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Abstract.—Analysis of genomic data in the past two decades has highlighted the prevalence of introgression as an important 
evolutionary force in both plants and animals. The genus Drosophila has received much attention recently, with an analysis 
of genomic sequence data revealing widespread introgression across the species phylogeny for the genus. However, the 
methods used in the study are based on data summaries for species triplets and are unable to infer gene flow between sister 
lineages or to identify the direction of gene flow. Hence, we reanalyze a subset of the data using the Bayesian program BPP, 
which is a full‑likelihood implementation of the multispecies coalescent model and can provide more powerful inference 
of gene flow between species, including its direction, timing, and strength. While our analysis supports the presence of 
gene flow in the species group, the results differ from the previous study: we infer gene flow between sister lineages un‑ 
detected previously whereas most gene‑flow events inferred in the previous study are rejected in our tests. To verify our 
conclusions, we performed simulations to examine the properties of Bayesian and summary methods. BPP was found to 
have high power to detect gene flow, high accuracy in estimated rates of gene flow, and robustness under misspecification 
of the mode of gene flow. In contrast, summary methods had low power and produced biased estimates of introgres‑ 
sion probability. Our results highlight an urgent need for improving the statistical properties of summary methods and 
the computational efficiency of likelihood methods for inferring gene flow using genomic sequence data. [BPP; Drosophila; 
introgression; migration; multispecies coalescent; MSC‑I; MSC‑M.]
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Introgression—cross‑species gene flow via hybridiza‑
tion and backcrossing—challenges the classical view of
species as reproductively isolated entities. Historically,
zoologists disregarded its importance, arguing that “in‑
trogression is rare and probably negligible as an evolu‑
tionary factor” (Mayr, 1963). Underlying this perception
is the observation that hybrids are often far less fertile
than the parental species. However, recent studies an‑
alyzing genomic sequence data have found hybridiza‑
tion or introgression to be pervasive across the tree of
life, from Neotropical orchids (Pinheiro et al., 2010), to
mosquitoes (Fontaine et al., 2015; Thawornwattana et al.,
2018), Cichlid fishes (Malinsky et al., 2018), Panthera cats
(Figueiro et al., 2017), and ancientHominins (Green et al.,
2010).
Gene flow, in addition to ancestral polymorphism,

may cause gene trees to differ from the species tree
(Leaché et al., 2014; Long and Kubatko, 2018; Jiao et al.,
2020), posing challenges to species tree inference. The
need to infer species phylogenies despite genealogical
discordance across the genome, along with a desire to
unravel the role of introgression in the history of species
divergence and ecological adaptation, hasmotivated the
development of statistical methods to detect gene flow
and to estimate its rate (see Jiao et al. 2021; Hibbins and
Hahn 2022 for reviews).
Summary methods for inferring gene flow and es‑

timating its strength use summaries of genomic data,

such as frequencies of gene trees or average genome‑
wide distances between populations. Most summary
methods operate on species triplets (or quartets if an
outgroup is included). For example, the 𝐷‑statistic (or
ABBA‑BABA test) (Green et al., 2010) and HYDE (Blis‑
chak et al., 2018) test for gene flow using genome‑wide
site‑pattern counts in a species quartet. HYDE assumes
a hybrid‑speciation model with symmetrical popula‑
tion sizes (Blischak et al., 2018; Ji et al., 2023). SNAQ
(Solis‑Lemus andAne, 2016; Solis‑Lemus et al., 2017) is a
pseudo‑likelihoodmethod that uses reconstructed gene
tree topologies (see also Yu et al., 2012), while QUIBL
(Edelman et al., 2019) uses estimated internal branch
lengths in gene trees. Summary methods are compu‑
tationally efficient but have two limitations. First, they
use only a portion of the information in the multilocus
sequence data. For example, 𝐷 and HYDE use a few site‑
pattern counts pooled across the genome but ignores
information concerning gene flow in the variation of ge‑
nealogical history across the genome (Lohse and Frantz,
2014; Shi and Yang, 2018; Zhu and Yang, 2021). SNAQ
uses gene‑tree topologies and ignores information in
gene‑tree branch lengths or coalescent times. Second,
summary methods based on gene trees (e.g., SNAQ and
QUIBL) do not accommodate the uncertainties and er‑
rors in reconstructed gene trees, which may be consid‑
erable when the species are closely related and the se‑
quences are highly similar. Methods that use gene‑tree
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branch lengths are in particular prone to random sam‑
pling errors (DeGiorgio and Degnan, 2014). Under the
multispecies coalescent (MSC)model, gene trees are un‑
observed latent variables; one should average over them
when inferring the species tree or estimating the rate of
gene flow rather than estimating them using phyloge‑
netic programs and treating the estimates as observed
data. As a result of limitations such as those, most sum‑
marymethods are unable to identify gene flow between
sister lineages, or to infer the direction or timing of gene
flow (Degnan, 2018; Jiao et al., 2021; Yang and Flouri,
2022; Ji et al., 2023; Pang and Zhang, 2024). Summary
methods may be useful to suggest candidate introgres‑
sion scenarios but may have limitations when used to
characterize the complex history of species divergence
and between‑species gene flow when data are available
from many species.
In contrast, likelihood methods under the MSC make

a full use of information in multilocus sequence align‑
ments (Degnan, 2018; Rannala et al., 2020; Jiao et al.,
2021). Both the MSC‑introgression (MSC‑I) and the
MSC‑migration (MSC‑M) models are implemented in
the Bayesian Markov chain Monte Carlo (MCMC) pro‑
gram BPP (Flouri et al., 2020, 2023). The MSC‑I model
assumes that gene flow occurs as a major discrete event
at a certain time point (Wen and Nakhleh, 2018; Zhang
et al., 2018; Flouri et al., 2020). The MSC‑M model as‑
sumes continuous gene flow that occurs over extended
time periods (Hey et al., 2018; Flouri et al., 2023). In
simulations, BPP produced accurate estimates of intro‑
gression probabilities and introgression times (Huang
et al., 2020, 2022a) and showed high power for detect‑
ing gene flow (Ji et al., 2023; Pang and Zhang, 2024).
While likelihood methods involve intense computa‑
tion, recent implementations of computationally effi‑
cient algorithms in BPP have made it possible to ana‑
lyze large datasets with thousands of loci. The current
version of BPP has the limitation that a full paramet‑
ric model of gene flow must be specified, including the
species tree, the introgression/migration events, and the
species/populations involved. Programs such as PHY‑
LONET (Wen andNakhleh, 2018) and BEAST (Zhang et al.,
2018) have included MCMC moves between introgres‑
sion models but are not feasible computationally except
for very small datasets with < 100 loci.
A recent phylogenomic analysis of protein‑coding

genes from Drosophila revealed widespread introgres‑
sion across a phylogeny of 149 species (Suvorov et al.,
2022). The data were split into nine well‑supported
clades to detect gene flow within each. Several tests
based on rooted triplets (or unrooted quartets) were
employed, including two newly developed approaches:
the discordant count test (DCT) and branch length test
(BLT) (Suvorov et al., 2022). Applied to species triplets,
DCT appears to be equivalent to SNAQ (Solis‑Lemus
and Ane, 2016; Solis‑Lemus et al., 2017), while BLT is
similar to QUIBL as both use estimated branch lengths
in triplet gene trees. Another method used by Suvorov
et al. (2022) is PHYLONET (Wen et al., 2018), which takes

inferred gene‑tree topologies as input data and ignores
information in coalescent times. Those methods cannot
identify gene flow between sister lineages and cannot
identify the direction of gene flow. As gene flow in‑
volving ancestral species may show up in many triplet
tests, a heuristic metric called 𝑓 ‑branch was used to
move introgression events to ancestral branches in the
given species tree (Malinsky et al., 2018). The approach
does not consider species divergence times or introgres‑
sion times and may assign gene flow to donor and re‑
cipient populations that were not contemporary. Such
limitations of the analytical methods used by Suvorov
et al. (2022) suggest a need for reanalysis of the data
using likelihood methods such as BPP. In a recent anal‑
ysis of exonic data from six Rocky Mountain chipmunk
species in the Tamias group, the summarymethodHYDE
failed to detect any signal of gene flow affecting the nu‑
clear genome, in contrast to the mitochondrial genome,
which is well‑known to be involved in rampant gene
flow in the group, prompting discussions of cytonu‑
clear discordance (Sarver et al., 2021). However, a re‑
analysis of the same data using BPP detected robust ev‑
idence for multiple ancient introgression events affect‑
ing the nuclear genome, including one between sister
species (Ji et al., 2023), suggesting no evidence for cy‑
tonuclear discordance. Thus, analyses of the same data
using summary (Sarver et al., 2021) andBayesian (Ji et al.,
2023) methods produced opposing biological conclu‑
sions. It is unclear whether the conclusions of Suvorov
et al. (2022) are similarly affected by the use of summary
methods.
Here, we apply the MSC‑I and MSC‑M models im‑

plemented in BPP (Flouri et al., 2020, 2023) to reanalyze
a subset of the Drosophila data of Suvorov et al. (2022).
We used data from clade 2, which showed the strongest
signal of introgression in the analysis of Suvorov et al.
(2022, Table 1). Consistent with Suvorov et al. (2022), we
detected strong evidence for gene flow, but the details
differ. The strongest signature of introgression in our
analysis is between two sister lineages, not detected by
Suvorov et al. (2022), while several gene‑flow scenarios
inferred by Suvorov et al. (2022) are rejected in our test.
To understand the differences in the results from the
two studies, we conduct computer simulations to eval‑
uate the statistical properties of BPP and the summary
methods used by Suvorov et al. (2022), including HYDE,
QUIBL, DCT, BLT, and SNAQ. Our results suggest that
the different results may be explained by the lack of
power of the summary methods used. Our study high‑
lights the need and importance of using powerful statis‑
tical methods to infer gene flow using genomic datasets.

