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Abstract.—Ancient DNA (aDNA) is increasingly being used to investigate questions such as the phylogenetic relationships and di-
vergence times of extant and extinct species. If aDNA samples are sufficiently old, expected branch lengths (in units of nucleotide
substitutions) are reduced relative to contemporary samples. This can be accounted for by incorporating sample ages into phylogenetic
analyses. Existing methods that use tip (sample) dates infer gene trees rather than species trees, which can lead to incorrect or biased
inferences of the species tree. Methods using a multispecies coalescent (MSC) model overcome these issues. We developed an MSC
model with tip dates and implemented it in the program BPP. The method performed well for a range of biologically realistic scenarios,
estimating calibrated divergence times and mutation rates precisely. Simulations suggest that estimation precision can be best improved
by prioritizing sampling of many loci and more ancient samples. Incorrectly treating ancient samples as contemporary in analyzing
simulated data, mimicking a common practice of empirical analyses, led to large systematic biases in model parameters, including
divergence times. Two genomic datasets of mammoths and elephants were analyzed, demonstrating the method’s empirical utility.
[aDNA; BPP; multispecies coalescent; tip dating.]

Ancient DNA (aDNA) sequences are increasingly available
for many species due to advances in sequencing technology.
Whole genome sequences from aDNA exist for several groups
of extinct species, including neanderthals (Green et al., 2010),
woolly and Columbian mammoths (Palkopoulou et al., 2015,
2018), woolly rhinoceros (Lord et al., 2020), and cave bears
(Fortes et al., 2016). Genome sequences from aDNA also ex-
ist for many extant species, for example humans (Rasmussen
et al., 2010; Nielsen et al., 2017) and maize (Ramos-Madrigal
et al., 2016). More limited aDNA data are available for an
even wider variety of species such as bison (Soubrier et al.,
2016), polar bears (Miller et al., 2012), pigs (Horsburgh et al.,
2022), and many plants and pathogens (Orlando et al., 2021).
These data have opened the door to new ways to investigate
long-standing questions in phylogenetics and population ge-
netics, such as phylogenetic relationships between extinct and
extant species, their divergence times, and their demographic
and migration histories.

A key feature that distinguishes aDNA from modern DNA
is the (potentially large) differences in ages among sampled
aDNA sequences; in conventional studies of modern DNA
all samples are contemporary. The importance of account-
ing for the sampling date of non-contemporary sequences has
long been recognized for viral sequences, in particular RNA
viruses (Drummond et al., 2003). Due to the high substitution
rates of RNA viruses, substitutions may occur in lineages that
have not yet been sampled during the intervals between sam-
pling events, creating differences in expected branch lengths
between lineages descended from a common ancestor, even
under a strict molecular clock. With molecular sequence
data, the amount of evolution observed is determined by the
product of substitution rate and time. Sequences sampled at

different times may have detectable differences in expected
substitutions if either the mutation rate is high (as with vi-
ral data) or the time interval between sampling events is large
(as with older aDNA samples). Similar to fossil calibrations,
sampling dates provide information about substitution rates,
allowing absolute divergence times (e.g., days or years) and
absolute substitution rates to be jointly estimated (Li et al.,
1988; Rambaut, 2000).

Whole genomes of aDNA contain much information for de-
tecting even small differences of expected numbers of substi-
tutions; one might speculate that increasing the number of loci
will improve estimates of parameters such as absolute diver-
gence times and mutation rate even with younger samples be-
cause each locus is an independent source of information. As
more loci are added, the expected difference in branch lengths
between lineages sampled at different times is more precisely
estimated, thus improving estimates of both mutation rate and
absolute divergence times. An advantage of dating with aDNA
samples over fossil calibrations is that the position of the
sample in the phylogeny can potentially be inferred from the
sequence data whereas fossils must be assigned to ancestral
nodes based solely on sparse morphological characters and
are probably frequently misassigned.

Another reason to develop statistical models for analyzing
aDNA is the potential for biased estimates if sample dates are
ignored. Several studies have analyzed aDNA by treating all
samples (including aDNA) as contemporary (Rohland et al.,
2010; Palkopoulou et al., 2018). This should lead to under-
estimation of divergence times. It is poorly understood how
great the absolute time interval between samples must be be-
fore it affects inference when sampling dates are not explicitly
modeled.
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Analyses of aDNA Without Tip Dates
Population samples of aDNA have been analyzed using sev-

eral methods which do not explicitly use sampling dates. Two
of these, pairwise sequential Markovian coalescent (PSMC)
(Li and Durbin, 2011) and coalHMM, (Mailund et al., 2012)
are commonly used methods for inferring ancestral demog-
raphy (past effective population size through time) based on
an approximation to the coalescent process with recombina-
tion. However, both allow inference for small samples (e.g.,
two sequences from one diploid individual in the case of
PSMC). In order to estimate population sizes in continuous
time with time in calendar units, mutation rate and generation
time are treated as known in PSMC, though both are uncertain.
When two or more individuals have been sampled that share
an ancestral population, researchers have used PSMC inde-
pendently on the samples and then aligned the demographic
histories inferred with PSMC to determine when the popula-
tions diverged. This is problematic because data from different
individuals are analyzed independently and divergence times
are not estimated directly.

When multiple sequences are sampled from multiple
species, multispecies coalescent (MSC) models in MCMC-
coal (an early version of BPP) have been used to infer diver-
gence times and effective population sizes with aDNA, with
the ancient sequences treated as if they were contemporary
(Rohland et al., 2010). The effect of ignoring sample ages for
programs such as coalHMM and MCMCcoal should depend
on the time period spanned by the sampling dates of the se-
quences relative to the divergence times of the populations but
is in general unknown.

Analyses of aDNA With Tip Dates
The program BEAST is used to analyze data from multiple

species to estimate divergence times, accommodating dated
tips (Suchard et al., 2018; Bouckaert et al., 2019). BEAST
does not employ the MSC and ignores the difference between
gene trees and the species tree. Using divergence times for
different clades in gene trees as an estimate of the species
divergence time (e.g., Chang et al., 2017) leads to overes-
timation of species divergence times since the common an-
cestor of a gene must be older than the common ancestor
of the species (Gillespie and Langley, 1979; Angelis and
Dos Reis, 2015). The MSC with dated tips is available in
the package StarBeast3 in BEAST2 (Douglas et al., 2022)
for estimating divergence times, effective population sizes
and mutation rate. However, StarBeast3 assumes that all se-
quences from any particular species are sampled at the same
time.

Prospects for MSC Analysis of aDNA
Phylogenetic methods based on the multispecies coalescent

(MSC), such as BPP and StarBeast3, provide a more real-
istic model to analyze sequence data from multiple species
or populations. These methods can estimate divergence times
and effective population sizes and a variety of migration
and hybridization histories. The BPP program allows analy-
ses of datasets of thousands of loci, multiple individuals per

population and multiple populations (or species) (Flouri et al.,
2018, 2023). Moreover, the methods are statistically consis-
tent and make complete use of all information available in the
data.

Here, we describe an MSC model with tip dates that al-
lows any number of distinct sampling times within each pop-
ulation (or species) assuming a fixed population (species)
tree. We implement this model in the Bayesian phylogenetic
inference program BPP. We assess the performance of the
method using simulations under a variety of population histo-
ries and investigate the impact of incorrectly treating ancient
sequences as contemporary. We apply the new method to an-
alyze two elephant and mammoth nuclear DNA and mtDNA
datasets.

