note that the behavior of the test or the asymptotic be-
havior of posterior probabilities of the compared models is 
determined by the parameter values in the limit of L→∞ 
(Yang and Zhu 2018). If data are simulated under model I 
(with φY > 0) and analyzed under model I, the posterior 
probability for the true model I should approach 1, the 
Bayes factor in support of model I against model Ø of 
no gene flow (fig. 1d) BIø →∞, and the power of the 
test should approach 100%, when the data size L→ ∞ 
(Yang and Zhu 2018). If the data are simulated under mod-
el I and analyzed under model B, the power for testing φY 
(which has the true value φY > 0) should approach 100%, 
and the false positive rate for testing φX (which has the 
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true value φX = 0) should approach 0, when the data size 
L→ ∞.

If the data are generated under model I and analyzed 
under model O, both the null and alternative models are 
incorrect. According to our analysis φ∗X > 0, and model 
O is a “less wrong” model than model Ø, judged by 
the KL divergence (Yang and Zhu 2018). Thus, 
when L→ ∞, BOø → ∞, and the probability of rejecting 
Hø : φX = 0 will approach 100%. Here, the biological interpret-
ation of test results is somewhat ambiguous. If one empha-
sizes the fact that model O allows gene flow while model 
Ø does not, detecting gene flow may be considered a correct 
result. However, if one emphasizes misspecification of intro-
gression direction in model O, accepting model O may be 
considered a rather severe false positive error. In this paper, 
we use the second interpretation.

The MCMC samples generated in BPP runs of figure 3
were processed to calculate the Bayes factor B10 in favor 
of the introgression model (H1, fig. 1a–c) against the null 
MSC model of no gene flow (H0, fig. 1d) via the Savage– 
Dickey density ratio (see Materials and Methods). The re-
sults are summarized in supplementary figure S2, 
Supplementary Material online, where a 1% significance le-
vel was used (i.e., the test is significant if B10 > 100). When 
the data were simulated and analyzed under model I and 
with L = 250 loci in the data, power was between 60–100% 
(supplementary fig. S2, Supplementary Material online, 
cases a-d, model I). In such small datasets, φY was poorly 
estimated with extremely wide CIs (fig. 3, cases a–d, model 
I). At L = 1, 000 loci, power was 100% in all four cases. It is 
thus easier to detect gene flow than to estimate its magni-
tude reliably. As with our findings on estimation of φY , it is 
easier to detect gene flow in case a (tall tree) than in case b 
(short tree), and in case c (small → large) than in case d 
(large → small) (supplementary fig. S2, Supplementary 
Material online).

When the data are analyzed under model O, with the 
introgression direction misspecified, the false positive error 
is comparable to the power in the analysis under true 
model I (supplementary fig. S2, Supplementary Material
online, cases a–d, model O). When the data are analyzed 
under model B, power to detect the A→ B introgression 
is slightly lower than under model I, also reaching 100% at 
L = 1, 000, while the false positive rate for detecting the 
nonexistent B→ A introgression is low, below the nomin-
al 1%.

Additional Information that Results from Including a 
Third Species
Given two species (A, B) with introgression from A→ B at 
the rate of φ (fig. 1a), we consider the information gain for 
estimating φ from including a third species (C). There are 
five branches on the two-species tree onto which C can be 
attached (fig. 4a–e): (a) the root population, (b,c) the 
source and target populations before gene flow, and (d, 
e) the source and target populations after gene flow. 
Case c is one of “inflow,” with gene flow from the outgroup 

species (A) into one of the ingroup species (B), while b re-
presents “outflow,” with gene flow from an ingroup species 
(A) into the outgroup (B). Note that in all cases the correct 
MSC-I model is used in the analysis, so that the estimate 
(posterior mean) of φ will converge to the true value 
(which is 0.2). However, the information content may dif-
fer among the five cases. As in the case of two species, the 
amount of information concerning φ is determined by two 
factors: 1) the number of sequences reaching the hybrid-
ization node and 2) the ease with which one can tell the 
parental path taken by each sequence at the hybridization 
node. When introgression is between nonsister species, in-
formation concerning the parental path taken by each se-
quence may be in the change of gene-tree topology rather 
than in the change of between-species coalescent time.

We assumed the same population size θ1 = 0.01 for all 
populations, but examined the impact of different popula-
tion sizes in cases b and c. We simulated 100 replicate da-
tesets in each case. The posterior means, the posterior 
standard deviation (SD), and the width of the HPD CI 
for φ are summarized in figure 4f–h. The 95% CIs for other 
parameters are shown in supplementary figure S3, 
Supplementary Material online.

Equal Population Sizes on the Species Tree
If all populations on the species tree have the same size (θ), 
we expect the amount of information for estimating φ to 
be in the order a ≺ d ≺ (b, e) ≺ c, with the order of b and e 
undecided (fig. 4f–h).

First, a ≺ d. Cases a and d are the least informative. 
Adding an outgroup species C in case a adds little informa-
tion about φ. In d, the C sequences may reach node X and 
coalesce with a B sequence in RX, providing information 
about whether sequences from B take the introgression 
parental path at node Y. Thus, we expect more informa-
tion in the data in d than in a.

Next, d ≺ b. The number of B sequences reaching node 
Y is the same in the two cases, so the only difference is in 
the difficulty of inferring the parental path taken by B se-
quences at Y. In case b, coalescence of a B sequence with an 
A sequence causes a change to gene tree topology. In case 
d, introgression does not cause such topological change to 
the gene tree. The information content may thus be higher 
in b than in d.

Next, d ≺ e. In case e, sequences from both B and C may 
reach the hybridization node Y while in d only sequences 
from B may reach Y, so that the sample size at node Y is 
larger (less than twice as large) in e than in d. In d, more 
sequences enter population RX, increasing slightly the 
probability of coalescence for any B sequence that takes 
the introgression parental path at Y, but this effect may 
be less important than that of increased sample size in e.

Next, b ≺ c (i.e., it is easier to infer inflow than outflow). 
In both cases, the number of B sequences reaching node Y 
or the sample size at Y is the same. However, the two cases 
differ in the ease with which one can tell the parental path 
taken by each B sequence at Y. In c, coalescence of a B se-
quence with an A sequence over (τX , τR) causes a change to 
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gene tree topology. In case b, such topology change occurs 
only if the coalescence occurs in the shorter time interval 
(τX , τS), and the resulting gene tree is harder to infer be-
cause of the shorter internal branch. It is thus harder to re-
solve the parental path taken by each B sequence at Y in b 
than in c, and the data are less informative about φ in b. It 
is harder to infer outflow than inflow.

Finally, e ≺ c. In case c, introgression leads to changes in 
gene tree topology whereas in e, more sequences reach Y 
with a larger sample size. The relative effects depend on 
the parameter values. In the simulation here, the increased 
sample size was less effective than the gene tree topology 
change (fig. 4g and h, case c same-θ vs. case e). Note that in 
e the data are more informative about φ the closer τS is to 

(a) (f)

(g)

(h)

(b) (c)

(b) (c)

(b) (c)

(d) (e)

FIG. 4. (a–e) MSC-I models for three species (A, B, C), with introgression from A to B, obtained by adding a third species C onto the two-species 
tree of figure 1a at five possible locations: (a) root population, (b,c) source and target populations before gene flow, and (d,e) source and target 
populations after gene flow. ( f ) Box plots of the posterior means for φ among 100 replicate datasets simulated under each of the five cases (a–e). 
The dashed line indicates the true value (φ = 0.2). (g) Box plots of the posterior SD for φ. (h) 95% HPD CIs for φ, with the CI coverage above the CI 
bars. See supplementary figure S3, Supplementary Material online for CIs for other parameters.
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τY , and in both c and e the data are more informative the 
smaller τX is.