MATERIALS AND METHODS

The Drosophila Dataset
Suvorov et al. (2022) generated and compiled se‑

quence alignments for 2794 single‑copy protein‑coding
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FIGURE 1. a) Species phylogeny for 11 Drosophila species in clade 2 of Suvorov et al. (2022) showing potential gene‑flow events in our initial
model. Arrows represent potential gene‑flow events, based on analyses of species triplets by Suvorov et al. (2022) (Table S1) and on BPP estimates
of divergence times. b) Final model of gene flow from our analysis, with two gene‑flow events from branches 𝑟𝑎 to 𝑟𝑏 (i.e., 𝑤 → 𝑧) and from 𝑎𝑐
to 𝑟𝑏 (𝑥 → 𝑦). Estimates of the introgression probability (𝜑) in the MSC‑I model and migration rate (𝑀) in the MSC‑M model are from the two
data halves. Branch lengths are proportional to posterior means of species divergence times and introgression times (𝜏, measured in mutations
per site) with node bars representing the 95% HPD CIs, from BPP analyses of the first half of the data under the MSC‑I model. Estimates for the
second half are very similar. Estimates of all parameters under both the MSC‑I and MSC‑M models for the two data halves are in Table S4.

genes (BUSCO, for BenchmarkingUniversal Single‑Copy
Orthologs) from 155 Drosophila species and constructed
a species phylogeny. Data for nine well‑established
clades were then used to infer interspecifc gene flow.
Here, we used data for clade 2 in the species tree,
comprised of 11 species: Drosophila affinis, Drosophila

athabasca, Drosophila azteca, Drosophila lowei, Drosophila
miranda, Drosophila persimilis, Drosophila pseudoobscura,
Drosophila bifasciata, Drosophila obscura,
Drosophila guanche, and Drosophila subobscura (Fig. 1a).
Seventeen loci had <2 species and were removed, leav‑
ing 2777 loci. The 2777 loci were split into two random
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halves, with 1389 and 1388 loci, respectively, and ana‑
lyzed separately.

Inferring the Drosophila Species Phylogeny
We inferred the species tree under the MSC model

with no gene flow using BPP (Yang and Rannala, 2014;
Rannala and Yang, 2017). This is the A01 analysis of
Yang (2015). The two data halves were analyzed sepa‑
rately. There are two types of parameters in the MSC
model: species divergence times (𝜏) and population
sizes (𝜃), both measured in the expected number of mu‑
tations per site. We assigned the gamma prior to the
age of the species‑tree root, 𝜏𝑅 ∼ G(2, 50), with mean
2/50 = 0.04. Given the age of the root, the other diver‑
gence times had the uniform‑Dirichlet prior distribution
(Yang and Rannala, 2010, eq. 2). A gamma prior is as‑
signed to population size parameters on the species tree,
𝜃 ∼ G(2, 200), with mean 0.01. The JC mutation model
(Jukes and Cantor, 1969) was used in the calculation of
the likelihood for the sequence alignment at each locus.
We expect JC to be sufficient for correcting for multi‑
ple hits at the same site because sequences from closely
related species are highly similar (Shi and Yang, 2018;
Flouri et al., 2022) (see below for further tests).We used a
burn‑in of 40,000MCMC iterations and then took 2×105

samples, sampling every 2 iterations. Each analysis was
repeated four times, with convergence of the MCMC
confirmed by consistency across runs.

Constructing a Model of Gene Flow for the Drosophila Data
Species tree inference using BPP produced a well‑

supported species phylogeny, which had the same
topology as inferred by Suvorov et al. (2022) (Figs 1a
and S1). The species phylogeny appeared to be unaf‑
fected by gene flow.We thus added candidate gene‑flow
events onto this binary species tree, using a procedure
similar to that followed by Ji et al. (2023) in their anal‑
ysis of a chipmunk genomic dataset. We assessed the
gene‑flow scenarios proposed by Suvorov et al. (2022,
Fig. 3) by integrating their DCT/BLT analyses of many
species triplets (Table S1), with reference to estimated
species divergence times from BPP. The triplet methods
of Suvorov et al. (2022) are unable to identify the direc‑
tion of gene flow (e.g., Thawornwattana et al., 2023; Pang
and Zhang, 2024). Thus, we assumed bidirectional gene
flow in our initial model, with the expectation that if the
gene‑flow event in a particular direction is nonexistent,
the estimated rate of gene flow will be close to zero and
the Bayesian test will reject gene flow (Thawornwattana
et al., 2023). The resulting initial model of gene flow is
shown in Figure 1a.
We then applied the Bayesian test of gene flow (Ji et al.,

2023) to determine the significance of the gene‑flow
events in the model. While Ji et al. (2023) sequentially
added introgression events onto the species tree, start‑
ing from the most significant introgression events, we
fitted the full model with all gene‑flow events and used

the Bayes factor to remove events that are not strongly
supported by the data. The Bayes factor 𝐵10, in support
of the alternative model of gene flow (𝐻1) against the
null model of no gene flow (𝐻0), was calculated via the
Savage–Dickey density ratio using an MCMC sample
under the 𝐻1 model (Ji et al., 2023). Gene flow was ac‑
commodated using either theMSC‑I orMSC‑Mmodels.
Under MSC‑I, the strength of gene flow is measured by
the introgression probability, 𝜑𝑋𝑌, which is the propor‑
tion of immigrants in the recipient population 𝑌 from
𝑋. We defined a ”null interval” for the introgression
probability, 𝜑 < 𝜖, which is a small interval in the pa‑
rameter space of 𝐻1 that represents 𝐻0. Then, 𝐵10 is
approximated by

𝐵10,𝜖 = ℙ(𝜑 < 𝜖)
ℙ(𝜑 < 𝜖|𝑋) , (1)

where ℙ(𝜑 < 𝜖) and ℙ(𝜑 < 𝜖|𝑋) are the prior and
posterior probabilities for 𝜑 < 𝜖, respectively. When
𝜖 → 0, 𝐵10,𝜖 → 𝐵10 (Ji et al., 2023). We used 𝜖 = 0.01
and confirmed that use of 𝜖 = 0.001 gave similar re‑
sults. We used a cut‑off of 100. Thus, 𝐵10 > 100 means
strong support for 𝐻1 and rejection of 𝐻0, which is sim‑
ilar to significance at the 1% level in hypothesis testing.
𝐵10 < 0.01 means strong support for 𝐻0 and rejection
of 𝐻1. This does not have an equivalence in hypothe‑
sis testing as hypothesis testing can never reject 𝐻1 with
great force. See Ji et al. (2023) for detailed discussions.
Under the MSC‑M model, the population migration

rate, 𝑀𝑋𝑌 = 𝑚𝑋𝑌𝑁𝑌, is defined as the expected num‑
ber ofmigrants from the donor species𝑋 to the recipient
species 𝑌 per generation, where 𝑚𝑋𝑌 is the proportion
of migrants in 𝑌 from 𝑋 and 𝑁𝑌 is the (effective) pop‑
ulation size of species 𝑌. Bayes factor 𝐵10 in support of
𝐻1 ∶ 𝑀 > 0 against the null 𝐻0 ∶ 𝑀 = 0 was calculated
by defining a null interval𝑀 < 𝜖, with 𝜖 = 0.01 or 0.001.
Thus, calculation of 𝐵10 using eq. 1 requires running

the MCMC under the model of gene flow (𝐻1). Under
the MSC‑I, the introgression probability was assigned
the prior 𝜑 ∼ beta(1, 1) or 𝕌(0, 1). We used the option
theta-model = linked-msci in BPP,which assumes the
same population‑size parameter 𝜃 for a branch before
and after an introgression event (Ji et al., 2023, Fig. 3b).
Under the MSC‑M, the migration rate was assigned the
gamma prior 𝑀 ∼ G(2, 10), with mean 0.2. We used a
burn‑in of 105 iterations, after which we took 5 × 105

samples, sampling every 2 iterations. Each analysis was
conducted four times to confirm convergence, indicated
by the difference in the posterior probability for themax‑
imum a posteriori tree between runs being less than 0.3
(Thawornwattana et al., 2022). Runs that did not con‑
verge were discarded before the MCMC samples from
multiple runswere combined to produce posterior sum‑
maries. EachMSC‑I run took ∼90hrs using two threads,
while each MSC‑M run took ∼120 h using four threads.
Gene‑flow events that passed the Bayesian test (with