MATERIALS AND METHODS

Theory: Overview of the MSC Model with Tip Dating
The standard MSC model assumes that all sequences are

sampled at the present time. We modify the MSC to allow
a joint analysis of ancient and modern samples. We assume
a fixed species tree topology with no gene flow. We also as-
sume that each sample can be assigned a priori to a population
which represents a tip on the species tree, and no sequences are
sampled from ancestral populations (which correspond to in-
ternal nodes on the species tree). We consider diploid species,
so that there are 2𝑁 sequences at any locus in a population
of size 𝑁. For a haploid system, our 2𝑁 should be replaced
by 𝑁.

Let 𝑿 = {𝒙𝑖} be the sequence data with 𝒙𝑖 to be the align-
ment of sequences at locus 𝑖 including the sampling times. Let
𝑮 = {𝐺𝑖} be the gene trees, where 𝐺𝑖 is the gene tree at locus
𝑖 and includes both the topology and coalescent times (node
ages). Let 𝑔 be the generation time, in years per generation
(Takahata et al., 1995). Let the mutation rate be 𝜇 per site per
year or 𝜇𝑔 per site per generation, with 𝜇𝑔 = 𝜇𝑔.

With sampling times for sequences, we may choose to use
different time scales. Here we use the case of two sequences
sampled from one population of size 𝑁 (with heterozygos-
ity 𝜃 = 4𝑁𝑔𝜇) to illustrate that the use of different time
scales produces equivalent inference (Table 1). Suppose the
two sequences are sampled at times 𝑦1 and 𝑦2 (years before
present or ybp), with 𝑦1 < 𝑦2. The gene tree in this case is the
coalescent time between the two sequences. In Table 1, we
summarized four time scales: (i) calendar time (with one time
unit to be a year, say; other units such as a day may be used
similarly), (ii) generation, (iii) the coalescent time unit of 2𝑁
generations, and (iv) the mutational time scale (with one time
unit to be the expected amount of time taken to accumulate
one mutation per site).

Consider the calendar time or ybp (Table 1(i)), and
let the coalescent time be 𝑦 > 𝑦2 ybp. This has the
probability

𝑓 (𝑦|𝑁, 𝑔)d𝑦 = 1
2𝑁 e(−1/2𝑁)(𝑦−𝑦2)/𝑔, 𝑦 > 𝑦2. (1)
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TABLE 1. Four different time scales produce the same inference

Time unit Coalescent rate Mutation rate Heterozygosity 𝜃 Likelihood 𝐿(𝑑)
(i) Year 1/2𝑁𝑔 𝜇 2 × 2𝑁𝑔 × 𝜇 = 𝜃 𝐿(Δ𝑦 × 𝜇)
(ii) Generation 1/2𝑁 𝜇𝑔 = 𝜇𝑔 2 × 2𝑁 × 𝜇𝑔 = 𝜃 𝐿(Δ𝑦/𝑔 × 𝜇𝑔)
(iii) Coalescent time unit

(2𝑁 generations) 1 2𝑁𝜇𝑔 2 × 1 × 2𝑁𝜇𝑔 = 𝜃 𝐿(Δ𝑦/2𝑁𝑔 × 2𝑁𝜇𝑔)
(iv) Mutational time unit 2/𝜃 1 2 × 𝜃/2 × 1 = 𝜃 𝐿(Δ𝑦𝜇 × 1)

Note: Heterozygosity is twice the coalescent waiting time (which is the reciprocal of the coalescent rate) times the mutation rate. Likelihood is for two se-
quences sampled at 𝑦1 and 𝑦2 years before present (ybp), which coalesce at year 𝑦 with the separation time to be Δ𝑦 = 𝑦 − 𝑦1 + 𝑦 − 𝑦2 years, and the
sequence distance is defined as the product of separation time times the mutation rate. For example with the coalescent time unit (which is 2𝑁 generations),
the coalescent rate for a sequence pair is 1 per time unit, the mutation rate is 2𝑁𝜇𝑔 mutations per site per time unit, and the separation time between the two
sequences is Δ𝑦/2𝑁𝑔 time units.

The likelihood for the sequence data, 𝐿(𝑑), depends on the
distance 𝑑 = (𝑦 − 𝑦1 + 𝑦 − 𝑦2)𝜇. Thus the joint conditional
distribution of the coalescent time 𝑦 and the parameters in the
model (𝑁, 𝑔, 𝜇) is

𝑓 (𝑁, 𝑔, 𝜇, 𝑦|𝑿) ∝ 𝑓 (𝑦|𝑁, 𝑔)𝐿(𝑑)

= 1
2𝑁𝑔 e

(−1/(2𝑁𝑔))(𝑦−𝑦2)× 𝐿((𝑦 − 𝑦1 + 𝑦 − 𝑦2)𝜇), 𝑦 > 𝑦2.
(2)

One may use Θi = (𝑁𝑔, 𝜇) as the set of identifiable parame-
ters, as 𝑁 and 𝑔 are confounded.

Next, suppose we use the mutational time scale, with one
time unit to be the expected time to accumulate one mutation
per site. The coalescent time 𝑡 = 𝑦𝜇 is measured in mutations
per site. The joint conditional then becomes

𝑓 (𝜃, 𝜇, 𝑡|𝑿) ∝ 𝑓 (𝑡|𝜃, 𝜇)𝐿(𝑑)
= 2

𝜃 e
(−2/𝜃)(𝑡−𝑦2𝜇) × 𝐿(𝑡 − 𝑦1𝜇 + 𝑡 − 𝑦2𝜇), 𝑡 > 𝑦2𝜇.

(3)

The set of parameters may be defined as Θiv = (𝜃, 𝜇).
The two formulations (as well as ii and iii in Table 1) pro-

duce the same inference, as long as the priors are compati-
ble. Note that Θi and Θiv constitute a one-to-one mapping or
reparametrization, whereasMCMC algorithms such as imple-
mented in BPP sample gene trees (i.e., node age 𝑦 in years in
equation 2 or 𝑡 in mutations in equation 3) as well as parame-
ters, integrating out 𝑦 from equation 2 and 𝑡 from equation 3
result in the same likelihood function for the parameters.

In this paper, we use the mutational time scale, measuring
time by the number of mutations per site. Note that the gener-
ation time 𝑔 does not need to be specified unless one wants to
explicitly estimate 𝑁. Similarly, population divergence time
in the MSC (𝜏 in BPP) is measured in units of expected muta-
tions and the definition does not require knowledge of 𝑔. Let
Θ be the vector of parameters of the species tree, Θ = (𝝉, 𝜽),
where 𝝉 is the vector of speciation times and 𝜽 is the vector of
mutation scaled effective population sizes, both measured in
expected number of mutations. For example, speciation time
in ybp is given as 𝜏△ = 𝜏/𝜇.

The joint posterior probability of the divergence times,
effective population sizes, and gene trees is given by

𝑓 (Θ, 𝑮, 𝜇|𝑿) ∝ 𝑓 (𝑮|Θ) ⋅ 𝑃(𝑿|𝑮, 𝜇) ⋅ 𝑓 (𝜇, Θ) (4)

The phylogenetic likelihood 𝑃(𝑿|𝑮, 𝜇) is calculated under
the JC model assuming a strict molecular clock (Felsenstein,
1981). The gene tree density given the population divergence
times (𝜏s), the population sizes (𝜃s), and the sampling times,
𝑓 (𝑮|Θ), is given by combining the coalescent model with
serial samples of Rodrigo and Felsenstein (1999) and MSC
model of Rannala and Yang (2003).