Different Population Sizes on the Species Tree
For cases b (outflow) and c (inflow), we also consider 
different population sizes. The results are shown in figure 
4f–h.

First, in case b, φ is most poorly estimated in the lar-
ge→small setting, much better estimated in the same-θ 
(or large→large) setting, and best in the small→large set-
ting. This can be explained easily by the theory we devel-
oped in analysis of the two species case: a large recipient 
population means many sequences reaching the hybridiza-
tion node Y and a large sample size, while a small donor 
species (θX) means fast coalescence and easy determin-
ation of the parental path taken at node Y. For example, 
the probability that more than one B sequence reaches 
Y is 0.613 in case b (same θ or small→large), and 0.012 
in case b (large→small), with a large difference in the sam-
ple size.

Similarly in case c (inflow), φ is more poorly estimated in 
the large→small and same-θ (large→large) settings, and 
was better in the small→large setting. The differences 
among the three settings are much smaller than in case b.

Although case b outflow is less informative about φ 
than c inflow in the case of same-θ, the order is reversed 
in the small→large setting (fig. 4). The same number of 
B sequences reaches node Y in both cases, so the difference 
must be due to the different levels of difficulty by which 
one can tell the parental paths taken by B sequences at 
node Y. In case b, B sequences taking the introgression par-
ental path go through the small population SX and may 
coalesce at a high rate with sequences from A (which 
lead to changes to the gene tree topology informative 
about introgression), and with sequences from both A 
and C in population RS. In case c, B sequences taking the 
vertical parental path may coalesce in population RS 
with C sequences, but given that both populations SY 
and RS are large, this effect may be expected to be minor. 
While multiple factors can have opposing effects on the 
relative information content concerning φ in cases b ver-
sus c small→large, the data are more informative in case 
b than in c overall.

Simulation Results in the Case of Four Species
We conducted simulations under the MSC-I models of fig-
ure 5 for four species on the species tree ((A, (B, C)), D), 
with introgression between nonsister species A and B in 
different directions: inflow (I), outflow (O), and bidirec-
tional introgression (B). Either the same population size 
was assumed for all species on the species tree or different 
population sizes were assumed. The simulated data were 
analyzed under the same three models (I, O, B), resulting 
in nine combinations. Posterior means and 95% HPD CIs 
are summarized in supplementary figure S4, 
Supplementary Material online for the case of equal popu-
lation sizes and in supplementary figure S5, Supplementary 

Material online for different population sizes. The results 
for the large datasets of L = 4, 000 are summarized in 
supplementary tables S2 and S3, Supplementary Material
online. We also applied the Bayesian test of introgression 
(Ji et al. 2023) to the simulated data. The results are sum-
marized in supplementary figures S6 and S7, 
Supplementary Material online.

Overall, the results parallel those for the cases of two 
and three species discussed above. See the 
Supplementary Material online text “Simulation results 
in the case of four species” for detailed descriptions.

Analysis of Heliconius Genomic Datasets to Infer the 
Direction of Introgression
Overview
To assess the applicability of our results from the asymp-
totic analysis and computer simulation to empirical data-
sets and the statistical and computational feasibility of 
inferring the direction of gene flow using genomic se-
quence data, we analyzed data from Heliconius cydno 
(C), H. melpomene (M), and H. hecale (H) (fig. 6). Gene 
flow is known to occur between H. cydno and H. melpom-
ene, whereas H. hecale is more distantly related, and is here 
treated as an outgroup, and is assumed not to have had 
introgression with the other two (Martin et al. 2013). 
We analyzed coding and noncoding loci on each chromo-
some as separate datasets (see supplementary table S4, 
Supplementary Material online for the numbers of loci). 
We fitted four models: (Ø) MSC with no gene flow, (I) 
MSC-I with C→ M introgression, (O) MSC-I with M→ C 
introgression, and (B) MSC-I with C ⇆ M bidirectional 
introgression (see fig. 1). We ran the MCMC algorithm in 
BPP to generate the posterior estimates of parameters in 
each model (Flouri et al. 2020) and conducted the 
Bayesian test of introgression (Ji et al. 2023). We describe 
the results for the coding and noncoding datasets from 
chromosome 1 (tables 2 and 3) in detail before discussing 
results for the other chromosomes.

Bayesian Test of Introgression for Chromosome 1
Results of the Bayesian test are summarized in table 3. To 
compare the four different models, we calculated Bayes 
factors using two approaches: thermodynamic integration 
with Gaussian quadrature (Lartillot and Philippe 2006; 
Rannala and Yang 2017) and Savage–Dickey density ratio 
(Ji et al. 2023); see Materials and Methods. The calculated 
values of the Bayes factor for the same test varied depend-
ing on the number of quadrature points in the 
thermodynamic-integration approach and on the thresh-
old parameter in the Savage–Dickey density ratio, reflect-
ing the challenges of calculating the marginal likelihoods 
or Bayes factors reliably in large datasets (Rannala and 
Yang 2017). For example, log BIø for comparison of model 
I (C→ M introgression) against model Ø (no gene flow) 
was 1087.1 and 1082.5, respectively, when K = 32 and 64 
quadrature points were used in Gaussian quadrature. 
This difference is mainly due to the difficulty of calculating 
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the power posterior rather than the use of too few quad-
rature points (Rannala and Yang 2017). Nevertheless, both 
values are far greater than the cutoff of 4.6 (= log 100). 
Similarly the Savage–Dickey density ratio approach esti-
mates BIø to be ∞ at all three threshold values 
(ϵ = 1%, 0.1%, 0.01%). Both approaches thus strongly 
support model I with C→ M introgression and reject 
model Ø with no gene flow.

For both datasets from chromosome 1, the two ap-
proaches to Bayes factor calculation lead to the same 
conclusion, as do the three threshold values for the 
Savage–Dickey density ratio (ϵ = 1%, 0.1%, 0.01%). The 
null hypothesis φC→M = 0 is rejected in the I-Ø and B-O 
comparisons, with strong support for the C→ M intro-
gression, whether or not the M→ C introgression is ac-
commodated in the model.

The B–I comparison tests the null hypothesis φM→C = 0 
when both the null and alternative models accommodate 
the C→ M introgression. This test leads to strong support 
for the null model I, with BBI < 0.01. With C→ M introgres-
sion accommodated, the data strongly support the absence 
of M→ C introgression. Unlike Frequentist hypothesis test-
ing, which can never support the null hypothesis strongly, 
here the Bayesian test strongly favors the null model I, reject-
ing the more general alternative model B.m

However, the test of φM→C = 0 is significant in the O–Ø 
comparison when the C→ M introgression is not accom-
modated in the null and alternative models. This result mi-
mics our computer simulation, in which the test of gene 
flow is often significant if the assumed gene flow is in 
the wrong direction (supplementary figs. S2, S6, and S7, 
Supplementary Material online).

Models I and O are not nested, but the Bayes factor can 
be used to compare them. BIO suggests strong preference 

for model I (C→ M gene flow) over model O (M→ C 
gene flow).

Thus, all tests have led to the same conclusions. Both 
the coding and noncoding datasets strongly support the 
presence of H. cydno → H. melpomene introgression, 
and both strongly support the absence of the H. melpom-
ene → H. cydno introgression.