𝐵10 > 100) are retained in the final model, which is then
used to estimate population parameters, including the

jiayi
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delete hyphen:thetamodel = linked-msci



5.01 5.60

5.06 5.65

5.11 5.70

5.16 5.75

5.21 5.80

5.26 5.85

5.31 5.90

5.36 5.95

5.41 5.100

5.46 5.105

5.51 5.110

5.56 5.115

2025 JI ET AL. ‑ SYSTEMATIC BIOLOGY 5

M

R

Y

S

A B C O

0.1

φ

R

T

S

A B C O

0.2

(a) Migration (inflow) (b) Introgression (inflow)

X

T

M

R

Y

S

A B C O

0.1

φ

R

T

S

A B C O

0.2

(c) Migration (outflow) (d) Introgression (outflow)

X

T

FIGURE 2. Migration (MSC‑M) and introgression (MSC‑I) models used to simulate and analyzemultilocus sequence data. In the inflowmod‑
els (a and b), gene flow is from 𝐶 → 𝐵, whereas in the outflow models (c and d), it is from 𝐵 → 𝐶. In the MSC‑M model (a and c), migration
occurs at the rate of 𝑀 = 0.1 migrants per generation, whereas in the MSC‑I model (b and d), the introgression probability is 𝜑 = 0.2. Species
divergence times are 𝜏𝑅 = 3𝜃, 𝜏𝑆 = 2𝜃, and 𝜏𝑇 = 𝜃. The introgression time under MSC‑I is 𝜏𝑋 = 𝜏𝑌 = 𝜃/2. Two values are used for the
population size parameter: 𝜃 = 0.0025 and 0.01. Each simulated dataset is analyzed using BPP under both the MSC‑M and MSC‑I models,
generating eight simulation‑analysis combinations.

rates of gene flow (𝜑 or 𝑀), species split times, and pop‑
ulation sizes for extant and extinct species on the species
tree.

Assessing the Impact of Taxon Sampling
The evidence for gene flow involving D. lowei (see

Fig. 1a) appeared to depend on the choice of the out‑
group species and on other species included in the
dataset. We thus constructed three triplet datasets and
three quintet datasets, to assess the impact of taxon sam‑
pling. We focussed on gene flow between D. lowei and
D. affinis, for which the evidence is significant in 2 out of
3 triplets in the analysis of Suvorov et al. (2022, Table 1).
For the triplet datasets, the species tree was ((X,

D. lowei), D. affinis), where X was D. pseudoobscura,
D. persimilis, or D. miranda (Fig. 1a). The data were also
analyzed using summary‑based tests (DCT, BLT, and
QuIBL), with D. guanche used as the outgroup. For the
quintet datasets, we included two outgroup species:
D. guanche and D. obscura, so that the species tree was
(((X, D. lowei), D. affinis), (D. obscura, and D. guanche)),
whereX again was one ofD. pseudoobscura,D. persimilis,
or D. miranda (Fig. 1a). We applied the Bayesian test to
assess the evidence for gene flow between D. lowei and
D. affinis.

Simulating Data to Evaluate Bayesian and Summary
Methods for Inferring Gene Flow

As our reanalysis of the Drosophila data (for clade 2)
produced different results from those of Suvorov et al.
(2022), we simulated data under the MSC model with
gene flow to examine the accuracy of BPP estimation of
parameters (Flouri et al., 2020, 2023) and the power of
Bayesian test of gene flow (Ji et al., 2023), in compari‑
son with the summary methods used by Suvorov et al.
(2022).
We conducted two sets of simulations. In the first set,

we simulated two datasets using parameter estimates

obtained from the Drosophila data with the D. insularis
outgroup under our final MSC‑I and MSC‑M models
with the 𝑤 → 𝑧 and 𝑥 → 𝑦 gene‑flow events, with pa‑
rameter values given in Table S2 (first half) and Table S3
(first half). Each dataset consisted of 1388 loci, as in the
original data halves. The simulate option in BPP (Flouri
et al., 2018) was used to generate data under the JC mu‑
tation model (Jukes and Cantor, 1969), which were then
analyzed using BPP under the same model.
In the second set of simulations,we used four artificial

MSC‑M andMSC‑I models for four species (𝐴, 𝐵, 𝐶, and
outgroup 𝑂) of Figure 2, with gene flow between non‑
sister lineages to examine the performance of Bayesian
test of gene flow and Bayesian estimation of the rate of
gene flow, in comparison with summary methods. The
four models of gene flow in Figure 2 were used to sim‑
ulate gene trees for the loci, which were then used to
”evolve” sequences under JC, resulting in a sequence
alignment at each locus. The species divergence times
were 𝜏𝑅 = 3𝜃, 𝜏𝑆 = 2𝜃, and 𝜏𝑇 = 𝜃, with 𝜃 = 0.0025 and
0.01. The migration rate was 𝑀 = 0.1 under the MSC‑M
model (Fig. 2a and c). Under theMSC‑Imodel, the intro‑
gression timewas 𝜏𝑋 = 𝜏𝑌 = 0.5𝜃, and the introgression
probability was 𝜑 = 0.2 (Fig. 2b and d).
We examined the effects of the number of loci (𝐿 =

250, 1000, 4000), the number of sequences per species
per locus (𝑆 = 2, 8), the sequence length (𝑛 = 250, 1000),
and mutation rate (𝜃 = 0.0025, 0.01). As the divergence
times (𝜏s) are proportional to 𝜃 in our experiment de‑
sign, the two values of 𝜃 mimic genomic regions with
different mutation rates (such as coding versus noncod‑
ing regions of the genome). We did not run BPP over
the large datasets with 𝐿 = 4000 loci and 𝑆 = 8 se‑
quences per species per locus, as those runswere expen‑
sive and BPP already achieved 100% power and highly
precise parameter estimates in much smaller datasets.
One hundred replicates were generated for each param‑
eter setting, with a total of 2000 (= 3 × 2 × 2 × 2 × 100 −
−400) datasets generated for each of the four models of
Figure 2.
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Each replicate dataset (simulated under either MSC‑
I or MSC‑M) was analyzed using BPP under both
the MSC‑M and MSC‑I models, resulting in eight
simulation‑analysis settings. When the data were ana‑
lyzed, the correct source and donor populations were
assumed in the MSC model with gene flow. Gamma
priors were assigned to the population size parame‑
ters (𝜃) and the age of the species‑tree root (𝜏𝑅). We
used the shape parameter 𝛼 = 2 and adjusted the
rate parameter (𝛽) so that the prior means are equal
to the true values. For example, for data simulated us‑
ing 𝜃 = 0.0025 in the M‑M and M‑I settings, we used
the priors 𝜃 ∼ G(2, 800) and 𝜏0 ∼ G(2, 266), whilst
for data simulated using 𝜃 = 0.01, we used 𝜃 ∼
G(2, 200) and 𝜏0 ∼ G(2, 66). Note that while the same
𝜃 was used for all populations when data were sim‑
ulated, each branch on the species tree had its own 𝜃
when the data were analyzed. Under the MSC‑I model,
we used the thetamodel = linked-msci option so that
the same population size parameter is assumed for a
branch before and after introgression. Additionally, we
used the priors 𝜑 ∼ beta(1, 1) under MSC‑I and 𝑀 ∼
G(2, 20) under MSC‑M. A burn‑in of 40,000 iterations
was used, after which we took 105 samples sampling
every 2 iterations.
We evaluated both the power of Bayesian test of

gene flow (using the Bayes factor calculated via the
Savage‑Dickey density ratio; see description above) and
Bayesian estimation of parameters, including the rate of
gene flow (𝜑 in MSC‑I and 𝑀 in MSC‑M). Performance
in parameter estimation was measured using the width
of the 95% highest probability density (HPD) credible
interval (CI).
The simulated quartet data were also analyzed us‑

ing several summary methods, including those used by
Suvorov et al. (2022). We assessed both the power to
detect introgression and the bias and precision in esti‑
mation of the introgression probability. Methods used
for testing introgression included HYDE (Blischak et al.,
2018), QUIBL (Edelman et al., 2019), DCT (Suvorov et al.,
2022), and BLT (Suvorov et al., 2022). Note that those
methods are uninformative about themode of gene flow
(whether it occurs in a pulse or over an extended time
period), and about the direction of gene flow, whilst BPP
assumes a fully specified parametric model. Methods
for estimating the introgression probability included
HYDE, QUIBL, DCT, and SNAQ (Solis‑Lemus and Ane,
2016). Those methods generate only point estimates of
𝜑, while BPP provides in addition a measure of uncer‑
tainty in the posterior CIs.
HYDE was implemented using the python script

run_hyde.py from Blischak et al. (2018) (https://github
.com/pblischak/HyDe),whichuses a concatenated align‑
ment to count site patterns across all loci. DCT/BLT
was implemented using blt_dct_test.r from Su‑
vorov et al. (2022) (https://github.com/SchriderLab/
Drosophila_phylogeny).QUIBLwas runusing QuIBL.py
from Edelman et al. (2019) (https://github.com/
miriammiyagi/QuIBL). For SNAQ, we used the

PHYLONETWORKS package (Solis‑Lemus and Ane, 2016)
to estimate the introgression probability.
QUIBL,DCT, BLT, and SNAQwere applied using gene

trees for the individual loci reconstructed by RAXML
with default settings (Stamatakis, 2014). Like SNAQ,
DCT estimates the introgression probability using in‑
ferred gene tree topologies (Suvorov et al., 2022):

̂𝜑 = 𝑐dis2–𝑐dis1
𝑐con + 𝑐dis1 + 𝑐dis2

,

where 𝑐con, 𝑐dis1, 𝑐dis2 are the counts of concordant and
discordant gene trees, with ̂𝜑 = 0 if 𝑐dis1 > 𝑐dis2.
QUIBL, DCT, and BLT do not allow multiple se‑

quences per species per locus. Thus, input gene trees
were constructed using a single sequence chosen at ran‑
dom from among the two or eight sequences simulated
for each species. Results were similar when different
sequences were sampled.