The gene tree density is a product over populations. For
each population, we use the sampling times to split the time
duration for the population into epochs (time intervals) within
which no new samples are added and the number of lineages
can only decrease (Fig. 1). Let there be 𝐸 sampling epochs.
The sampling times in expected number of substitutions are
𝑡𝑠1 < 𝑡𝑠2 < … < 𝑡𝑠(𝐸−1) < 𝑡𝑠𝐸, with 𝑡𝑠𝑖 = 𝑦𝑠𝑖𝜇 where 𝑦𝑠𝑖
is the sample time in ybp. For convenience, we also let 𝑡𝑠0 be
the starting time (either time present or population divergence
time) and 𝑡𝑠(𝐸+1) the ending time for the population. At time
𝑡𝑠𝑖, 𝑚𝑖 sequences are sampled, with 𝑚0 = 0. Let the number
of lineages surviving to time 𝑡𝑠𝑖 be denoted 𝑛𝑖. Let the wait-
ing time for the coalescent event which reduces the number of
lineages from 𝑘 to 𝑘−1 during epoch 𝑖 be denoted 𝑡𝑖,𝑘 (Fig. 1).
For an epoch 𝑖 with no coalescent events, there will not be any
defined 𝑡𝑖,𝑗. The probability density of the gene tree for one
population is

𝑓 (𝑮|Θ, 𝜇) =
𝐸+1
∏
𝑖=1

(
𝑛𝑖−1+𝑚𝑖−1

∏
𝑗=𝑛𝑖+1

[2
𝜃 exp{−𝑗(𝑗 − 1)

𝜃 𝑡𝑖,𝑗}]

× exp{ − 𝑛𝑖(𝑛𝑖 − 1)
𝜃 (𝑡𝑠𝑖−[𝑡𝑠(𝑖−1)

+
𝑛𝑖−1+𝑚𝑖−1

∑
𝑗=𝑛𝑖+1

𝑡𝑖,𝑗])}). (5)
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FIGURE 1. Part of a gene tree in population 𝐴. Samples for population 𝐴 are taken at five distinct times, 𝑡𝑠1 < 𝑡𝑠2 < ⋯ < 𝑡𝑠5, with time running
backwards. The five sampling times split the time period for population 𝐴, (𝜏𝐴, 𝜏𝐴𝐵), into 6 epochs during which no samples are added and the number of
lineages can only decrease due to coalescence. For convenience, we let 𝑡𝑠0 = 𝜏𝐴 be the starting time and 𝑡𝑠6 = 𝜏𝐴𝐵 the ending time for population 𝐴. The
number of lineages existing at 𝑡𝑠𝑖 equals the number of lineages sampled (𝑚𝑖) plus the number surviving to 𝑡𝑠𝑖 (𝑛𝑖). For example, 3 lineages survive to time
𝑡𝑠5, so 𝑛5 = 3, and one lineage is sampled at time 𝑡𝑠5, so 𝑚5 = 1. Waiting times until coalescent events are written with two subscripts. The first indexes
the epoch and the second the number of lineages before the coalescent event. For example, during epoch (𝑡𝑠5, 𝑡𝑠6) the waiting time until the first coalescent
event is 𝑡6,4, where the 6 refers to the sixth epoch and the 4 refers to coalescent event that reduces the number of lineages from 4 to 3.

The root population does not have a time 𝑡𝑠(𝐸+1). The density
for the root population is

𝑓 (𝑮|Θ, 𝜇) =
𝐸

∏
𝑖=1

(
𝑛𝑖−1+𝑚𝑖−1

∏
𝑗=𝑛𝑖+1

[2
𝜃 exp{−𝑗(𝑗 − 1)

𝜃 𝑡𝑖,𝑗}]

× exp{−𝑛𝑖(𝑛𝑖 − 1)
𝜃 (𝑡𝑠𝑖−[𝑡𝑠(𝑖−1)

+
𝑛𝑖−1+𝑚𝑖−1

∑
𝑗=𝑛𝑖+1

𝑡𝑖,𝑗])})

×
𝑛𝐸+𝑚𝐸

∏
𝑗=2

[2
𝜃 exp{−𝑗(𝑗 − 1)

𝜃 𝑡(𝐸+1),𝑗}] . (6)

The density for the complete gene tree at every locus is given
by multiplying across populations.

The MCMC Algorithms
We implemented the MSC model with dated tips in the

Bayesian inference program BPP. Markov chain Monte Carlo
(MCMC) is used to sample from the joint conditional distri-
bution of the gene trees and parameters. Here we describe new
and modified MCMC proposals.

Updating substitution rate (𝜇).—The sample times are speci-
fied by the user in units of calendar time before present. They
are fixed during the MCMC. The calendar times are multi-
plied by 𝜇 to become expected number of substitutions, as
all of the calculations in BPP are in these units. Currently in
BPP, internally branch lengths are stored in expected number
of substitutions, and previously BPP did not have time cali-
bration capabilities. Therefore, times in expected number of
substitutions are used because it required substantially less
modifications to the program. When a proposal changes 𝜇,
all sample times (in units of substitutions) must be updated
to preserve the absolute sample times.

𝑡∗
𝑠𝑖 = 𝑡𝑠𝑖 × 𝜇∗

𝜇 , (7)

where the superscript ∗ indicates a proposed value. This en-
sures the absolute sample times are constant. Since each sam-
ple is assigned to a population, the divergence times impose
constraints on the possible values of 𝜇. Change in 𝜇 must not
move the sample between populations. More specifically,

𝑦𝑠𝑖 × 𝜇∗ = 𝑡∗
𝑠𝑖 < 𝜏 (8)

This gives a local upper bound for 𝜇∗ as min{𝜏/𝑦𝑠𝑖} for all
samples in a population. The minimum of this bound over all



5.01 5.60

5.06 5.65

5.11 5.70

5.16 5.75

5.21 5.80

5.26 5.85

5.31 5.90

5.36 5.95

5.41 5.100

5.46 5.105

5.51 5.110

5.56 5.115

2024 NAGEL ET AL. - BAYESIAN INFERENCE UNDER THE MSC WITH ADNA 5

loci for all populations gives the global upper bound used in
the proposal. The lower bound is an arbitrarily small positive
number. We propose a new substitution rate, 𝜇∗, on a log scale
with sliding window, reflecting at the bounds (Yang, 2014,
p. 221–226)

𝜇∗ = 𝜇 × 𝑐 = 𝜇 × e𝜖𝑥, (9)

where 𝜖 is the fine-tune parameter (or step size) and 𝑥 is a
random variable drawn from a Bactrian Laplace distribution
(Yang and Rodríguez, 2013). This move has a proposal ratio
of 𝑐 (Yang, 2014, p. 225). The tip dates in units of expected
substitutions undergo a transformation given by

𝑡∗
𝑠𝑖 = 𝑡𝑠𝑖 × 𝜇∗

𝜇 = 𝑦𝑠𝑖 × 𝜇∗ (10)

To solve for the proposal ratio, the Jacobian is calculated.