Parameter Estimation for Chromosome 1
Bayesian parameter estimates under the four models are 
summarized in table 2. Consistent with the results of the 
Bayesian test above, estimates of φ under model B suggest 
that gene flow is unidirectional. The estimates for the non-
coding data are φ̂C→M = 0.28 (95% HPD CI: 0.25–0.31) and 
φ̂M→C < 1% in the opposite direction, while for the coding 
data, they are φ̂C→M = 0.51 (95% HPD CI: 0.47–0.54) and 
φ̂M→C < 1% (table 2). The reasons for the higher rate 
(φ̂C→M) for the coding than the noncoding data are un-
known. One intriguing possibility is that introgression is 
mostly adaptive, driven by natural selection, and that cod-
ing loci are under stronger selection. The time of introgres-
sion is nearly zero, suggesting that gene flow may be 
ongoing. Estimates under model I are nearly identical to 
those under model B. In model O where only M→ C 
gene flow is allowed, the introgression probability is esti-
mated to be φ̂M→C = 0.17 (0.15,0.20) for the noncoding 
data, and 0.14 (0.08, 0.20) for the coding data. Those rates 
are substantial, consistent with the significant test results 
(BOø). Even if gene flow is unidirectional from C to M, as-
suming introgression in the opposite (and presumably 
wrong) direction leads to high estimates of the rate and 
significant test results. Those results again parallel our si-
mulations (supplementary figs. S2, S6, and S7, 
Supplementary Material online). The misspecified 

(a) (b) (c)

FIG. 5. (4s-trees) Three MSC-I models for four species differing in introgression direction assumed to simulate and analyze data: (a) inflow from A 
to B (I); (b) outflow from B to A (O); and (c) bidirectional introgression between A and B (B). Divergence times used are shown next to the nodes: 
τR = 4θ0, τS = 3θ0, τT = 2θ0, and τX = τY = 1.5θ0, with population sizes θ0 = 0.002 for the thin branches and θ1 = 0.01 for the thick branches. We 
also used a setting in which all populations on the species tree have the same size, with θ0 = θ1 = 0.01. Introgression probabilities are 
φX = φY = 0.2. Data simulated under models I, O, and B are analyzed under models I, O, and B, resulting in nine combinations, with parameter 
estimates summarized in supplementary figure S4, Supplementary Material online (for the same population size) and supplementary figure S5, 
Supplementary Material online (for different population sizes), while results of the Bayesian test are presented in supplementary figure S6, 
Supplementary Material online (for the same population size) and supplementary figure S7, Supplementary Material online (for different popu-
lation sizes).
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introgression direction in model O causes large estimates 
of θs and reduces τs. Those results mimic the behaviors 
of the misspecified model in the large→small case in 
our theoretical analysis and simulations (fig. 3, 
supplementary table S1d, Supplementary Material online 
large→small).

We note that the divergence time between H. cydno 
and H. melpomene (τs) is estimated to be much smaller, 
and θS is much larger under model Ø (no gene flow) 
than under model I or B. This is because ignoring gene 
flow when it occurs causes model Ø to misinterpret re-
duced between-species sequence divergence (due to intro-
gression) as more recent species divergence (Leaché et al. 
2014; Tiley et al. 2023).

Parameter Estimation for the Other Autosomes
We analyzed the coding and noncoding data from all chro-
mosomes in the same way, with parameter estimates un-
der the four models (Ø, I, O, B) summarized in 
supplementary figure S8, Supplementary Material online 
(see also supplementary table S5, Supplementary 
Material online), while Bayesian test results are in 
supplementary table S6, Supplementary Material online.

There is overall consistency among the autosomes 
(chromosomes 1–20), although estimates of some para-
meters from chromosomes 5, 10, 13, 15, and 19 appear 
as outliers. For example, estimates of θC and θM are un-
usually large for chromosomes 5, 15, 19, and 20. A likely ex-
planation is that the H. melpomene sample was partially 
inbred, with large variations in heterozygosity across chro-
mosomes. We discuss results for the autosomes first before 
dealing with chromosome 21 (the Z chromosome).

For the autosomes, there is overall consistency between 
the coding and noncoding data: divergence times τr and τs 
and population sizes θH and θr are larger for the noncoding 
than coding data, by a similar factor across chromosomes 
(supplementary fig. S8, Supplementary Material online). 
This can be explained by a reduced effective neutral muta-
tion rate for the coding data, due to purifying selection re-
moving nonsynonymous mutations.

Although model Ø (no gene flow) underestimated the 
divergence time between the two species involved in gene 
flow, τs (see above), all four models including model Ø pro-
duce nearly identical estimates of τr , indicating that the 
impact of introgression is local on the species tree, only af-
fecting estimates of parameters for nodes close to the 
introgression event. Estimates of τs under model O are 
consistently smaller than under models I and B, especially 
for the coding data, apparently related to the low esti-
mates of φM→C for the coding data under model 
O. Introgression time τc = τm is nearly zero for most chro-
mosomes under models I, O, and B, indicating that gene 
flow may be ongoing (Huang et al. 2022).

Estimates of introgression probability φC→M are very 
similar between models I and B, and they are consistently 
larger for coding than noncoding data. Estimates of φM→C 
under model B are consistently ≈ 0, suggesting the ab-
sence of M → C gene flow. Estimates of φM→C under mod-
el O, assuming introgression in the wrong direction, are 
always larger than estimates under model B, but vary 
among chromosomes. These results are consistent with 
our simulations (e.g., fig. 3, cases a–d), where estimates 
of introgression probability φX in model O vary, even 
though the true rate in the opposite direction is fixed 
(φY = 0.2), influenced by estimates of population sizes 
such as θX and θY .

Bayesian Test of Introgression for the Autosomes
Bayes factors calculated via the Savage–Dickey density ratio 
are presented in supplementary table S6, Supplementary 
Material online. The results are similar to those for chromo-
some 1, with overwhelming evidence for the C → M intro-
gression and no evidence for M → C introgression. For 
some datasets, BOø < 100, so that the test of gene flow 
(H0 : φM→C = 0) is not significant when introgression was as-
sumed to be in the wrong direction.

Unidentifiability Issues for the Haploid Sex Chromosome
Results for chromosome 21 (the Z chromosome) show very 
different patterns from the autosomes (supplementary fig. 
S8, Supplementary Material online), because we have only 
one haploid sequence per species in the data: both H. cydno 
and H. melpomene samples are hemizygous females, i.e., ZW. 
For such data, some parameters are unidentifiable in any of 
the four models, such as θC , θM, θH for the extant species. 
As discussed before, models I and O are unidentifiable, 
with the parameter mapping φ(I)

M = φ(O)
C and θ(I)

c = θ(O)
m . 

Thus, those parameters should have exactly the same poster-
ior. This is a case of cross-model unidentifiability.

FIG. 6. Species tree for Heliconius hecale (H), H. cydno (C), and H. mel-
pomene (M), with introgression between H. cydno and H. melpom-
ene, used to analyze genomic sequence data. Parameters in the 
MSC-I model include species divergence and introgression times 
(τr , τs , τc = τm), population sizes for branches on the species tree 
(e.g., θC for branch C and θc for branch sc), as well as introgression 
probabilities (φm ≡ φC→M and φc ≡ φM→C). The data support the 
C→ M introgression but not the M→ C introgression, with φm > 
0 and φc ≈ 0 (table 2; supplementary table S4 and fig. S8, 
Supplementary Material online).
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Model B applied to data from the Z chromosome (with 
one sequence per species per locus) poses an even more com-
plex unidentifiability issue. As discussed later in Discussion, 
there are four unidentifiable modes in the posterior surface 
(fig. 7b). Due to the symmetry of the posterior surface, the mar-
ginal posteriors for φM and φC are identical, as are the posteriors 
for φM and 1 − φM; as a result, the posterior means of φM and 
φC are both 1

2 (supplementary fig. S8, Supplementary Material
online). Similarly the posteriors for θc and θm are identical. 
Nevertheless, parameters not involved in the unidentifiability 
(such as τr , τc, θr) are well estimated. In theory, the four modes 
represent unidentifiability of the label-switching type, and a re-
labeling algorithm can be used to process the MCMC samples 
to map the parameter values onto one of the four modes, as 
in Yang and Flouri (2022). This is not pursued here. Instead, 
our objective here is to provide explanations for the results of 
supplementary figure S8, Supplementary Material online 
(chromosome 21, model B). We recommend that multiple sam-
ples per species per locus (in particular from the recipient spe-
cies) should be used to estimate introgression probabilities. 
Note that one diploid individual is equivalent to two haploid 
sequences.