RESULTS

Inference of Species Tree and Construction of an Initial
Model of Gene Flow for the Drosophila Data

Protein‑coding genes from the 11 species in clade 2
of the Drosophila phylogeney of Suvorov et al. (2022)
(Fig. 1a) were separated into two random subsets, with
1389 and 1388 loci, respectively. They were analyzed
separately using BPP to estimate the species tree under
the MSC model with no gene flow (Yang, 2015; Flouri
et al., 2018). Analysis of the two data halves allowed us
to assess the robustness of our results to the sampling of
loci and also reduced the computational load. All runs
across the two halves produced the same species tree
topology as inferred by Suvorov et al. (2022). We thus
concluded that the species phylogeny was well estab‑
lished. The BPP analysis also produced Bayesian esti‑
mates of parameters including species divergence times
(𝜏). This information was used, in conjunction with the
introgression events inferred by Suvorov et al. (2022) in
their analyses of triplet and quartet data, to construct an
initial model of gene flow for clade 2.
Suvorov et al. (2022, Figure 3) inferred three intro‑

gression events for clade 2 (Fig. S1). These were, with
nodes and branches labeled as in Figure 1a: (i) between 𝑥
and 𝑦, (ii) between branches 𝑏𝑒 and 𝑎𝑓 , and (iii) between
lineages 𝑏𝑑 and D. lowei. Event ii had only weak sup‑
port, with significant evidence for gene flow in only 2
out of 40 feasible triplets (Fig. S1). This was thus dis‑
carded in our initial model. Event iii involved branch 𝑏𝑑
and the D. lowei lineage (Fig. 1a), inferred by Suvorov
et al. (2022) using the 𝑓 ‑branch approach (Malinsky et al.,
2018). These two lineages did not appear to overlap in
time according to BPP estimates of species divergence
times. While such a scenario could be interpreted as in‑
trogression involving an extinct or unsampled “ghost”
lineage (e.g., Yang and Flouri, 2022, Fig. 9a–c), we note
that the introgression event was not well supported by

https://github.com/pblischak/HyDe
https://github.com/pblischak/HyDe
https://github.com/SchriderLab/Drosophila_phylogeny
https://github.com/SchriderLab/Drosophila_phylogeny
https://github.com/miriammiyagi/QuIBL
https://github.com/miriammiyagi/QuIBL
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TABLE 1. Posterior means and 95% HPD CIs (in parentheses) of introgression probabilities (𝜑), introgression times (𝜏), and Bayes factors in
support of gene flow (𝐵10) in the BPP analysis of the Drosophila data under the MSC‑I models of Figure 1

First half (1389 loci) Second half (1388 loci)
Introgression �̂� �̂� 𝐵10 �̂� �̂� 𝐵10

Model 1a: D. lowei ↔ D. affinis introgression first (Fig. 1a)
𝑟𝑏 → 𝑎𝑐 (or 𝑦 → 𝑥) 0.0014 (0.0000, 0.0041) 0.0261 (0.0257, 0.0265) 0.01 0.0011 (0.0000, 0.0032) 0.0260 (0.0256, 0.0265) 0.01
𝑎𝑐 → 𝑟𝑏 (or 𝑥 → 𝑦) 0.0980 (0.0787, 0.1173) ∞ 0.0917 (0.0756, 0.1081) ∞
D. lowei → D. azteca 0.0027 (0.0003, 0.0058) 0.0032 (0.0001, 0.0057) 0.01 0.0009 (0.0000, 0.0026) 0.0025 (0.0000, 0.0053) 0.01
D. azteca → D. lowei 0.0008 (0.0000, 0.0024) 0.01 0.0010 (0.0000, 0.0030) 0.01
D. lowei → D. affinis 0.0026 (0.0000, 0.0062) 0.0050 (0.0025, 0.0066) 0.01 0.0011 (0.0000, 0.0035) 0.0047 (0.0020, 0.0064) 0.01
D. affinis → D. lowei 0.0008 (0.0000, 0.0024) 0.01 0.0016 (0.0000, 0.0040) 0.01

Model 1b: D. lowei ↔ D. azteca introgression first (Fig. 1a)
𝑟𝑏 → 𝑎𝑐 (or 𝑦 → 𝑥) 0.0014 (0.0000, 0.0041) 0.0261 (0.0257, 0.0265) 0.01 0.0011 (0.0000, 0.0032) 0.0260 (0.0255, 0.0264) 0.01
𝑎𝑐 → 𝑟𝑏 (or 𝑥 → 𝑦) 0.0980 (0.0788, 0.1173) ∞ 0.0920 (0.0758, 0.1085) ∞
D. lowei → D. azteca 0.0026 (0.0001, 0.0058) 0.0063 (0.0032, 0.0102) 0.01 0.0010 (0.0000, 0.0029) 0.0075 (0.0034, 0.0103) 0.01
D. azteca → D. lowei 0.0008 (0.0000, 0.0025) 0.01 0.0014 (0.0000, 0.0039) 0.01
D. lowei → D. affinis 0.0020 (0.0000, 0.0051) 0.0033 (0.0001, 0.0061) 0.01 0.0011 (0.0000, 0.0033) 0.0034 (0.0028, 0.0062) 0.01
D. affinis → D. lowei 0.0008 (0.0000, 0.0024) 0.01 0.0013 (0.0000, 0.0036) 0.01

Model 2: final model with unidirectional introgression from 𝑤 → 𝑧 and 𝑥 → 𝑦 (Fig. 1b)
𝑟𝑎 → 𝑟𝑏 (or 𝑤 → 𝑧) 0.7275 (0.6893, 0.7690) 0.0381 (0.0375, 0.0387) ∞ 0.7124 (0.6806, 0.7432) 0.0388 (0.0382, 0.0394) ∞
𝑎𝑐 → 𝑟𝑏 (or 𝑥 → 𝑦) 0.0688 (0.0546, 0.0832) 0.0257 (0.0253, 0.0261) ∞ 0.0690 (0.0561, 0.0822) 0.0257 (0.0253, 0.0261) ∞

Note: Initial models 1a & 1b differ in the time order of two bidirectional introgression events: D. lowei ↔ D. azteca versus D. lowei ↔ D. affinis
(Fig. 1a). As the time of the 𝑎𝑐 → 𝑟𝑏 introgression (𝜏𝑥→𝑦) was very close to the species divergence time 𝜏𝑎 (Fig. 1a), the introgression event
was moved to the parental branch in (𝑤 → 𝑧, Fig. 1b), but there was support in the data for the 𝑥 → 𝑦 introgression, so that both events were
included in the final model 2. Bayes factor for testing introgression (𝐵10) was calculated using the Savage–Dickey density ratio with 𝜖 = 0.01
(Ji et al., 2023). 𝐵10 = ∞ occurs when there are no MCMC samples with 𝜑 < 𝜖 = 0.01, whereas 𝐵10 = 0.01 occurs when all MCMC samples
have 𝜑 < 𝜖.