𝜕𝑡𝑠𝑖
𝜕𝑡∗

𝑠𝑖
= ∣ 𝜇

𝜇∗ ∣. (11)

The reverse move is the inverse so the proposal ratio is one.
Updating tip ages in units of expected number of substitu-

tions without updating the coalescent times can lead to the co-
alescent times being younger than their daughter nodes, which
is not allowed. This type of move could be rejected, but rejec-
tion leads to poor mixing. To improve mixing of the MCMC,
we jointly update the coalescent times in the populations when
updating tip dates. Let 𝑏𝑖 be the age (in expected number of
substitutions) of the oldest sample that is descendant from a
node 𝑖 in the gene tree. We keep the age of 𝑡𝑖 relative to 𝑏𝑖 and
𝜏 constant (Fig. 2).

𝜏 − 𝑡∗
𝑖

𝜏 − 𝑏∗
𝑖

= 𝜏 − 𝑡𝑖
𝜏 − 𝑏𝑖

(12)

Let ℎ𝑖 = (𝜏 − 𝑡𝑖)/(𝜏 − 𝑏𝑖) and rearranging the equation,

𝑡∗
𝑖 = 𝜏 − ℎ𝑖 × (𝜏 − 𝑏∗

𝑖 ) (13)

To derive the proposal ratio,

𝐽(ℎ) = det
𝜕(𝑡1, 𝑡2, ..., 𝑡𝑛)
𝜕(ℎ1, ℎ2, ..., ℎ𝑛) =

𝑛
∏
𝑖=1

(𝜏 − 𝑏∗
𝑖 ) (14)

Proposing the change to 𝜇 on a log scale has a proposal ratio
of 𝑐. The proposal ratio for the move is thus

𝑐 × 𝐽(ℎ∗)
𝐽(ℎ) = 𝑐 ×

𝑛
∏
𝑖=1

𝜏 − 𝑏∗
𝑖

𝜏 − 𝑏𝑖
(15)

It is possible for this move to propose times such that a daugh-
ter node is older than a parent node in the gene tree. In this
case, the move is rejected.

For example, consider the gene tree embedded in the
species tree of Fig. 2. The sample time or coalescent time,
in expected number of substitutions, is labeled for each node.
A new value of 𝜇 is proposed using equation 9. The sample
times (𝑡𝑠1, 𝑡𝑠2, 𝑡𝑠3) are updated using equation 7. Then the co-
alescent times (𝑡1, 𝑡2) are updated using equation 13, resulting
in the gene tree in Fig. 2b.

Updating species divergence times.—The speciation times, 𝜏,
are proposed so that the sample times bound the possible node
ages. The age of a node is constrained above by the age of the
parent node, 𝜏𝑢, and below by the oldest daughter node 𝜏𝑙.
Samples cannot change populations, imposing an additional
constraint on speciation times. For a given population, 𝑡𝑠𝐸 is
the oldest sample across all loci. Since the samples only occur
in tip populations of the species tree, 𝜏𝑙 = 0 ≤ 𝑡𝑠𝐸. The spe-
ciation time for the parent population is thus bounded below
by 𝑡𝑠𝐸. As in the previous implementation, a proposed move
that is outside of the bounds is reflected to be within bounds.

Gene tree SPR.—The subtree-pruning-and-regrafting (SPR)
proposal applied to gene trees (Rannala and Yang, 2017) is
modified to allow for dated samples. In the implementation
without sample dates, a node or subtree in the gene tree is
selected to be pruned. The branch between the node and the
parent node is removed. To choose a time to reattach the sub-
tree, a bound on the youngest possible reattachment time is
found. If the population in which the node exists has nodes
that are not part of the subtree, the bound is equal to the node
age of the pruned node. If the population does not have nodes
which are not part of the subtree, the bound is the speciation
time for the youngest ancestral population which has gene tree
nodes that are not part of the subtree (Fig. 3). The upper bound

τ = 1 

ts1 = 0.2

ts2 = 0.3

ts3 = 0.5

t1 = 0.7

t2 = 0.95
τ = 1 

ts1
* = 0.1

ts2
* = 0.15

ts3
* = 0.25

t1
* = 0.636

t2
* = 0.925(a) (b)

FIGURE 2. Part of a gene tree within a population (a) before and (b) after a new substitution rate is proposed. Here 𝜇/𝜇∗ = 2 and the tip dates are updated
to be: 𝑏1 = max(𝑡𝑠1, 𝑡𝑠2) = 0.3, 𝑏∗

1 = max(𝑡∗
𝑠1, 𝑡∗

𝑠2) = 0.15, 𝑏2 = max(𝑡𝑠1, 𝑡𝑠2, 𝑡𝑠3) = 0.5, and 𝑏∗
2 = max(𝑡∗

𝑠1, 𝑡∗
𝑠2, 𝑡∗

𝑠3) = 0.25. Not drawn to scale.
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FIGURE 3. A gene tree to illustrate the gene-tree SPR move. If the sample at time 𝑡𝑠1 is pruned, the lower bound on the reattachment time is 𝑡𝑠1 since there
are nodes in population 𝐴 that are not in the subtree. If the reattachment time it less than 𝑡𝑠2, there is no possible reattachment point so the move is rejected. If
the sample at time 𝑡𝑠2 is pruned instead, the lower bound on reattachment is 𝑡𝑠2. Since 𝑡𝑠1 is younger than 𝑡𝑠2, it will always be possible to attach the sample
at time 𝑡𝑠2 at the proposed time. If the sample from population 𝐵 is pruned instead, the lower bound on the reattachment time is 𝜏 since there are no other
nodes within population 𝐵.

is an arbitrarily large number. A reattachment time is proposed
and reflected at the bounds.

With dated tips, it is possible that a population will have
gene-tree nodes that are not part of the subtree, but are older
than the proposed time. This may occur when the pruned node
is younger than all samples that are not part of the subtree
(Fig. 3). In this case, the move is rejected. Rejection due to
this constraint can occur only with the youngest sample in a
population and does not affect most proposals, having little
impact on mixing, and is used for simplicity.

As an example, consider the gene tree and species tree in
Fig. 3a. If the node sampled at time 𝑡𝑠1 is pruned, the lower
bound on reattachment is 𝑡𝑠1. It is possible to propose a time
between 𝑡𝑠1 and 𝑡𝑠2. In this case, the move is rejected as there
are no branches on which to attach in this time interval. If the
node sampled at time 𝑡𝑠2 is pruned, the lower bound is 𝑡𝑡2, and
there will always be at least one branch (leading to the node at
𝑡𝑠1) on which to attach. The node in population 𝐵 could also
be pruned. The lower bound for attachment is 𝜏, as there are
no other nodes in population 𝐵. Similarly, the node at time
𝑡1 could be pruned and have a lower bound for attachment of
𝜏. In Fig. 3b, the node at time 𝑡𝑠1 is pruned, and a time 𝑡∗

1 is
proposed for reattachment. In this case, the topology of the
gene tree did not change. If 𝑡∗

1 were older than 𝜏, the node
could also have been grafted to the branch from the node in
population 𝐵.

Other proposals.—The proposals to the gene tree coalescent
times and the proposal on 𝜃 did not require modifications. The
mixing proposal, which multiplies all times or node ages by
a scale factor and divides all rates by the same factor so that
the likelihood does not change (Thorne et al., 1998), is turned
off in the current implementation. Traditional mixing propos-
als that do not change the likelihood are not possible with
tip dating because the gene tree branch lengths cannot all be
proportionally rescaled while fixing the tip dates in real time.