Discussion
Inferring the Direction of Gene Flow Using Genomic 
Data
In this study, we have identified features of genomic se-
quence data that are informative about the direction of 

gene flow, and quantified the power of the Bayesian test 
of gene flow and the precision and biases in estimates of 
parameters under the MSC-I model such as the time and 
strength of introgression. Our asymptotic analysis, com-
puter simulation and real data analysis have produced 
highly consistent results. We have illustrated that one 
may gain much insight into the workings of likelihood- 
based inference under the MSC-I model by simply consid-
ering pairwise coalescent times (taa, tab, tbb) even though 
these are very simple summaries of the original data of 
multilocus sequence alignments (table 1). Knowledge of 
important features in the data that drive the estimation 
of model parameters, such as the introgression time and 
introgression probability, is very useful when we interpret 
results from analysis of real datasets.

Our analyses of both simulated and real data have de-
monstrated that typical genomic datasets may be very in-
formative about the direction, timing and strength of 
introgression, and that current Bayesian implementations 
of the MSC-I model can accommodate thousands of gen-
omic loci and are able to detect gene flow with nearly 
100% power and to estimate the introgression time and 
introgression probability with high precision and accuracy 
(fig. 3; supplementary figs. S2–S7, Supplementary Material
online; see also Thawornwattana et al. 2022; Ji et al. 2023).

One major result from our analysis is that if introgres-
sion is assumed to occur in the wrong direction, the 
Bayesian test of gene flow will often be significant, and 
Bayesian estimates of introgression rate will typically be 

Table 2. Posterior Means and 95% HPD CIs for Parameters in BPP Analyses of Two Datasets of Noncoding and Coding Loci on Chromosome 1 from 
Heliconius Butterflies (fig. 6) Under Four Models with Different Introgression Directions.

Model Ø (no gene flow) Model I (C→ M) Model O (M→ C) Model B (C ⇆ M)

Noncoding loci (L = 5,341 loci)
θH 0.0131 (0.0127, 0.0136) 0.0134 (0.0129, 0.0139) 0.0134 (0.0129, 0.0138) 0.0134 (0.0129, 0.0139)
θC 0.0407 (0.0329, 0.0496) 0.0500 (0.0274, 0.0759) 0.0231 (0.0070, 0.0415) 0.0499 (0.0267, 0.0759)
θM 0.0026 (0.0021, 0.0031) 0.0003 (0.0002, 0.0005) 0.0001 (0.0000, 0.0002) 0.0003 (0.0002, 0.0005)
θr 0.0124 (0.0119, 0.0128) 0.0123 (0.0118, 0.0127) 0.0122 (0.0118, 0.0127) 0.0123 (0.0118, 0.0127)
θs 0.0343 (0.0328, 0.0358) 0.0152 (0.0141, 0.0162) 0.0185 (0.0175, 0.0194) 0.0152 (0.0141, 0.0162)
θc n/a 0.0256 (0.0241, 0.0271) 0.0230 (0.0206, 0.0254) 0.0255 (0.0240, 0.0270)
θm n/a 0.0188 (0.0162, 0.0214) 0.0294 (0.0262, 0.0327) 0.0189 (0.0164, 0.0215)
τr 0.0116 (0.0114, 0.0117) 0.0118 (0.0116, 0.0120) 0.0118 (0.0116, 0.0120) 0.0118 (0.0116, 0.0120)
τs 0.0010 (0.0008, 0.0012) 0.0068 (0.0064, 0.0072) 0.0051 (0.0048, 0.0053) 0.0068 (0.0064, 0.0071)
τc = τm n/a 0.0001 (0.0001, 0.0002) 0.0000 (0.0000, 0.0001) 0.0001 (0.0001, 0.0002)
φc n/a n/a 0.1744 (0.1458, 0.2038) 0.0019 (0.0000, 0.0057)
φm n/a 0.2830 (0.2565, 0.3090) n/a 0.2802 (0.2530, 0.3067)
Coding loci (L = 4,942 loci)
θH 0.0055 (0.0053, 0.0058) 0.0055 (0.0053, 0.0058) 0.0055 (0.0052, 0.0057) 0.0055 (0.0053, 0.0058)
θC 0.0054 (0.0048, 0.0060) 0.0361 (0.0203, 0.0545) 0.0307 (0.0133, 0.0513) 0.0363 (0.0204, 0.0553)
θM 0.0016 (0.0015, 0.0018) 0.0010 (0.0008, 0.0011) 0.0005 (0.0003, 0.0008) 0.0010 (0.0008, 0.0011)
θr 0.0092 (0.0088, 0.0096) 0.0092 (0.0088, 0.0096) 0.0094 (0.0090, 0.0098) 0.0092 (0.0088, 0.0096)
θs 0.0117 (0.0111, 0.0124) 0.0027 (0.0004, 0.0054) 0.0092 (0.0084, 0.0100) 0.0027 (0.0004, 0.0053)
θc n/a 0.0059 (0.0055, 0.0063) 0.0044 (0.0032, 0.0055) 0.0058 (0.0053, 0.0062)
θm n/a 0.0119 (0.0076, 0.0168) 0.0105 (0.0072, 0.0144) 0.0129 (0.0077, 0.0189)
τr 0.0049 (0.0047, 0.0050) 0.0049 (0.0047, 0.0050) 0.0048 (0.0047, 0.0050) 0.0049 (0.0047, 0.0050)
τs 0.0009 (0.0008, 0.0010) 0.0047 (0.0045, 0.0049) 0.0017 (0.0015, 0.0019) 0.0047 (0.0045, 0.0049)
τc = τm n/a 0.0005 (0.0004, 0.0006) 0.0002 (0.0001, 0.0003) 0.0005 (0.0004, 0.0006)
φc n/a n/a 0.1360 (0.0783, 0.1959) 0.0073 (0.0000, 0.0194)
φm n/a 0.5119 (0.4780, 0.5451) n/a 0.5064 (0.4722, 0.5412)

NOTE.—Results for the other chromosomes are summarized in supplementary figure S8, Supplementary Material online. "n/a" means the parameter does not exist in the 
model.
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nonzero and may even be greater than the true rate in the 
correct direction. Thus, neither a significant test nor a high 
rate estimate is reliable evidence that introgression oc-
curred in the specified direction. This result may seem sur-
prising and disturbing given that introgression in the 
specified direction is nonexistent.

Our analyses of both simulated and real data suggest 
that the bidirectional model may be applied to infer the 
introgression direction. If gene flow is truly unidirectional, 
overparametrization of the bidirectional model appears to 
incur little cost in statistical performance even though it 
does add to computational cost: posterior CIs and power 
to detect gene flow under the bidirectional model are 
very similar to those under the true unidirectional model.