TABLE 2. Posterior means and 95% HPD CIs (in parentheses) of migration rates (𝑀) and Bayes factors (𝐵10) in the BPP analysis of the
Drosophila data under the MSC‑M model of Figure 1

First half (1389 loci) Second half (1388 loci)
Migration �̂� 𝐵10 �̂� 𝐵10

Model 1 (Fig. 1a)
𝑟𝑏 → 𝑎𝑐 (or 𝑦 → 𝑥) 0.0220 (0.0028, 0.0449) 0.01 0.0075 (0.0002, 0.0181) 0.01
𝑎𝑐 → 𝑟𝑏 (or 𝑥 → 𝑦) 0.3065 (0.2255, 0.3940) ∞ 0.3375 (0.2588, 0.4212) ∞
D. lowei → D. azteca 0.0108 (0.0014, 0.0238) 0.00 0.0084 (0.0004, 0.0215) 0.01
D. azteca → D. lowei 0.0142 (0.0018, 0.0293) 0.01 0.0143 (0.0015, 0.0333) 0.02
D. lowei → D. affinis 0.0134 (0.0011, 0.0306) 0.00 0.0171 (0.0020, 0.0384) 0.00
D. affinis → D. lowei 0.0148 (0.0012, 0.0316) 0.02 0.0181 (0.0032, 0.0378) 0.01

Model 2: final model with unidirectional migration from 𝑤 → 𝑧 and 𝑥 → 𝑦 (Fig. 1b)
𝑟𝑎 → 𝑟𝑏 (or 𝑤 → 𝑧) 0.5677 (0.5183, 0.6151) ∞ 0.6031 (0.5546, 0.6523) ∞
𝑎𝑐 → 𝑟𝑏 (or 𝑥 → 𝑦) 0.0111 (0.0003, 0.0253) 0.01 0.0090 (0.0002, 0.0204) 0.01

Note: Model 1 assumes three bidirectional migration events or three pairs of migration rates (Fig. 1a). All of them were rejected except 𝑀𝑥→𝑦
based on the Bayes factor (𝐵10). In the final model 2, we added the 𝑤 → 𝑧 migration, similarly to analysis under the MSC‑I model (Table 1).

the DCT/BLT triplet tests of Suvorov et al. (2022, Fig. 3).
Those tests supported introgression between D. lowei
andD. affinis and betweenD. lowei andD. azteca, but not
between D. lowei and D. athabasca (Table S1). Thus, we
replaced event iii by two events involving the daughter
branches, between D. lowei and D. affinis (or 𝑝 ↔ 𝑞) and
between D. lowei and D. azteca (or 𝑢 ↔ 𝑣) (Fig. 1a).
Our initial model of gene flow for clade 2 thus in‑

volved three gene‑flow events: one ancestral and two
involving extant taxa (Fig. 1a). As the triplet methods
used by Suvorov et al. (2022) are agnostic about the di‑
rection of gene flow, we treated each event as a bidi‑
rectional gene‑flow event. This way of determining the
direction of gene flow involves a computational cost but

was found to work well in simulations (Thawornwat‑
tana et al., 2023). We fitted both the MSC‑I and MSC‑M
models of gene flow. Two variants of the MSC‑I model
were considered, which differed in the time order of the
two introgression events involving D. lowei (𝑢 ↔ 𝑣 and
𝑝 ↔ 𝑞). The results are summarized in Table 1 for MSC‑I
and Table 2 for MSC‑M.
Under the MSC‑I model, introgression from branches

𝑎𝑐 to 𝑟𝑏 (or 𝑥 → 𝑦, Fig. 1a) had the strongest signal. The
estimated introgression probability was ̂𝜑𝑥→𝑦 = 0.098
and 0.092 for the two data halves, while the Bayes fac‑
tor 𝐵10 = ∞ for the Bayesian test (Table 1, models 1a
and 1b). Introgression in the opposite direction (𝑦 → 𝑥)
was found to be absent, with the model of introgression
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rejected strongly (𝐵10 ≤ 0.01). Apart from the 𝑥 → 𝑦 in‑
trogression, all other introgression events were rejected
at the 𝐵10 ≤ 0.01 cut‑off (Table 1). Note that the Bayesian
test may strongly favor the null model and reject the
more general model of gene flow, unlike hypothesis
testing, which may fail to reject the null hypothesis but
may never support it strongly.
The MSC‑M model produced results consistent with

the MSC‑I model (Table 2, model 1). Similarly the only
gene‑flow event supported was from 𝑥 → 𝑦, with the es‑
timated rate to be 𝑀𝑥→𝑦 = 0.32 and 0.34 migrants per
generation for the two halves, respectively, while gene
flow in the opposite direction was found to be absent.
Also the 𝑥 → 𝑦 migration was the only one that was
significant (𝐵10 > 100), while all other gene‑flow events
were rejected by the Bayesian test at the 𝐵10 ≤ 0.01
cut‑off.
Interestingly, the time of the 𝑥 → 𝑦 introgression

under the MSC‑I model was nearly identical to the di‑
vergence time at the mother node 𝑎 (Fig. 1a): ̂𝜏𝑥 =

̂𝜏𝑦 = 0.0261 (with the 95% HPD CI 0.0257–0.0265) and
0.260 (0.0256–0.0265) for the two halves, respectively,
compared with ̂𝜏𝑎 = 0.0261 (0.0257–0.0265) and 0.0261
(0.0256–0.0265) under models 1a and 1b of Table 1. This
may suggest that the introgression event was assigned
to the wrong branch in the initial model; Huang et al.
(2022a) found that when introgression is incorrectly as‑
signed onto a daughter or mother branch of the lineage
genuinely involved in gene flow, the introgression time
tends to get stuck on the species divergence time. Thus,
we considered amodel in which the 𝑥 → 𝑦 introgression
was replaced by introgression involving the parental
branch (𝑤 → 𝑧). This model produced greater estimates
of the introgression probability,𝜑𝑤→𝑧 = 0.248 (CI 0.207–
0.291) for the first half and 0.393 (0.349–0.440) for the
second half, and with the introgression time away from
the species divergence time.
We also fitted an MSC‑I model with both 𝑤 → 𝑧 and

𝑥 → 𝑧 introgressions (Fig. 1b), with the expectation that
introgression event that did not occur should have low
estimated rates, rejected by the test (Huang et al., 2022a;
Thawornwattana et al., 2022). The analysis detected very
strong evidence for gene flow between the sister lin‑
eages,with ̂𝜑𝑤→𝑧 = 0.728 (0.689–0.769) and 0.712 (0.681–
0.743) for the two data halves (Table 1, model 2). The
evidence for the 𝑥 → 𝑦 introgression was also signifi‑
cant although the rate was much lower, at ̂𝜑𝑥→𝑦 = 0.069
(0.055–0.083) and 0.069 (0.056–0.082) (Table 1, model 2).
We further assessed possible impacts of including an

outgroup species, using either D. melanogaster or D. in‑
sularis as the outgroup, besides the 11 ingroup species in
clade 2 (Tables S2 and S3). Some parameters such as the
population size for the root of the species tree are known
to be sensitive to the inclusion of outgroup species
(Burgess and Yang, 2008). The introgression probabili‑
ties (𝜑𝑤→𝑧, 𝜑𝑥→𝑦) and introgression times (𝜏𝑤 = 𝜏𝑧, 𝜏𝑥 =
𝜏𝑦) are very similar among the datasets (for two halves
and two outgroups) (Tables S2 and S3), and also similar

to the estimates without the outgroup (Table S4). Es‑
timates of 𝜃𝑟 varied depending on the outgroup used
(Tables S2 and S3), possibly because branch 𝑟 ancestral
to clade 2 represents different populations depending
on the outgroup.
Given the introgression events between extant species

inferred using triplet summary methods (Suvorov et al.,
2022), we fitted MSC‑I models incorporating various
introgression events between extant species, when the
𝑤 → 𝑧 and 𝑥 → 𝑦 introgression events are already
accommodated in the model (Table S5). In particular,
we tested bidirectional introgression events involving
D. lowei (Fig. 1a). All gene‑flow events involving extant
species, including bidirectional introgression events in‑
volving D. lowei, were rejected, with 𝐵10 ≤ 0.01 (Table
S5). The 𝑤 → 𝑧 and 𝑥 → 𝑦 introgressions remained the
only significant events, and parameter estimates were
virtually identical to those under model 2 with the 𝑤 →
𝑧 and 𝑥 → 𝑦 introgressions only (Table S4). We examine
the impact of taxon sampling on inference of gene flow
below.
In the MSC‑M model, we also included the 𝑤 → 𝑧

migration in addition to the 𝑥 → 𝑦 migration (Table 2,
model 2). Similarly we obtained high estimates of mi‑
gration rate between the sister lineages, 𝑀𝑤→𝑧 = 0.568
(CI 0.518–0.615) and 0.603 (0.555–0.652) immigrants per
generation, and the Bayesian test was highly significant.
The migration rate for the nonsister lineages was much
lower, estimated to be �̂�𝑥→𝑦 = 0.011 and 0.009 for the
two halves, andwas not significant according to the test.
Thus, the evidence for the 𝑥 → 𝑦 gene flowwas inconsis‑
tent between theMSC‑I andMSC‑Mmodels. This could
be due to weak signal or low information content in
the data, or lower power of the MSC‑M model than the
MSC‑I model (Thawornwattana et al., 2024).
By integrating all analyses above, we suggest model

2 of Figure 1b as our final inferred model for clade 2 on
the Drosophila phylogeny (Suvorov et al., 2022), which
includes both the 𝑥 → 𝑦 and 𝑤 → 𝑧 introgression events.