Validation of the implementation.—To test our inference
method, we modified the simulation method in BPP to ac-
commodate serial sampling as described in SI Section 1. We

have extensively tested our simulation andMCMC implemen-
tations. Each MCMC proposal was tested by running under
the prior, which is equivalent to setting the likelihood of the
data to one. The MCMC results were compared against the
analytical results for the prior distributions when these were
known. However, the tip dates impose constraints on 𝜏s and 𝜇,
changing their prior distribution so that the ‘effective’ priors
used by the algorithm differ from the user-specified gamma
prior. This is similar to the situation in Bayesian relaxed-clock
dating where the effective priors on divergence times dif-
fer from user-specified fossil-calibration densities (Rannala,
2016). In our tests, we used rejection simulation to determine
the effective prior.

An independent simulation program was written to sam-
ple from the effective prior for a four-tip symmetric tree and
a four-tip asymmetric tree. For both, we assume that the tree
topology is fixed and the tip ages in ybp are known.

For the asymmetric tree, the simulation works as follows. A
mutation rate is drawn from the prior distribution. The sam-
ple dates in expected number of substitutions are calculated.
A root age is drawn from the prior. Two node ages are drawn
on a uniform distribution between zero and the root age. The
times are rank ordered to determine the node ages. If the node
ages are younger than the sample dates in a daughter popu-
lation, the move is rejected. Otherwise, the times are stored.
This is repeated until the desired number of samples has been
obtained. With a symmetric tree, the simulation works simi-
larly except that the ages for the two (non-root) internal nodes
are drawn independently from a uniform distribution between
zero and the root age.

Bayesian Simulation to Validate the Implementation of the
MCMC Algorithms

Bayesian simulation is a technique to assess the correctness
of a Bayesian inference program, in which a set of parame-
ters of the model are drawn from their prior distributions and
then used to simulate a replicate dataset. Then, the inference
program is used to analyze each dataset using the priors from
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which the parameters were drawn, to generate the posterior of
the parameters. When the posteriors from replicate datasets
are combined, the mixture distribution (or average posterior)
should match the prior distribution (Flouri et al., 2022).

Bayesian simulation was conducted on a four-tip symmet-
ric tree with five individuals per species. Sample times were
drawn from a uniform distribution between 0 and 50,000 years
before present. The sample times were the same for all repli-
cate datasets. Each replicate dataset had 100 loci that were
1000 base pairs in length. Sequence data were simulated with
the Jukes–Cantor model (Jukes and Cantor, 1969). As noted
above, the prior distribution for some of the parameters in the
model is not known analytically. Given the fixed set of sam-
ple times and species tree, the rejection simulation method
was used to draw parameters from the prior distribution of
the 𝜏s and 𝜇. The 𝜃s were drawn using their analytical prior
distributions. We simulated 3000 replicate datasets. The root
age was assigned the prior Γ(10, 100), the mutation rate had
𝜇 ∼ Γ(10, 108), and 𝜃 ∼ Γ(8, 2000). Full MCMC analysis
descriptions are provided in SI Section 2.

Inference with Extinct Species
Simulations: nuclear DNA.—To investigate the performance
of the method with extinct species, sequence data were sim-
ulated for a four-species symmetric tree, with either one or
two extinct species (Fig. 4a). We used 𝜃 = 0.001 or 0.0001
for all populations, which may be representative of great apes
(Kaessmann et al., 2001). For each extant population 3 diploid
individuals were sampled, with two phased sequences per lo-
cus. For each extinct population either three or six diploid
individuals were sampled, with two phased sequences per lo-
cus. Datasets had 10, 100, 500, or 2000 loci of 1000 sites each.
Sequence data were simulated with a Jukes–Cantor model;
for closely related species that experience fewmultiple substi-
tutions a more complex model is unnecessary. The mutation
rate 𝜇 was assumed constant across loci with rate 10−9 muta-
tions per year. For each of the extinct populations, the sample
date for each individual was drawn from 𝑈(0, 1). The extinct
populations were assumed to have become extinct 5000 years
before present. The date for each individual was rescaled to
be between 5000 and 10,000 or 5000 and 50,000 ybp. The
number of samples for each extinct species, the number of
extinct species, number of loci, value of 𝜃, and age of the sam-
ples were examined factorially. For each set of conditions, 20
replicate datasets were simulated. For one replicate, the uni-
form draws to determine the sampling dates were the same for
all of the loci and date ranges. This may mimic the scenario
of sampling the same individuals and collecting more loci
from them. Relative to the three-individual datasets, three in-
dividuals with sampling dates were added in the six-individual
datasets. Note that sequence data and coalescent times were
simulated independently for each dataset and differ among
datasets.

The root age prior was Γ(10, 1000). The mutation rate prior
was 𝜇 ∼ Γ(10, 1010). The 𝜃 prior was Γ(2, 2 × 104) and
Γ(2, 2 × 105) for 𝜃 equal to 0.001 and 0.0001, respectively.
The priors were chosen to have the means centered at the true
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ABCD
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CD
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(a) Species tree 

(b) Population tree 

Myrs

Kyrs

FIGURE 4. (a) The tree used to simulate data with either species A or both
A and C extinct. In both cases, the root was 10 million years old, node AB
was 7 million years and node CD was 4 millions years old. The extinction
occurred at 5000 ybp. (b) The tree used to simulate recent population diver-
gences. The root age is 20 kyr. The age of node AB is 5 kyr and the age of
node CD is 13 kyr.

parameter values. The mean of the distribution Γ(𝛼, 𝛽) is 𝛼/𝛽
with variance 𝛼/𝛽2.

Simulations: mitochondrial DNA.—Using the same tree as the
nuclear DNA simulations (Fig. 4a), data were simulated with
parameters similar to mitochondrial DNA. Specifically, each
individual has a single locus that was 16,000 base pairs in
length (Boore, 1999) with 𝜇 = 10−8 substitutions per year.
10 individuals were sampled for each extant population. 10,
20, or 100 individuals were sampled for each extinct popula-
tion. 𝜃 was either 0.0025 or 0.00025 for all populations. 𝜃 and
the number of individuals sampled in the extinct populations
were varied factorially. As in the nuclear datasets, the dates
from the 10 individual datasets matched 10 of the individuals
in the 20 individual datasets, and the dates from the 20 indi-
vidual datasets matched 20 of the dates in the 100 individual
datasets.

The mutation rate was assigned the prior 𝜇 ∼ Γ(10, 109).
The prior for population sizes was 𝜃 ∼ Γ(2.5, 103) and
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Γ(2.5, 104) for the larger and smaller values of 𝜃, respectively.
The age of the species tree root had the prior 𝜏 ∼ Γ(4, 400).
Other priors remained the same as in the previous analyses.

Inference of Recent Population Divergences
To investigate the ability of the method to estimate recent

divergence times, data were simulated using a four tip tree
with a root age of 20 kyr (Fig. 4b). Three individuals were
sampled per population, each with two-phased sequences per
locus. Sample ages were drawn between 0 and the divergence
time for each population. Datasets were simulated with either
10, 100, 500, or 2000 loci. 𝜃 was either 0.001 or 0.0001. The
number of replicate datasets simulated for each number of loci
was 20. The sample dates were redrawn for each of the 20
replicate datasets.