Of course a better approach to inferring the introgres-
sion direction is to implement efficient cross-model 
MCMC algorithms to search in the space of all MSC-I mod-
els for the given set of species. Indeed, MCMC algorithms 
that move between MSC-I models already exist (Wen and 
Nakhleh 2018; Zhang et al. 2018). These propose changes 
to the MSC-I model when the gene trees at all loci are 
fixed, and if the proposed new model is in conflict with 
some gene trees, the proposal is abandoned. Such algo-
rithms have poor mixing properties if the dataset is not 

very small because the proposed new model is very likely 
to be in conflict with at least some gene trees. The algo-
rithms do not appear to be feasible for analyzing even 
small datasets with 100 loci (Wen and Nakhleh 2018; 
Zhang et al. 2018). However, thousands of loci are often 
needed to provide precise and reliable inference of intro-
gression between species. Smart MCMC moves that make co-
ordinated changes to the gene trees when the chain moves 
from one model to another—similar to the algorithms devel-
oped under the MSC model with no gene flow for updating 
species divergence times (the rubber-band algorithm, 
Rannala and Yang 2003) or species phylogenies (the species- 
tree NNI or SPR moves, Yang and Rannala 2014; Rannala and 
Yang 2017)—may offer significant improvements even 
though they are challenging to develop.

Most heuristic methods for detecting gene flow are 
based on species triplets or quartets and use summaries 
of sequence data such as genome-wide site-pattern counts 
(as in the D-statistic, Green et al. 2010; Durand et al. 2011
and HYDE, Blischak et al. 2018) or frequencies of estimated 
gene tree topologies (as in SNAQ, Solis-Lemus and Ane 
2016). Those methods are agnostic about the direction 
of gene flow. The DFOIL method of Pease and Hahn 
(2015) extends the D-statistic to identify the introgression 
direction: it assumes a particular species phylogeny for five 
species (a balanced quartet tree plus an outgroup), with 
one sequence sampled per species per locus. None of those 
heuristic methods can identify gene flow between sister 
lineages or its direction. Overall current heuristic methods 
make use of a small portion of information about gene 
flow in the multilocus sequence alignments, and offer ex-
citing opportunities for improvements.

Table 3. Bayes Factors for Comparing Four Introgression Models for the 
Heliconius Datasets (fig. 6, table 2), Calculated Using Thermodynamic 
Integration with 32 or 64 Gaussian Quadrature Points and Savage– 
Dickey Density Ratio with Threshold ϵ = 1%, 0.1%, or 0.01%.

Thermodynamic 
Integration

Savage–Dickey Density Ratio

Bij (Null Hypothesis  
Tested, H0)

32 
points

64 
points

ϵ = 1% ϵ = 0.1% ϵ = 0.01%

Noncoding loci (L = 5,341 loci)
BIø (H0 : φC→M = 0) e1087.1 e1082.5 ∞ ∞ ∞
BOø (H0 : φM→C = 0) e946.9 e904.9 ∞ ∞ ∞
BBI (H0 : φM→C = 0) e−5.6 e−9.9 0.0101 0.0025 0.0020
BBO (H0 : φC→M = 0) e134.6 e167.8 ∞ ∞ ∞
BIO (H0 : φC→M = 0 vs. 

φM→C = 0)
e140.2 e177.6 n/a n/a n/a

BBø (H0 : φC→M = 0 and 
φM→C = 0)

e1081.6 e1072.6 ∞ ∞ ∞

Coding loci (L = 4,942 loci)
BIø (H0 : φC→M = 0) e359.9 e358.5 ∞ ∞ ∞
BOø (H0 : φM→C = 0) e128.0 e147.6 ∞ ∞ ∞
BBI (H0 : φM→C = 0) e−13.0 e−8.6 0.0136 0.0090 0.0073
BBO (H0 : φC→M = 0) e218.9 e202.3 ∞ ∞ ∞
BIO (H0 : φC→M = 0 vs. 

φM→C = 0)
e231.9 e210.9 n/a n/a n/a

BBø (H0 : φC→M = 0 and 
φM→C = 0)

e346.8 e349.9 ∞ ∞ ∞

NOTE.—The four models are (Ø) MSC with no gene flow, (I) C→ M introgression 
(I), (O) M→ C introgression, and (B) C ⇆ M bidirectional introgression (table 2). 
Bayes factor Bij represents the evidence in favor of model i against model j. We use 
a cutoff of 1%, so that Bij > 100 means strong support for model i and rejection of 
model j, Bij < 0.01 means strong support for model j and rejection of model i, while 
0.01 < Bij < 100 means no strong preference for either model. The approach 
based on Savage–Dickey density ratio is inapplicable for BIO as models I and O 
are not nested. Also it produces B = ∞ if all values of φ in the MCMC sample 
are >ϵ. Results for the other chromosomes are shown in supplementary table 
S5, Supplementary Material online. "n/a" means the parameter does not exist in 
the model.

(a) (b)

FIG. 7. (a) When multiple sequences are sampled per species per lo-
cus, the MSC-I model with bidirectional introgression between sister 
lineages has two unidentifiable modes in the posterior (Θ1, Θ2) 
(Yang and Flouri 2022). Population size parameters for extant spe-
cies (θA , θB) are identifiable. (b) When one sequence is sampled 
per species per locus, the same model shows four unidentifiable 
modes (Θ1, Θ2, Θ3, Θ4). Also θA and θB are unidentifiable and are 
not parameters in the model.
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Unidentifiability of Introgression Models
In this study (in particular, during the analysis of the 
Heliconius data), we have encountered several different 
types of unidentifiability issues. Here, we include a sum-
mary, which is technical and can be skipped (see also 
Yang and Flouri 2022 for further discussions).

Yang and Flouri (2022) distinguished between within- 
model and cross-model unidentifiability. If the probability 
distributions of the data are identical under model m 
with parameters Θ and under model m′ with parameters 
Θ′, with

f(X |m, Θ) = f (X |m′, Θ′) (4) 

for all possible data X, then data X cannot identify (m, Θ) 
and (m′, Θ′). If m = m′ and Θ ≠ Θ′, the parameters within 
the given model are unidentifiable. If m ≠ m′, the two 
models are unidentifiable (cross-model); in this case there 
is a parameter mapping from Θ in m to Θ′ in m′.

In the case of two species (say A and B) with one se-
quence sampled per species per locus, the coalescent 
time (tab) between the two sequences (a, b) has the 
same distribution under model I with A→ B introgression 
and under model O with B→ A introgression (Appendix). 
As a result, the two models are unidentifiable, or in other 
words, the introgression direction is unidentifiable (Yang 
and Flouri 2022, fig. 10). This is a case of cross-model uni-
dentifiability. The parameter mapping is θ(O)

Y = θ(I)
X , θ(O)

R = 
θ(I)

R and φX = φY , with τR and τX being identical between 
the two models (eq. A3, fig. 1). In the analysis of chromo-
some 21 from the Heliconius, model I and model O are un-
identifiable, with θ(O)

m = θ(I)
c , θ(O)

s = θ(I)
s and φc = φm 

(supplementary fig. S8 and table S5, Supplementary 
Material online).

If the model (model I, say) is given, parameters τR, τX , θX , 
and φY are identifiable even with data of one sequence per 
species per locus. In the example of chromosome 21 for the 
Heliconius data, parameters τs, τc, θc, and φm are identifi-
able (supplementary fig. S8 and table S5, Supplementary 
Material online).

In the case of two species, introgression direction be-
comes identifiable if multiple sequences are sampled 
per species per locus (Yang and Flouri 2022). 
Furthermore, if data from other species are available 
and if gene flow occurs between nonsister species, intro-
gression direction affects the distributions of the gene 
trees and coalescent times, and is identifiable whether 
one sequence or multiple sequences are sampled per spe-
cies per locus (Jiao et al. 2021; Hibbins and Hahn 2022; 
Yang and Flouri 2022).