Estimation of Model Parameters on the Drosophila
Species Tree

We fitted the final model of Figure 1b to estimate
model parameters, with gene flow accommodated us‑
ing either the MSC‑I or the MSC‑M models. Estimates
of the rate of gene flow (𝜑 in MSC‑I and 𝑀 in MSC‑M)
are given in Tables 1 and 2 (model 2), while those for all
parameters are in Table S4.
As discussed in the section above, the estimated rate

of gene flow between the sister lineages (𝑤 → 𝑧) was
very high under both the MSC‑I and MSC‑M models
(Tables 1, model 2 and Table 2, model 2). In compari‑
son, the estimated rate of 𝑥 → 𝑦 gene flow was much
lower and was indeed not significant under the MSC‑
M model. Here, we ask whether the two models re‑
cover similar amounts of gene flow between the sister
lineages. If the MSC‑M model is the true model with
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FIGURE 3. Posterior means and 95% HPD CIs for a) species divergence times (𝜏, mutations per site) and b) population sizes (𝜃) in the final
model of Figure 1b obtained from BPP analyses of the Drosophila data under the MSC‑I and MSC‑M models.

the 𝑤 → 𝑧 migration occurring over a time period Δ𝜏,
the expected cumulative proportion of migrants in the
recipient population 𝑧 will be

𝜑0 = 1 − e−4𝑀𝑤𝑧Δ𝜏/𝜃𝑧 (2)

(Huang et al., 2022a). Using the estimates under MSC‑
M (Table S4), we calculated the expected introgres‑
sion probability for the MSC‑I model to be 𝜑0 = 1 −
e−4×0.568×(0.0748−0.0260)/0.0692 = 0.798 for the first half,
and 0.789 for the second half, compared with the esti‑
mates under the MSC‑I: 0.728 and 0.712. The estimates
are similar, with slightly more gene flow inferred under
MSC‑M than under MSC‑I.
Estimates of species divergence times (𝜏) and popu‑

lation sizes (𝜃) for the two data halves under the MSC‑I
and MSC‑M models are shown in Figure 3. The four
data‑model combinations produced nearly identical es‑
timates. Estimates of the age of the root for the clade (𝜏𝑟)
differ considerably depending on whether gene flow is
accommodated in the model (cf. Figs 1a and 1b). This is
consistent with previous studies which have shown that
ignoring gene flow between species leads to serious un‑
derestimation of species split times (Leaché et al., 2014;
Tiley et al., 2023; Thawornwattana et al., 2023).
For both data halves, ̂𝜑 > 1

2 under MSC‑I, so that the
majority of the lineages fromdescendent species of node

𝑎 (i.e., D. subobscura, D. guanche, D. obscura, D. bifasciata)
are traced back to the introgression branch 𝑟𝑧 rather than
the speciation branch 𝑟𝑤 (Fig. 1b). This is also the pre‑
diction of theMSC‑Mmodel since the estimates suggest
𝜑0 > 1

2 by eq. 2. We also note that 𝜏𝑟 in model 1 (Fig. 1a)
was similar to 𝜏𝑤 = 𝜏𝑧 in model 2 (Fig. 1b). Thus, the
histories of sequence divergences reflected in the gene
trees predicted by the two models (one with the 𝑥 → 𝑦
gene flow only and the other with both 𝑥 → 𝑦 and𝑤 → 𝑧
gene flow) are somewhat similar.
Our analysis using BPP assumed the JC model

(Jukes and Cantor, 1969). To see whether the muta‑
tion/substitution model affects the results, we analyzed
the data under the final MSC‑I and MSC‑M models of
Figure 1b assuming the GTR mutation model (Tavaré,
1986; Yang, 1994) instead of JC (Fig. S2, Table S6).
The estimates under the JC and GTR models were
very similar, and the mutation model had little ef‑
fects. Estimates of introgression probabilities and mi‑
gration rates were also very similar between the two
models (Table S6). This robustness to the mutation
model is expected because the main role of the mu‑
tation model in BPP analyses is to correct for multi‑
ple hits at the same site. As the sequence data from
closely related species are extremely similar, any mu‑
tation model including the infinite‑sites model (Taka‑
hata et al., 1995) should work well. Similar observations
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were made by Shi and Yang (2018) and Flouri et al.
(2022).

The Impact of Taxon Sampling on Inference of Gene Flow
Involving D. lowei

While therewas significant evidence for gene flow be‑
tween D. lowei and either D. affinis or D. azteca in the
DCT/BLT tests of Suvorov et al. (2022, data S2), those
gene‑flow events were rejected in our analyses of data
including all species in the group (Table 1). We thus ex‑
amined the impact of taxon sampling, by constructing
three triplet datasets and three quintet datasets and an‑
alyzing them using BPP. We focus on gene flow between
D. lowei and D. affinis, for which the evidence was sig‑
nificant in two out of three triplets in the analysis of
Suvorov et al. (2022, data S2).
First, we analyzed the triplet datasets using QUIBL

and DCT/BLT to examine the impact of the outgroup
species. The assumed ingroup tree was ((X, D. lowei),
D. affinis), where X was D. pseudoobscura, D. persim‑
ilis, or D. miranda, while D. guanche was used as the
outgroup (Fig. 1a). Unrooted quartet trees were gen‑
erated using RAXML under the JC model, rooted with
the outgroup, and then used as input for DCT/BLT and
QUIBL. All summary‑based tests were significant for
all triplets. Suvorov et al. (2022) used Anopheles gambiae
as the outgroup, and inferred quartet gene trees un‑
der the GTR+I+G model, finding that BLT and QuIBL
were significant for all three triplets, while DCT was
significant in two out of three triplets. TheAnopheles out‑
group is very distantly related to the ingroup species,
and a closely related outgroupmay be preferable as long
as it is not involved in hybridization with the ingroup
species. Nevertheless, the results from the summary
methods are consistent between the two studies.
Next, we analyzed the triplet datasets using BPP (Table

S7). Bidirectional introgression between D. lowei and
D. affinis was specified in the MSC‑I model. In all three
datasets, there was strong evidence for introgression
from D. lowei → D. affinis, with 𝐵10 > 100 and the esti‑
mated introgression probability ̂𝜑𝑝→𝑞 = 4.2–4.8%. There
was also strong evidence rejecting introgression in the
opposite direction (with 𝐵10 ≤ 0.01 and ̂𝜑𝑞→𝑝 ≈ 0.00).
Thus, the BPP analysis of triplet datasets is consistent
with the summary methods (DCT/BLT), although BPP
was able to infer the direction and strength of gene flow,
rejecting the 𝑞 → 𝑝 introgression.
Finally, the quintet datasets which include two out‑

group species,D. guanche andD. obscura, were analyzed
using BPP under MSC‑I assuming bidirectional intro‑
gression between D. lowei and D. affinis, either with or
without accommodating the 𝑤 → 𝑧 and 𝑥 → 𝑦 intro‑
gressions (Fig. 1b, Table S7). In all cases, the 𝑞 → 𝑝 in‑
trogression was rejected, as in the analysis of the triplet
data. Without the 𝑤 → 𝑧 and 𝑥 → 𝑦 introgressions in the
model, the 𝑝 → 𝑞 introgression rate was low (1–2%) and
was not significant (with 𝐵10 < 100 in all three datasets).

When the 𝑤 → 𝑧 and 𝑥 → 𝑦 introgressions were as‑
sumed in the model, the 𝑝 → 𝑞 introgression became
significant in all three quintet datasets (with 𝐵10 > 100),
with ̂𝜑𝑝→𝑞 ≈ 4.1–5.7% (Table S7). We also note that in
the analysis of data from all 11 species in clade 2, un‑
der the model which incorporates the 𝑤 → 𝑧 and 𝑥 → 𝑦
introgressions, the estimated introgression probability
𝜑𝑝→𝑞 was very low (0.1–0.2%) and was rejected with
𝐵10 ≤ 0.01 (Table S5, last section).
In summary, while the 𝑞 → 𝑝 introgression was re‑

jected in all analyses, the Bayesian test of the 𝑝 → 𝑞
introgressionwas sensitive to the species included in the
data and to whether other major introgression events
(𝑤 → 𝑧, 𝑥 → 𝑦) were already accounted for in the model.
The reasons for this sensitivity are not well‑understood.
We suspect that part of the difficulty may be due to
problems of sampling, as the data consist of only one
sequence per species per locus. The introgression prob‑
ability is defined as a proportion of migrants in the re‑
cipient species. Knowledge of the population size or ge‑
netic diversity of the recipient species should help our
inference of the contribution to that diversity from intro‑
gression. We note that the population size parameters
𝜃D. lower = 𝜃𝑝 and 𝜃D. affinis = 𝜃𝑞 are very poorly estimated
withwide CIs, and the introgression probability 𝜑𝑝→𝑞, if
nonzero, was relatively low (< 6%) (Table S7), so that in‑
ferencemay be easily affected by factors other than gene
flow. Includingmultiple samples per species may be ex‑
pected to increase the information in the data about the
𝑝 → 𝑞 introgression (see Discussion).