The root age was assigned the prior 𝜏 ∼ Γ(20, 106). The
mutation rate was assigned the prior 𝜇 ∼ Γ(10, 1010). The
prior for 𝜃 was Γ(10, 104) and Γ(10, 105), for the high and
low values of 𝜃, respectively. As before, the prior meansmatch
the true parameter values. Note that the root age and 𝜇 have
to be compatible with the fixed sample dates and their effec-
tive priors after the truncation differ from the specified gamma
distributions.

Treating Ancient Samples as Contemporary
To examine the effects of ignoring sample dates, the

simulated datasets were reanalyzed with all of the sample
dates set to zero. The BPP program with tip dating op-
tions implemented was also used for these analyses and
all priors, including the mutation rate prior, remained the
same.

MCMC Analysis Details for Simulations
For the simulations with extinct species, a recent population

divergence, and ancient samples treated as contemporary,
MCMC run length and checks for convergence are described
in the SI Section 3. All MCMCs that did not converge were
run longer. If they still did not converge, those datasets
were excluded from the remaining analysis. At least half of
all MCMCs for any particular set of parameters converged.
Datasets with more loci were more likely to fail to converge,
which is common in phylogenetic analyses.

Empirical Analysis of Mammoths and Elephants
Mitochondrial dataset.—The mitochondrial alignment from
van der Valk et al. (2021) was downloaded (see Supple-
mentary). This dataset includes forest (Loxodonta cyclotis),
savanna (Loxodonta africana), and Asian (Elephas max-
imus) elephants, woolly mammoths (Mammuthus primige-
nius), Columbian mammoths (Mammuthus columbi), and
mammoths not identified to the species level. Sequences of
unknown age or from unknown species were removed from
the dataset. Sequences of Columbian mammoths were also
removed, as researchers have suggested a potential hybrid ori-
gin (van der Valk et al., 2021). This resulted in 10 elephant

sequences and 69 woolly mammoth sequences. The calibrated
sample dates published in the original papers were used.

Additional sequences were downloaded from GenBank, in-
cluding four savanna elephants, eight forest elephants, and
three Asian elephants (Supplementary Figure S1). The se-
quences were realigned with MUSCLE (v3.8.425) using the
default settings (Edgar, 2004). Sites in the alignment with
more than 25% missing data were removed. This was almost
entirely sites at the beginning or end of the alignment. Three
sequences from forest elephants were recovered from a ship
that sank. The shipwreck year was used as the sample ages for
these specimens (Supplementary Figure S1). All other extant
species sequences were assigned sample ages of zero.

A HKY+Γ(4) substitution model was used (Hasegawa
et al., 1985; Yang, 1994) to account for the extreme transi-
tion/transversion rate bias due to DNA degradation. The prior
for 𝜃 was Γ(2, 200). The prior for 𝜏 was Γ(22, 1000). The
prior for 𝜇 was Γ(10, 109). The reasoning for the prior choices
is described in Supplementary material.

Nuclear dataset.—The dataset from Rohland et al. (2010) was
reanalyzed using BPP. The dataset has three extant species:
Asian, forest, and savanna elephants; and two extinct species:
woollymammoths andAmericanmastodons (Mammut ameri-
canum). There are 347 loci, averaging 106 base pairs in length.
One individual was sampled per species. The mastodon data
are phased, but has one sequence for each individual at each
locus, and all other sequences are unphased. The woolly mam-
moth sample is dated to approximately 43,000 ybp and the
mastodon sample is dated to between 50,000 and 130,000 ybp
(Römpler et al., 2006; Rohland et al., 2007).

Analyses were conducted using either 50,000, 90,000, or
130,000 ybp as the sample date for the mastodon. The analy-
sis was also repeated without the mastodon sample, both due
to the uncertain age and concerns about DNA degradation, as
described in original analysis of this dataset (Rohland et al.,
2010). The JC model substitution model was used. The prior
for 𝜏 was Γ(16, 1000) and Γ(3.5, 1000) with and without the
mastodon sample, respectively. The prior for 𝜃 was Γ(2, 2000)
and the prior for 𝜇 was Γ(5, 1010). The reasoning for the prior
choices is described in Supplementary material.

RESULTS
The correctness of the implementation was assessed us-

ing Bayesian simulations. The statistical performance of the
method was tested using two population histories, a his-
tory of ancient species divergence and a recent population
divergence, each with four populations. On a four popula-
tion tree, the method estimates the three divergence times
in units of years (𝜏△) and expected number of substitutions
(𝜏), the seven effective population sizes (𝜃), and the mutation
rate (𝜇). Simulated nuclear datasets were used for both his-
tories and simulated mitochondrial datasets were used for the
species divergence. The effect of treating the aDNA sequences
as contemporary was investigated for all datasets. Two ele-
phant and mammoth datasets were analyzed with the new
method.

https://doi.org/10.5061/dryad.4mw6m90h0
https://doi.org/10.5061/dryad.4mw6m90h0
https://doi.org/10.5061/dryad.4mw6m90h0
https://doi.org/10.5061/dryad.4mw6m90h0
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FIGURE 5. Posterior distributions for individual replicates in the Bayesian simulation. Each solid colored line shows the posterior distributions of repre-
sentative replicates. The dotted lines show the prior distributions. The y-axis scale is different for the prior and posterior distributions for the first two rows.
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FIGURE 6. Priors (black-dotted line) and average posterior (solid red line) distributions for parameters in the model in Bayesian simulation.

Bayesian Simulation
The data generated for the Bayesian simulations were very

informative about the speciation times and the mutation rate
(Fig. 5). There was also information about the population sizes
in the tip populations. However, there was very little infor-
mation about the ancestral population sizes, as the posterior
distributions very closely resembled the prior distributions.
The combined posterior distributions of the MCMCs closely
matched the prior distributions for all parameters (Fig. 6). This
suggests the program is correctly implemented. For parame-
ters for which the data are more informative, such as the 𝜏s (as
seen by a low variance in the posterior distributions for indi-
viduals replicates), the combined distributions are less smooth
as expected.

Simulations: Species Divergence
Inference under the correct model.—Here we examine the
effects of the number of loci and the number of sequences
(sampled individuals) on the estimation of mutation rate (𝜇)
and divergence times (𝜏s), obtained from simulated nuclear
and mitochondrial sequences. As the number of loci increased
with nuclear sequences and the number of samples increased
with mitochondrial sequences, estimates of 𝜏△ improved
(Figures 7a and 8b). This improvement is a result of bet-
ter estimates of both 𝜇 and 𝜏 with more loci (Figure 7b,c).
Going from 500 to 2000 loci, the average size of the 95%
HPD interval decreases much more for 𝜇 than 𝜏. The 95%
credible intervals were much smaller for the nuclear analysis
with many loci than for the mitochondrial analysis with many
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FIGURE 7. Average posterior means and 95% HPD CIs (bars), over 20
replicate datasets, of (a) divergence times in mutations, (b) divergence times
in years, (c) mutation rate, and (d) divergence times in years when the sam-
ples are treated as contemporary. The data were simulated under the model
of fig. 4a with two extinct species (𝐴 and 𝐶), sample dates are between 5000
and 50,000 years, and 𝜃 = 0.0001. The dashed lines show the true parameter
values.