Furthermore, the bidirectional introgression model (B) 
poses an unidentifiability of the label-switching type (Yang 
and Flouri 2022). The situation is similar to label switching 
in clustering analysis. Let the parameter vector be 
Θ = (p1, μ1, μ2), with two groups in proportions p1 and 
p2 = 1 − p1 with means μ1 and μ2. Then Θ and Θ′ = 
(p′1, μ′1, μ′2) = (p2, μ2, μ1) are unidentifiable as their only 
difference is in the labels “1” and “2” for the two groups. 

Such models can still be used in inference. If multiple sam-
ples are available per species per locus, model B with intro-
gression between sister lineages shows two unidentifiable 
modes involving the two introgression probabilities and 
two population size parameters (Yang and Flouri 2022): 
in figure 7a, Θ1 = (θX , θY , φX , φY) and Θ2 = 
(θX , θY , φX , φY) are unidentifiable. This is a within-model 
unidentifiability of the label-switching type.

The case of the model B with only one sequence per 
species per locus was not discussed by Yang and Flouri 
(2022), although it arose in the analysis of data for chromo-
some 21 in the Heliconius genomic data (supplementary fig. S8, 
Supplementary Material online). With such data, model B with 
introgression between sister lineages shows four unidentifiable 
modes in the posterior: in figure 7b, Θ1 = (θX , θY , φX , φY), 
Θ2 = (θY , θX , φY , φX), Θ3 = (θY , θX , 1 − φX , 1 − φY), and 
Θ4 = (θX , θY , 1 − φY , 1 − φX) are unidentifiable (fig. 7). If 
introgression is between nonsister lineages, each bidirectional 
introgression pair will create two cross-model modes, whether 
one sequence or multiple sequences are sampled per species 
per locus (Yang and Flouri 2022).

Asymmetry of Gene Flow in Nature
No systematic studies have examined the frequency of uni-
directional versus bidirectional gene flow given that two 
species are involved in introgression. Both scenarios appear 
to be common. Sometimes gene flow occurs in one direc-
tion even though opportunities exist also in the opposite 
direction. A well-documented example is gene flow in 
the Anopheles gambiae group of mosquitoes in 
sub-Saharan Africa (della Torre et al. 1997; Slotman et al. 
2005). Analysis of genomic data provides strong evidence 
for gene flow from A. arabiensis to A. gambiae or its sister 
species A. coluzzii, while the rate of gene flow in the oppos-
ite direction was estimated to be 0 (Thawornwattana et al. 
2018; Flouri et al. 2020). This result from comparisons of 
genomic sequences is consistent with crossing experi-
ments which supported introgression of autosomal re-
gions from A. arabiensis into A. gambiae but not in the 
opposite direction (della Torre et al. 1997; Slotman et al. 
2005). One possible explanation is that the X chromosome 
from one species may be incompatible with the autosomal 
background of the other species (Slotman et al. 2004; 
Slotman and Powell 2005). The introgression from A. ara-
biensis into the common ancestor of A. gambiae and A. co-
luzzii has been hypothesized to have facilitated the range 
expansion of A. gambiae and A. coluzzii into the more 
arid savanna habitats of A. arabiensis (Coluzzi et al. 1979; 
Ayala and Coluzzi 2005).

Note that the rate of gene flow in the MSC-I model es-
timated from the genomic sequence data is an “effective” 
rate, reflecting the combined effects of gene flow and nat-
ural selection. Most introgressed alleles are expected to be 
purged in the recipient species by selection because they 
are deleterious or incompatible with the host genomic 
background (Schumer et al. 2018; Matute et al. 2020). It 
seems likely that alleles at introgressed loci from species 
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A on the genomic background of species B will have differ-
ent fitnesses than introgressed alleles from B on the back-
ground of A. Another factor is geographic context. If a 
smaller population of species A hybridizes with a larger 
population of species B, A is more likely to be swamped 
by B, making introgression asymmetrical. With all those 
factors considered, one should expect gene flow to be 
asymmetrical in most systems, with different rates in the 
two directions.

Gene Flow in Heliconius Butterflies
Heliconius cydno and H. melpomene are broadly sympatric 
across Central America and northwestern South America, 
and are known to hybridize in the wild (Mallet et al. 2007). 
Our analysis supports recent unidirectional gene flow from 
H. cydno into H. melpomene (fig. 6, tables 2 and 3; 
supplementary tables S5 and S6, Supplementary Material
online), in Panama, where H. cydno chioneus and H. mel-
pomene rosina are broadly sympatric. In captivity, male 
F1 hybrids are fertile while female F1 hybrids are sterile; 
male hybrids backcross to either parental species much 
more readily than the pure species mate with one another 
(Naisbit et al. 2001, 2002).

Previous studies used different approaches to estimate 
gene flow between these two species. Early phylogenetic 
analyses of multilocus data attributed recent gene flow be-
tween H. cydno chioneus and H. melpomene rosina as a 
cause for gene tree variation among loci (Beltrán et al. 
2002). An IM analysis (Hey and Nielsen 2004) using a small 
number of loci yielded an estimated symmetric bidirection-
al migration rate m between the two species of 1.7 × 10−6 

(95% CI 1.0 − 45 × 10−6) per generation, with H. cydno 
chioneus having a larger effective population size (Bull 
et al. 2006). An IM model allowing for different migration 
rates in each direction found evidence for unidirectional 
gene flow from H. cydno into H. melpomene, with 
2NMmC→M = 0.294 (90% HPD CI: 0.116–0.737), whereas 
2NCmM→C = 0.000 (0.000, 0.454) (Kronforst et al. 2006), 
consistent with our results. Similar patterns were obtained 
in a subsequent IMa2 analysis (Hey 2010) of a larger dataset 
(Kronforst et al. 2013). In a more recent analysis of 
genome-scale data, Martin et al. (2015) estimated a sym-
metric bidirectional migration rate between H. c. chioneus 
and H. m. rosina to be M̂ = 0.20 (90% HPD interval: 0.09– 
0.40) per generation. Lohse et al. (2016) compared three 
models: complete isolation after divergence, and two 
IM models with unidirectional gene flow, and preferred 
the model with gene flow from H. cydno into H. m. rosina, 
with estimated migration rate 4Nm = 1.5. Martin et al. 
(2019) used gene tree frequencies to suggest extensive 
gene flow from H. cydno into H. melpomene in Panama.

Our estimates are in general consistent among chromo-
somes and between coding and noncoding data. However, 
only one diploid individual per species is included in the 
genomic data, with some from inbred lines (selected for se-
quencing because of easy assembly). These features of the 
data may have affected our estimates and account for the 

outlier estimates observed for a few chromosomes 
(supplementary fig. S8, Supplementary Material online). 
Overall, our analyses of genomic data are consistent with 
previous estimates.

We note that the null model ø in the Bayesian test used 
in this study constrains the population sizes (θC = θc and 
θM = θm) as well as the introgression probability (φ = 0), 
compared with the alternative model (models I, O, or B) 
(Ji et al. 2023). Rejection of the null model may in theory 
be due to either introgression or inequality of population 
sizes, or both. A sharper test may use an alternative model 
with the same constraints on the population sizes as in the 
null model (θC = θc, θM = θm) so that the two models un-
der comparison have the only difference concerning the 
introgression probability (φ = 0 vs. φ > 0); this is test 2 
in Ji et al. (2023, fig. 3). For the Heliconius data, we note 
that the CIs for φc exclude the null value φc = 0 for every 
autosome (supplementary fig. S8, Supplementary Material
online), providing strong evidence for some introgression in 
the minority direction. Furthermore, it may be interesting 
to examine the impact of priors on parameters on the 
Bayesian test (Ji et al. 2023). We leave it to future work to 
use more genomic data and more focused tests to infer 
gene flow in this group of Heliconius butterflies.