Analyses of Simulated Data by Bayesian and Summary
Methods: Drosophila‑Based Simulation

Our Bayesian analysis of the Drosophila clade‑2 data
of Suvorov et al. (2022) produced different results from
those obtained by Suvorov et al. (2022) using triplet
methods. To understand possible reasons for the differ‑
ences, we conducted two sets of simulations to study the
statistical behaviors of the methods.
In the Drosophila‑based simulation, we used parame‑

ter estimates of Tables S2 (first half) and S3 (first half)
obtained from the BPP analysis of the clade‑2 data in‑
cluding the D. insularis outgroup under the final MSC‑I
and MSC‑M models with the 𝑤 → 𝑧 and 𝑥 → 𝑦 gene‑
flow events. Two data halves, each of 1388 loci, were
simulated. Bayesian estimates of parameters (Table S8)
were very close to the true parameter values, and the
95%HPDCIs were similar to those in the analysis of the
real data (cf: Table S4).
In the BPP analyses, we used diffuse gamma priors

on parameters 𝜏 and 𝜃 with the prior means matching
the true values (the 1x priors): 𝜏𝑟 ∼ G(2, 50) and 𝜃 ∼
G(2, 200). To assess the impact of the priors, we varied
the prior means to be either 10 times larger (the 10𝑥 pri‑
ors): 𝜏𝑟 ∼ G(2, 5) and 𝜃 ∼ G(2, 20), or 10 times smaller
(the 0.1𝑥 priors): 𝜏𝑟 ∼ G(2, 500) and 𝜃 ∼ G(2, 2000). The
priors had little impact on estimation of the species split
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times, but some population size parameters were some‑
what affected, with the use of the 0.1x priors causing
underestimation of 𝜃𝑟 and 𝜃𝑐 (Fig. S3). Estimates of intro‑
gression probabilities (𝜑) and migration rates (𝑀) were
very close to the true values (Table S9). Overall, the pos‑
terior was robust to such orders‑of‑magnitude changes
to the prior mean, apparently because the datasets ana‑
lyzed in this study were large.
Note that the major introgression event in the true

model, from 𝑤 → 𝑧, is between sister lineages and is
thus unidentifiable by triplet methods used by Suvorov
et al. (2022). Instead, we applied DCT (which is based
on gene‑tree counts) and BLT (which is based on branch
lengths) to detect the 𝑥 → 𝑦 introgression by construct‑
ing triplets. In 8/28 triplets, significant evidence was
detected by DCT. No signal was detected by BLT.

Analyses of Simulated Data by Bayesian and Summary
Methods: Quartet Data

In the second set of simulations, we used the MSC‑M
and MSC‑I models for four species (𝐴, 𝐵, 𝐶, and out‑
group 𝑂) of Figure 2, with gene flow between nonsis‑
ter lineages (𝐵, 𝐶). Divergence times (𝜏) and population
sizes (𝜃) resemble estimates from the Drosophila data,
but we used a range of parameter values. Each dataset
was analyzed using BPP under both the MSC‑M and
MSC‑I models, resulting in eight simulation‑analysis
settings. We examine both estimation of model param‑
eters (in particular the rate of gene flow) and Bayesian
test for the presence of gene flow. This set of simulation
is similar to previous studies that examined the prop‑
erties of the Bayesian method (Huang et al., 2020, 2022a;
Thawornwattana et al., 2023, 2024), but herewe included
a number of summary methods.

Bayesian estimation in quartet data.Here, we discuss the
estimation of the rate of gene flow (𝜑 in MSC‑I and 𝑀
in MSC‑M) (Fig. 4), with results for all parameters sum‑
marized in Figures S4–S11 and discussed in the SI text.
In the M‑M and I‑I settings (Figs 4), data were simu‑
lated and analyzed under the same model. The rate of
gene flow was well estimated, with the posterior means
around the true values, while the 95% HPD CIs become
narrower when the data size increases. In informative
datasets, the coverage of the 95% CI was in general >
95%. Introgression probability was more precisely esti‑
mated in the inflowmodel (with gene flow from 𝐶 → 𝐵,
Fig. 2a and b) than in the outflow model (𝐵 → 𝐶, Fig. 2c
and d) (Figs S6 inflow I‑I vs. S10 outflow I‑I). For exam‑
ple, the CI width in the least informative data set (𝐿 =
250, 𝑆 = 2, 𝑛 = 250, 𝜃 = 0.0025) was ∼43% narrower
under the inflow than outflowmodels. These results are
consistentwith the observation of Thawornwattana et al.
(2023).
In the M‑I and I‑M settings (Fig. 4), the mode of

gene flowwas misspecified. The analysis of Huang et al.
(2022a) suggests that when data are generated under
MSC‑M but analyzed under MSC‑I, not all gene flow

that has occurred is recoverable, with ̂𝜑 < 𝜑0 (eq. 2).
This was the case in the simulation here (Figs 4, inflow
M‑I and outflow M‑I). The underestimation was more
serious (with larger difference between ̂𝜑 and 𝜑0) in the
outflow case than in the inflow case.

Bayesian test in quartet data.Bayesian test of gene flow
overall showed very high power in simulated quartet
data (Fig. 4). At the 1% cut‑off (i.e., with 𝐵10 > 100), the
test achieved ∼100% power in all simulation settings.
This was the case even in the least informative datasets
(with 𝐿 = 250 loci, 𝑛 = 250 sites, and at the lowmutation
rate with 𝜃 = 0.0025). In particular, power was ∼100%
in the M‑I and I‑M settings as well, when the mode of
gene flow was misspecified. For instance, if gene flow
occurred continuously over an extended time period ac‑
cording to the MSC‑Mmodel but was assumed to occur
in a pulse in the MSC‑I model, the test still detected
gene flow with nearly full power (Fig. 4, inflow‑M and
outflow‑M, BPP‑wrong model).

Estimation by summary methods in quartet data.We ap‑
plied several summary methods to estimate the intro‑
gression probability (Fig. 4) and to test for gene flow
(Fig. 4). For data simulated under MSC‑I (Fig. 4, inflow‑
I and outflow‑I), all summary methods for estimating
𝜑 appeared to be biased. In the inflow scenario, SNAQ
and HYDE overestimated the introgression probability,
while DCT andQUIBL produced underestimates (Fig. 4,
inflow‑I). In the outflow scenario, all summarymethods
produced underestimates (Fig. 4, outflow‑I). QUIBL, in
particular, produced gross underestimates. This bias of
the QUIBL method was noted previously by Edelman
et al. (2019).

Test of gene flow by summary methods in quartet data.Next,
we examined the power of summary methods for test‑
ing for gene flow, in comparison with BPP (Fig. 4). While
BPP achieved ∼100% power in all datasets, even when
the mode of gene flow was misspecified, the perfor‑
mance of the summary methods varied. The two meth‑
ods based on gene‑tree branch lengths, QUIBL and BLT,
had particularly low power for short sequences (250
sites instead of 1000) and at the low mutation rate (with
𝜃 = 0.0025 instead of 0.01). This may be expected since
short and highly similar sequences contain little phylo‑
genetic information, leading to large sampling errors in
the estimated branch lengths, while those errors are ig‑
nored by both methods. QUIBL had ∼0% power in data
generated under the outflow model. This appeared to
be due to the fact that QUIBL assumes a triplet species
tree with an inflow model of introgression rather than
outflow (Edelman et al., 2019, Figs S61 and S62), so that
for those data, the assumed direction of gene flow was
incorrect.
HYDE showed good power. As it uses site‑pattern

counts pooled over loci, it is not sensitive to sampling
errors in the estimated gene‑tree topology and branch
lengths at each locus. We note that HYDE is based on
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FIGURE 4. Posterior means and 95% CIs for introgression probabilities (𝜑) in the MSC‑I model andmigration rates (𝑀) in the MSC‑Mmodel
obtained from the BPP analysis of 100 simulated data replicates. Datasets were simulated under the four models of Figure 2 and analyzed under
both theMSC‑M andMSC‑I models, with eight settings in total. For example, in the inflow‑M‑I setting, replicate datasets were simulated under
the inflow‑migration (MSC‑M) model (Fig. 2a) and analyzed under the introgression (MSC‑I) model (Fig. 2b). Results for other parameters in
the eight simulation settings are in Figures S4–S11. Numbers above the CI bars represent the CI coverage probability. Solid black lines repre‑
sent true parameter values. Dashed black lines represent the theoretical expectations when the mode of gene flow is misspecified (eq. 2). Large
datasets under settings with 𝐿 = 4000 loci and 𝑆 = 8 sequences per species per locus (with either 250 or 1000 sites) were not analyzed.

a hybrid‑speciation model, which is a special case of
the inflow model with symmetry in the population size
(Ji et al., 2023). Previously HYDE was found to perform
poorly when those assumptions were not met; in partic‑
ular, HYDEwas found to lack power when gene flow oc‑
curred in the opposite (outflow) direction (Ji et al., 2023,
Figure 9; Pang and Zhang, 2024). In the simulation here,
the method performed relatively well (Fig. 4), appar‑
ently because the same population size was used for all
species in the simulationmodel, so that the assumptions
of HYDE were largely met.
Finally DCT showed low power in the least infor‑

mative datasets but was not so sensitive to short se‑
quences as were QUIBL and BLT (Fig. 4). This may be
because DCT uses gene‑tree topologies but not branch
lengths.