individuals. The coverages (frequency at which the true pa-
rameter value was contained in the 95% credible set) for
all datasets with 2000 loci were 97.9% for all divergence
times (𝜏△

𝐴𝐵𝐶𝐷, 𝜏△
𝐴𝐵, 𝜏△

𝐶𝐷) and 97.6% for 𝜇, respectively. The

coverages for all mitochondrial analyses were 97.8%, 97.8%,
97.6%, and 97.6% for 𝜏△

𝐴𝐵𝐶𝐷, 𝜏△
𝐴𝐵, 𝜏△

𝐶𝐷, and 𝜇, respectively.
The precision and accuracy of estimates of 𝜇 in the most

informative case (2000 loci) were most impacted by the age
range of the samples, with older dates giving more precise es-
timates (Figure 9, Supplementary Figure S4). Increasing the
number of samples for each extinct species and the number
of extinct species also improved estimates of 𝜇 but to a lesser
degree, with the former (number of samples) having the great-
est impact. The trends for the estimates of 𝜇 are similar with
the mitochondrial datasets (Supplementary Figure S4). Using
a smaller true value of 𝜃 in the simulations for all popula-
tions improved estimates of 𝜇 and 𝜏 (Figure 7, Supplementary
Figure S2).

Biases when ancient samples were treated as contemporary.—
Here we examine the potential negative impacts on estimates
of 𝜇, 𝜏, and 𝜃 if ancient samples are treated as contemporary
(e.g., with sample dates set to zero) when analyzing the simu-
lated nuclear sequences. Both𝜇 and 𝜏△ were poorly estimated
when ancient samples were treated as contemporary (Figure
7d and Supplementary Fig. S8b) with increased widths of
credibility intervals and estimates of 𝜃 for extinct species were
biased to be too large (Supplementary Figures S3 and S5).
Without tip ages, the posterior distribution of 𝜇 is the same
as the prior distribution because 𝜇 and 𝜏 are not identifiable
in this case—only their product can be estimated. In this
case, the estimates of 𝜇 are determined solely by the prior
and are not impacted by the number of loci (Supplementary
Fig. S6).

Simulations: Population Divergence
Inference under the correct model.—Here we examine the ef-
fects on inference of 𝜇, 𝜏, and 𝜃 of increasing the number
of loci when considering populations that have recently di-
verged. There is much less information in this case and priors
have more influence on the posterior, even with 2000 loci.
As the number of loci increased, estimates of population di-
vergence time (𝜏) improved, with smaller credible sets and
less bias (Fig. 8a). With less data, estimates of 𝜏 were up-
wardly biased, apparently due to the influence of the prior.
With 2000 loci, the coverages for 𝜏𝐴𝐵𝐶𝐷, 𝜏𝐴𝐵, and 𝜏𝐶𝐷 were
all 100% and for 𝜇 the coverage was 88.9%. The mutation rate
was biased downward with smaller amounts of data, likely
due to the interaction of the prior and the sample ages. The
bias decreased as the amount of data increased (Supplemen-
tary Fig. S7). Of the 𝜃 parameters, only the root population
size was estimated with increased precision as the amount of
data increased (Supplementary Fig. S7). This is likely due to
the fact that few lineages are expected to coalesce in con-
temporary populations due to the young divergence times
relative to the effective population size (most will coalesce
in the root population), so there is little information about
contemporary 𝜃s.

Biases when ancient samples were treated as contemporary.—
When the samples were treated as contemporary, pop-
ulation divergence times were underestimated (Fig. 8a).
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FIGURE 8. Average posterior means and 95% CIs of divergence times in years over 20 replicate datasets simulated (a) under the model of Fig. 4b with
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in the method, while the right column is for results when all sample dates are set to zero. In both (a) and (b), there are two extinct species (𝐴 and 𝐶) with
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This effect was more pronounced for 𝜏𝐴𝐵 and 𝜏𝐶𝐷 than
𝜏𝐴𝐵𝐶𝐷; the credible sets for these parameters became smaller
and the bias became larger as the number of loci in-
creased.

Analysis of Genomic Data from Elephants and Mammoths
Mitochondrial dataset.—The posterior mean divergence time
estimate for the two African elephants of 29 Ka was extremely
recent and the posterior mean divergence time between the
Eurasian and African elephants of 1.6 Ma was much smaller
than previous estimates of 7.6 Ma (Table 2). The mean of the
posterior distribution of the mutation rate was higher than the
mean of the prior. The mean transition transversion ratio, 𝜅,
was 46, which is at least an order of magnitude larger than
typical empirical datasets for mammals, likely due to DNA
degradation.

Nuclear dataset.—The estimates of the 𝜏s and 𝜇 were very
similar for all analyses, independent of whether the mastodon
sample was included in the analysis and of the sample ages
used for the mastodon (Table 2). The divergence between the
African elephants, Asian elephant andmammoth, African and
Eurasian elephants, and mastodon was estimated to be 3.0
(0.7-6.3) Ma, 2.7 (0.6-5.7) Ma, 5.5 (1.6-11.3) Ma, and 24.6
(6.9-50.6) Ma, respectively, for the dating of the mastodon
at 90 Ka (Fig. 10). The credible sets were large for 𝜏△, re-
flecting the limited information about 𝜇 available from these
data. The estimates were broadly concordant with results from
previous studies when analyzing either the nuclear or mito-
chondrial DNA, though the point estimates of the divergence
times tend to be slightly more recent.

DISCUSSION
Ancient DNA data provide a new way to study his-

torical populations and their relationships to contemporary
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TABLE 2. Estimates of species divergence times

Analysis mastodon age 𝜏△
𝐹𝑜𝑟𝑒𝑠𝑡,𝑆𝑎𝑣𝑎𝑛𝑛𝑎ℎ 𝜏△

𝑀𝑎𝑚𝑚𝑜𝑡ℎ,𝐴𝑠𝑖𝑎𝑛 𝜏△
𝑀𝑎𝑚𝑚𝑜𝑡ℎ/𝐴𝑠𝑖𝑎𝑛,𝐴𝑓 𝑟𝑖𝑐𝑎𝑛 𝜏△

𝑀𝑎𝑡𝑠𝑡𝑜𝑑𝑜𝑛,𝑒𝑙𝑒𝑝ℎ𝑎𝑛𝑡/𝑚𝑎𝑚𝑚𝑜𝑡ℎ 𝜇 × 10(−9)

mt NA 29 (6.4 - 49) Ka 1.6 (0.7 - 2.3) Ma 1.9 (1.4 - 2.4) Ma NA 15 (11 - 18)
nuclear 50 KY 3.0 (0.7 - 6.4) Ma 2.7 (0.7 - 5.7) Ma 5.5 (1.6 - 11.4) Ma 24.7 (7.0 - 50.8) Ma 0.50 (0.12 -0.95)
nuclear 90 KY 3.0 (0.7 - 6.3) Ma 2.7 (0.7 - 5.7) Ma 5.5 (1.6 - 11.3) Ma 24.6 (6.9 - 50.6) Ma 0.50 (0.11 -0.94)
nuclear 130 KY 3.0 (0.7 - 6.3) Ma 2.7 (0.7 - 5.7) Ma 5.5 (1.5 - 11.2) Ma 24.7 (7.1 - 51.0) Ma 0.51 (0.13 -0.95)
nuclear NA 3.0 (0.8 - 6.4) Ma 2.7 (0.7 - 5.6) Ma 4.8(1.4 - 10.1) Ma NA 0.51 (0.12 -0.96)
mt (Rohland 2007) NA NA 6.7 (5.8-7.7) Ma 7.6 (6.6-8.8) Ma 26 (24-28) Ma 4.2 (3.6 -4.9)
nuclear (Rohland 2010) NA (2.6-5.6) Ma (2.5-5.4) Ma (4.2 - 9.0) Ma (34-72) Ma NA