Materials and Methods
Asymptotic Analysis and Simulation in the Case of 
Two Species
We examined the distributions of coalescent times and 
conducted computer simulations under model I of figure 
1a, with A→ B introgression. We used four sets of param-
eter values. 

a) same θ tall tree: all populations have the same size 
with θ = 0.01. The other parameters are 
τR = θ, τX = 0.5θ, and φY = 0.2.

b) same θ short tree: θ = 0.01 for all populations, 
τR = 0.5θ, τX = 0.25θ, and φY = 0.2.

c) small to large: different species on the species tree 
have different population sizes, with θA = θX = θR = 
θ0 = 0.002 on the left of the tree and θB = θY = 
θ1 = 0.01 on the right, with introgression from a 
small population to a large one (fig. 1a). Other para-
meters are τR = 3θ0, τX = 1.5θ0, and φY = 0.2.

d) large to small: This is the same as case (c) except that 
θA = θX = θR = θ0 = 0.01 on the left of the tree and 
θB = θY = θ1 = 0.002 on the right, so that introgres-
sion is from a large population to a small one.

We simulated multilocus sequence datasets under 
model I (fig. 1a) and analyzed them under models I, O, 
and B (fig. 1a–c). Each replicate dataset consisted of 
L = 250, 1,000 or 4,000 loci, with n = 4 sequences sampled 
per species per locus. The sequence length is N = 500 sites. 
The simulate option of BPP (Flouri et al. 2018) was used 
to simulate gene trees with coalescent times and to 
“evolve” sequences along the gene tree under the JC model 
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(Jukes and Cantor 1969). Sequences at the tips of the gene 
tree constitute the data. The number of replicates was 100.

Each replicate dataset was then analyzed using BPP (Flouri 
et al. 2018, 2020) under models I, O, and B of figure 1a–c. This 
setting in which the model is fixed corresponds to the A00 
analysis of (Yang 2015). The JC model was assumed in the 
analysis. Gamma priors were assigned to the age of the 
root of the species tree (τR) and to population size para-
meters (θ), with the shape parameter α = 2 so that the prior 
was diffuse and with the rate parameter β chosen so that the 
prior mean was close to the true values. We used τR ∼ 
G(2, 200) and θ ∼ G(2, 200) for case a “same θ tall tree”; 
τR ∼ G(2, 400) and θ ∼ G(2, 200) for case b “same θ short 
tree”; τR ∼ G(2, 400) and θ ∼ G(2, 400) for case c “small to 
large” and d “large to small.” Introgression probability φ 
was assigned the beta prior beta(1, 1), which is U(0, 1).

MCMC settings were chosen by performing pilot runs, 
with MCMC convergence assessed by verifying consistency 
between replicate runs for the same analysis. The same set-
ting was then used to analyze all replicate datasets. We 
used 16,000 MCMC iterations as burnin, and then took 
105 samples, sampling every 2 iterations. Running time 
for analyzing one replicate dataset was ∼45 min for L = 
250 loci or ∼3 h for L = 1, 000 using one thread, and 
∼12 h for L = 4, 000 using two threads.

Simulation to Evaluate the Gain in Information for 
Estimating φ by Adding a Third Species
Given the introgression model for two species (A, B) of fig-
ure 1a, with A→ B introgression, we added a third species 
(C) and assessed the gain in information for estimating φ. 
There are five branches on the two-species tree, to which 
the third species could be attached (fig. 4a–e): (a) the root 
population, (b, c) the source and target populations before 
gene flow, and (d, e) the source and target populations 
after gene flow. In all cases φ = 0.2. The original 
two-species tree had τR = θ1 and τX = θ1/2. In cases b–e, 
species C was attached to the midpoint of the target 
branch, while in a, the new root was 1.25× as old as the 
old root. For models a, d, and e, all populations on the spe-
cies tree had the same size, with θ1 = 0.01. For cases b and 
c, three scenarios were considered: 1) equal population 
size, with θ1 = 0.01 for all populations; 2) from small to 
large, with θA = θX = θS = θ0 = 0.002 for the thin 
branches in case b and θA = θX = θ0 = 0.002 in case c 
and with θ1 = 0.01 for all other branches; and 3) from large 
to small, with θB = θY = θ0 = 0.002 in case b and θB = 
θY = θS = θ0 = 0.002 in case c and with θ1 = 0.01 for all 
other branches. For each parameter setting, we simulated 
100 replicate datesets. Each dataset consisted of L = 1, 000 
loci, with nA = nB = 4 sequences per species per locus and 
N = 500 sites in the sequence. Each dataset was analyzed 
using BPP to estimate the parameters in the MSC-I model 
(fig. 4a–e). Gamma priors were assigned to τR and θ: τR ∼ 
G(2, 200) and θ ∼ G(2, 200), while φA→B ∼ U(0, 1). We 
used 32,000 MCMC iterations as burnin, and then took 

106 samples, sampling every 10 iterations. Running time 
for analyzing one dataset using one thread was ∼30 h.

Simulation in the Case of Four Species: Inflow Versus 
Outflow
We simulated data under the three MSC-I models (I, O, B) 
of figure 5a–c, with introgression between nonsister spe-
cies A and B on a four-species tree ((A, (B, C)), D). The 
three models differ in the assumed direction of gene 
flow, with I for inflow from A to B, O for outflow from B 
to A, and B for bidirectional introgression between A 
and B. We used two sets of parameter values. In the first 
set (same-θ), all species on the tree had the same popula-
tion size, with θ0 = θ1 = 0.01. In the second set 
(different-θ), the thin branches had θ0 = 0.002 while the 
thick branches had θ1 = 0.01 (fig. 5a–c). Other parameters 
were the same in the two settings, with τR = 4θ0, τS = 3θ0, 
τT = 2θ0, and τX = τY = 1.5θ0, and the introgression prob-
abilities were φX = φY = 0.2.

Each dataset consists of L=250, 1,000, or 4,000 loci, with 
n = 4 sequences per species per locus and with N = 500 
sites in the sequence. The number of replicates was 100. 
With three MSC-I models (I, O, B), two population-size set-
tings (same-θ vs. different-θ), and three data sizes (L), a to-
tal of 3 × 2 × 3 × 100 = 1800 datasets were generated. 
Each dataset was analyzed under the three models (I, O, 
B). Gamma priors were assigned to τR and θ: τR ∼ 
G(2, 200) and θ ∼ G(2, 400), while φ ∼ U(0, 1). We used 
32,000 MCMC iterations as burnin, and took 2 × 105 sam-
ples, sampling every 5 iterations. Running time for analyz-
ing one dataset was ∼12 h for small datasets of L = 250 loci 
and 60 h for L = 1, 000 using one thread, and ∼120 h for 
L = 4, 000 using two threads.

Analysis of the Heliconius Butterfly Dataset
We processed the raw genomic sequencing data of Edelman 
et al. (2019) from three species of Heliconius butterflies, 
H. hecale (H), H. cydno (C), and H. melpomene (M), to re-
trieve coding and noncoding loci for each chromosome, 
following the procedure of Thawornwattana et al. (2022). 
See supplementary table S4, Supplementary Material online 
for the number of loci in each of the 22 datasets. Each locus 
consisted of one unphased diploid sequence per species, ex-
cept the Z chromosome (chromosome 21) for which only a 
haploid sequence is available per species (from ZW females). 
Heterozygote phase in the diploid sequence was resolved 
using an analytical integration algorithm in the likelihood 
calculation in BPP (Gronau et al. 2011; Flouri et al. 2018; 
Huang et al. 2022). We fitted four MSC-I models with differ-
ent introgression directions: (Ø) MSC with no gene flow, 
(I) C→ M introgression, (O) M→ C introgression, and 
(B) C ⇆ M bidirectional introgression.

We assigned priors τr ∼ G(4, 200), θ ∼ G(2, 200), and 
φ ∼ U(0, 1). We used 105 MCMC iterations for burnin, 
and recorded 104 samples, sampling every 100 iterations. 
For each model, we performed ten independent runs to 
confirm consistency between runs. The resulting MCMC 
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samples were combined to produce final posterior esti-
mates. Each run took ∼100 h.

Bayesian Test of Introgression
We applied the Bayesian test of introgression (Ji et al. 2023) 
to data for two species simulated under the models of fig-
ure 1a–c, the data for four species simulated under models 
I, O, and B of figure 5, and the Heliconius datasets (fig. 6).

Bayesian model selection was used to compare the null 
model of no gene flow H0 : φ = 0 and the alternative model 
of introgression H1 : φ > 0. The Bayes factor was calculated 
as B10 = M1

M0
, where M0 and M1 are marginal likelihood va-

lues under H0 and H1, respectively. If the prior model prob-
abilities are π0 and π1, B10 can be converted into posterior 
model probabilities as P(H1 | X)

P(H0 | X) = π1
π0
· B10. If π0 = π1, B10 = 

100 will translate to the posterior probability 
P(H0|X) ≈ 1%. Thus, B10 > 100 may be considered strong 
evidence in support of H1 over H0, while B10 < 0.01 is 
strong evidence in favor of H0 over H1.

As H0 and H1 are nested, B10 can be calculated using the 
Savage–Dickey density ratio (Dickey 1971), by using an 
MCMC sample under H1 (Ji et al. 2023). Define an interval 
of null effects, ø : φ < ϵ, inside which the introgression 
probability is so small that introgression may be considered 
nonexistent. The Bayes factor in favor of H1 over H0 is then

B10,ϵ =
P(ø)

P(ø| X)
, (5) 

where P(ø) is the prior probability of the null interval, 
while P(ø|X) is the posterior probability, both calculated 
under H1 (Ji et al. 2023). Note that P(ø) = P(φ < ϵ) = ϵ 
if the prior is φ ∼ U(0, 1). When ϵ→ 0, B10,ϵ → B10 
(Ji et al. 2023). We used a few values for ϵ in the range 
0.01–1% to assess its effect. This approach has a computa-
tional advantage as it requires running the MCMC under 
H1 only and avoids trans-model MCMC algorithms or cal-
culation of marginal likelihood values.

For the Heliconius datasets, we in addition used thermo-
dynamic integration combined with Gaussian quadrature 
to calculate the marginal likelihood under each model, 
using 32 or 64 quadrature points (Lartillot and Philippe 
2006; Rannala and Yang 2017). This approach applies 
even if the compared models are nonnested, and was 
used to conduct pairwise comparisons among all four 
models fitted to the Heliconius data.

Supplementary Material
Supplementary data are available at Molecular Biology and 
Evolution online.
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Appendix The Distribution of Coalescent 
Times Under the MSC-I Model for Two Species
Here, we gave the probability densities of coalescent times 
(taa, tab, tbb) between two sequences sampled from species 
A and B under the MSC-I models I, O, and B of figure 1a–c. 
These are simple cases of the gene-tree densities given by, 
for example, Yu et al. (2014; see also Lohse and Frantz 
2014). Example densities under models I and O are plotted 
in figure 2 for four sets of parameter values.

Under model I,

fI(taa) =

2
θA

e− 2
θA

taa , if 0 < taa < τX ,

e− 2
θA

τX 2
θX

e− 2
θX

(taa−τX), if τX < taa < τR,

e− 2
θA

τX e− 2
θX

(τR−τX)

× 2
θR

e− 2
θR

(taa−τR), if taa > τR.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(A1) 

This is a function of τR, τX , θA, θX , θR, independent of 
θB, θY , φY . From the viewpoint of the two A sequences, 
there are demographic changes in population size with 
θA, θX , and θR, respectively, for the three time segments 
(0, τX), (τX , τR), and (τR, ∞).

The coalescent time between two sequences sampled 
from species B has the distribution

fI(tbb)

=

2
θB

e− 2
θB

tbb , if 0 < tbb < τX ,

e− 2
θB

τX (1 − φY)2 2
θY

e− 2
θY

(tbb−τX)
􏽨

+φ2
Y

2
θX

e− 2
θX

(tbb−τX)
􏽩

, if τX < tbb < τR,

e− 2
θB

τX [(1 − φY)2 e− 2
θY

(τR−τX)

+φ2
Y e− 2

θX
(τR−τX) + 2φY(1 − φY)]

× 2
θR

e− 2
θR

(tbb−τR), if tbb > τR.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(A2) 

This is a function of τR, τX , θB, θX , θY , θR, φY , and is inde-
pendent of θA. In the time interval (0, τX), the two B se-
quences coalesce at the rate 2/θB, as in the case of no 
gene flow. Coalescence during the time interval τX < tbb < 
τR can occur in either X or Y. The former occurs if both B 
sequences migrate to X (which occurs with probability φ2

Y) 
and then coalesce in X at the rate 2/θX , whereas the latter 
occurs when both B sequences fail to migrate and thus stay 
in Y (with probability (1 − φY)2) and then coalesce in Y at 
the rate 2/θY . If one of the B sequences migrates to X and 
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the other stays in Y, coalescence will be impossible, result-
ing in a suppression of coalescent events in this time inter-
val (see fig. 2 for f(tbb)). If the two B sequences do not 
coalesce in B, and they do not coalesce in either X or Y, 
they will coalesce in species R (with tbb > τR), at the rate 
2/θR.

Finally,

fI(tab)

=

φY
2
θX

e− 2
θX

(tab−τX), if τX < tab < τR,

(1 − φY) + φY e− 2
θX

(τR−τX)
􏽨 􏽩

× 2
θR

e− 2
θR

(tab−τR), if tab > τR.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(A3) 

This is a function of τR, τX , θX , θR, and φY , and is independ-
ent of θA, θB, θY . Coalescence between a and b may occur 
during (τX , τR) at the rate 2/θX if the B sequence migrates 
into X (with probability φY).

Under model O with B→ A introgression (fig. 1b), 
fO(taa) and fO(tbb) are given by fI(tbb) and fI(taa) with a 
change of symbols. In particular, fO(tab) = fI(tab) if θ(O)

Y = 
θ(I)

X and φX = φY , with τR, τX , θR being identical between 
the two models.

Under model B with both A→ B and B→ A introgres-
sions (fig. 1c), fB(taa) = fO(taa) and fB(tbb) = fI(tbb), while

fB(tab)

=

(1 − φX)φY
2
θX

e− 2
θX

(tab−τX)

+φX(1 − φY) 2
θY

e− 2
θY

(tab−τX), if τX < tab < τR,
[(1 − φX)(1 − φY) + φXφY

+(1 − φX)φY e− 2
θX

(τR−τX)

+φX(1 − φY) e− 2
θY

(τR−τX)]

× 2
θR

e− 2
θR

(tab−τR), if tab > τR.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(A4) 

Data Availability
The Heliconius multilocus alignment data are available in 
Zenodo at https://dx.doi.org/10.5281/zenodo.8243142.
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