Estimates of species divergence times (posterior means with the 95% HPD CIs in parentheses) for elephants and mammoths (Fig. 10) in BPP analysis of
mitochondrial (mt) and nuclear data. The nuclear data are analyzed assuming different sample date for the mastodon. Results for Rohland (2007) and (2010)
are the 95% and 90% CIs, respectively.
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FIGURE 10. Phylogeny of the elephants and mammoths showing divergence times obtained in BPP analysis of the nuclear data with the mastodon sample
date set at 90 KY. Branch lengths represent posterior means while node bars represent the 95% HPD CIs (Table 2).

populations. However, the processes that generate aDNA data
do not fit the model assumptions commonly used in aDNA
analyses. Here, a new MSC model with tip dating was de-
veloped to incorporate the sample ages into population ge-
nomic data analysis for multiple species and implemented
in BPP.

The simulation study demonstrates that the newmethod ac-
curately and precisely estimates speciation times in ybp for
a variety of data types, including nuclear and mitochondrial
sequences, and for population histories with divergence times
ranging from several thousand to several million years. In
particular, with more loci, more samples, and more extinct
species, the confidence intervals for the divergence times be-
come smaller. While the simulation study only used up to
2000 loci, the trend suggests that more loci could lead to even
greater improvements in the estimates.

The ability of the method to infer times in years is based
on the sampling of genetic data through time. This provides a
means to separately estimate the mutation rate and time and
thus to convert branch lengths from expected numbers of sub-
stitutions to years. Many methods used with aDNA assume a
particular mutation rate, which makes the results highly sen-
sitive to that parameter choice. As a Bayesian method, BPP
naturally accommodates uncertainty, allowing the prior vari-
ance to be chosen to reflect the uncertainty in mutation rate.
Our simulation showed that even at the low mutation rate, re-
liable estimation of the mutation rate and absolute divergence
times is possible when a large number of loci are used.

The simulation study also demonstrated detrimental ef-
fects that ignoring sample dates can have on inference. In
all population histories explored in this simulation study,
mutation scaled population sizes (𝜃) of populations with
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aDNA were overestimated and divergence time in years
had wide credible intervals when ages were ignored. The
large credible intervals for divergence times were driven by
the uncertainty in mutation rate. Without sample dates, the
posterior distribution of 𝜇 is the same as the prior dis-
tribution, reflecting the lack of separate information about
rate and time. For recent population divergences, we ob-
served that the divergence times were underestimated when
ancient samples were incorrectly treated as contemporary.
This reflects the effects of “missing” mutations between the
present time (time zero) and the sample time when using
an incorrect model. This effect was not observed for sim-
ulations that used extinct species, likely because the miss-
ing branch length comprised a much smaller proportion of
the branch.

The method assumes that the species tree is known, there is
no migration between species, and sequence evolution follows
a strict clock. The latest version of BPP relaxes these assump-
tions (Flouri et al., 2018, 2020, 2023), but does not include tip
dating. Future work should merge these models into the pro-
gram with tip dating. BPP also assumes every sample has a
known age, in contrast to programs such as BEAST which al-
lows uncertain ages. Adding unknown sample dates for aDNA
to BPP would naturally accommodate the use of data without
known sample dates, such as the mastodon data used in this
study.

An alternative to tip dating when calibrating a molecular
phylogeny is to use fossil calibrations. With aDNA, tip dat-
ing can be combined with fossils to estimate a time scaled
phylogeny, which is currently possible in BEAST. How-
ever, placing fossils on the phylogenetic tree is often diffi-
cult and error prone; aDNA samples have the advantage that
they can provide calibrations and be positioned on the tree,
through the use of sequence data rather than using sparse
morphological characters as with fossils. Since fossils pro-
vide additional information, a combined approach may al-
low for more accurate estimation of divergence times, but
only if fossils can be accurately placed. BPP does not cur-
rently accommodate fossil calibrations. Incorporating fos-
sil calibrations in BPP is another possible area of future
work. Fossil calibrations are typically specified in ybp. Fu-
ture implementations could use branch lengths in ybp to
incorporate fossils or different clock models which could
allow for simpler algorithms that avoid some of the con-
straints imposed by using branch length in expected number of
substitutions.

The new method had convergence issues, particularly in
analysis of large datasets (e.g., with 2000 loci). Ancestral pop-
ulation sizes often did not converge when the rest of the pa-
rameters did converge. In a more limited set of simulations,
the root age in expected number of substitutions also had
convergence issues. Often it is difficult to get large datasets
to converge because the likelihood is very concentrated, so
the MCMCs mix poorly. This is supported by the fact large
datasets converged less often. If the datasets that did not con-
verge had comparatively concentrated likelihoods, discarding
those datasets would remove the most informative datasets,
thus making the average performance of the method appear
worse.

The mitochondrial mammoth and elephant datasets pro-
duced younger estimated divergence times, by comparison
with previous estimates, when analysed with our newmethod.
The very young divergence time between African elephants
may reflect recent migration (reviewed in Roca, 2019). The
other divergence times are also younger than the nuclear anal-
ysis and other analyses. The estimate of 𝜅, the transition
transversion rate ratio, is extremely large, about an order of
magnitude higher than typical values. This is likely a result
of DNA degradation, which causes excessive post-mortem C
to T changes (or G to A changes on the other strand), result-
ing in very high transition rates. The elevated 𝜅 combined
with the relatively high mutation rate estimate suggests the
dataset contained degraded sequences which inflated muta-
tion rate estimates and resulted in estimation of young diver-
gence times. Research using aDNA, including van der Valk
et al. (2021) who generated the dataset we analyzed, typically
extensively characterizes evidence for DNA degradation and
attempts to remove degraded sequences. However, our results
suggest this approach may be insufficient to remove the im-
pact of degradation and highlights the need to systematically
assess and potentially model the impact of DNA degradation
in downstream analysis (Ho et al., 2007; Axelsson et al., 2008;
Rambaut et al., 2009).

The estimates of divergence times with the elephant and
mammoth nuclear dataset were broadly consistent with pre-
vious estimates using fossil calibrations. The large credible
intervals reflect the limited amount of information about 𝜇
in the data. The simulation study suggests that more ancient
samples and more loci would improve the precision of the
estimates of 𝜏△s and 𝜇.

The age of the mastodon sample did not meaningfully im-
pact the results. Thismay be due to the relatively small number
of loci and the short sequence lengths. This suggests that with
a limited amount of data, uncertainty in sample dates have less
impact on the results than uncertainty in other model parame-
ters. Moreover, existing analyses with small amounts of data
with uncertain sample dates may report reasonable results.
However, the simulations show that incorrect sample dates
negatively affect inference as the amount of data increases. As
analyses of large genomic datasets including aDNA become
more commonplace, researchers should use methods which
explicitly account for sample dates, even with relatively young
aDNA.
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