DISCUSSION

Likelihood and Summary Methods for Inferring Gene Flow
Our simulations highlight the desirable statistical

properties of the Bayesian method implemented in BPP.
The power to detect gene flow via the Bayesian test (Ji
et al., 2023)was high, evenwhen the information content
of the dataset was low and even if themode of gene flow
wasmisspecified. Bayesian estimation of parameters in‑
cluding introgression probabilities and migration rates
was highly accurate. We found that if the mode of gene
flowwas misspecified (when the true model was MSC‑I
and the analysis model was MSC‑M, or vice versa),
the Bayesian method may underestimate the amount
of gene flow. However, the shared parameters between
the two models were reliably estimated. The simulation
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FIGURE 5. Power (percentage of replicates in which the null model of no gene flow is rejected at the 1% level) of BPP (MSC‑I and MSC‑M),
HYDE, QUIBL, DCT, and BLT to detect gene flow in data simulated under the four models of gene flow in Figure 2. Bayesian test of gene flow
using BPP is conducted assuming either the correct model (e.g., Inflow‑M‑M) or incorrect model (e.g., Inflow‑M‑I), with gene flow detected if
the Bayes factor𝐵10 > 100. Data configurations are specified in the number of loci (𝐿) and the number of sites (𝑛): for example, in configuration
“A2: 250, 1000”, each dataset consists of 𝐿 = 250 loci, each of 𝑛 = 1000 sites. Bayesian estimates of parameters from the same data are shown
in Figures 4 and S4–S11.

results here are consistent with and extend previous
simulations which examined the Frequentist properties
of Bayesian test and Bayesian estimation under theMSC
model with gene flow (Huang et al., 2020, 2022a; Ji et al.,
2023; Thawornwattana et al., 2023; Pang and Zhang,
2024).
The performance of summary methods in the simu‑

lation varied considerably (Figs 4 and 4). All summary
methods for estimating the introgression probability
were found to be biased (Fig. 4). In particular, branch
length‑basedmethods such as QUIBL performed poorly
and had low power to detect gene flow, except in the
most informative inflow datasets. When the species are
closely related and the sequences are highly similar, es‑
timated branch lengths in reconstructed gene trees are
expected to have considerable errors and uncertainties,
which may affect the performance of those methods.
Suvorov et al. (2022) has relied on the 𝑓 ‑branch ap‑

proach to integrate results of many triplet analyses. This
was designed to move introgression events to ancestral
branches on the species tree, as gene flow involving an‑
cestral lineages may show up as significant introgres‑
sion events in many species triplets, which may be hard
to interpret (Malinsky et al., 2018). Disturbingly, a recent

study demonstrated that the commonly used triplet
methods, such as the 𝐷‑statistic, HYDE, and SNAQ, do
not have the ability to identify different introgression
models, including ancestral introgression from an out‑
group, and inflow and outflow between nonsister lin‑
eages (Pang and Zhang, 2024). It is unclear how the per‑
formance of 𝑓branch is affected by such unidentifiability.
In general, research is needed to understand the behav‑
ior of the approach in realistic scenarios involving mul‑
tiple introgression events on a species tree of more than
three specieswhen test of gene flow is always conducted
using species triplets.
Overall analyses of real and simulated data in this

study as well as in previous studies (Huang et al.,
2020, 2022a; Ji et al., 2023; Thawornwattana et al., 2023;
Pang and Zhang, 2024) have highlighted large gaps
between full likelihood methods (such as BPP) and
summary methods. Summary methods are orders‑of‑
magnitude faster computationally and can easily ac‑
commodate genome‑scale datasets, while likelihood
methods havemuch better statistical performance (with
higher power in inferring gene flow and less bias in es‑
timating its rate). There is an urgent need for improv‑
ing the statistical properties of summary methods and
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the computational efficiency of likelihood methods for
inferring gene flow using genomic sequence data.

Gene Flow in Drosophila
There has been long‑standing interest in gene flow

between species on the Drosophila phylogeny. Noor
et al. (2000) analyzed within‑species polymorphism and
between‑species divergence along the genome to infer
gene flow between D. pseudoobscura and D. persimilis.
The population genetic analysis did not identify the
direction of gene flow. Wang and Hey (2010, see also
Dalquen et al., 2017) explicitly modeled the coalescent‑
with‑migration process in the so‑called isolation‑with‑
migration (IM) model and used multilocus sequence
data to infer low but significant gene flow fromD. simu‑
lans toD.melanogaster, with no gene flow in the opposite
direction. The study of Suvorov et al. (2022) is note‑
worthy for its use of 155 Drosophila genome assemblies,
covering the whole Drosophila genus and suggesting
multiple instances of between‑species gene flow.
Our reanalysis of data for clade 2 in the Drosophila

genus of Suvorov et al. (2022) has confirmed the au‑
thors’ overall conclusion that gene flow is prevalent
on the species phylogeny and extended that work by

characterizing the lineages involved in gene flow and its
direction and by estimating the timing and rates of gene
flow.We inferred a gene‑flow event involving sister lin‑
eages which is unidentifiable by the triplet summary
methods used by Suvorov et al. (2022), while some in‑
trogression events inferred by Suvorov et al. (2022) were
rejected in our Bayesian test. Our simulation in gen‑
eral demonstrates the accuracy and robustness of BPP
and raised concerns about the reliability of the summary
methods used by Suvorov et al. (2022). Our analyses sug‑
gest a need for a reanalysis of gene flow for the other
clades on the Drosophila phylogeny.
Here, we note a few limitations with both our

Bayesian analysis and the sequence data, which may
affect our inference. First, our search in the space of
models was not exhaustive. We used the Bayesian test
to confirm or remove gene‑flow events proposed in the
triplet analyses of Suvorov et al. (2022), and in some
cases repositioned events to ancestral branches when
our analysis suggested incorrect placement (Table 1).
We also assessed various scenarios of gene flow involv‑
ing extant species (Table S5). This constitutes a limited
search in the space of introgression models. The use of
a stringent cut‑off for 𝐵10 in the test may lead to false
negatives (i.e., failure to detect gene flowwhen it exists),
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but the test appeared to be very powerful in simulations
(this study and Ji et al., 2023).
Second, some concerns may be raised about the suit‑

ability of the sequence data of Suvorov et al. (2022).
The data consist of single‑copy protein‑coding genes
compiled to infer the phylogeny and to estimate diver‑
gence times for the whole Drosophila genus, with di‑
vergence times >50MY (or >100MY from the A. gam‑
biae outgroup).While single‑copy orthologous genes are
ideal for phylogenetic reconstruction and divergence
time estimation among distantly related species, which
are major objectives of the study of Suvorov et al. (2022),
they may not be optimal for inferring gene flow be‑
tween closely related species. The data for clade 2 in‑
volve a high degree of incompleteness, with missing
species at ∼50% of the gene loci. Noncoding parts of
the genome tend to have higher mutation rates and
may be more informative than conserved exons, even
though they may pose challenges to genome assem‑
bly. Also the data appear to be “haploid consensus se‑
quences,” with genotypic phase at heterozygous sites
in the diploid sequence resolved effectively at random,
creating chimeric sequences that may not exist in nature
and may impact on genealogy‑based analyses under
the MSC (Andermann et al., 2019; Huang et al., 2022b).
Furthermore, the data consist of only one sample per
species per locus. Summary methods considered here
do not use information in multiple samples per species,
and indeed some authors suggest that “adding more
samples provides little new information with respect
to introgression” (Hibbins and Hahn, 2022). However,
likelihood‑based methods such as BPP can accommo‑
date multiple samples per species, and both theoreti‑
cal analysis and computer simulation suggest that in‑
cluding multiple samples per species (in particular for
species receiving immigrants) may boost the informa‑
tion content in the data for inferring gene flow (Huang
et al., 2020; Yang and Flouri, 2022). For example, with
one sequence per species, some models of introgression
are unidentifiable but the problem disappears when
multiple samples are included in the data (Yang and
Flouri, 2022; Thawornwattana et al., 2023). It is unclear
whether the extreme sensitivity in the inference of the
D. lowei → D. affinis (𝑝 → 𝑞) introgression to taxon
sampling (Table S7) is due to the joint effects of the
use of one sample per species and the ”pseudohap‑
loidization” of the haploid consensus sequences, as the
”unusualness” of the chimeric sequences from the in‑
group species may depend on inclusion or exclusion
of sequences from more distant species. Note that hap‑
loid consensus sequences may be chimeric sequences
that do not exist in natural populations and may thus
appear highly unusual. They may show up on gene
trees as long branches or deeply divergent lineages, and
may thus affect inference methods such as BPP that are
based on gene genealogies (Huang et al., 2022b, Fig. 6,
Table 6).
While issues related to data quality may impact

our analyses using BPP, the major introgression event

involving sister lineages inferred in our analysis
(Fig. 1b) appears to be robust andwell supported. How‑
ever, it is likely that certain instances of gene flow may
be missed in our analyses. We leave it to future stud‑
ies to assemble sequence datasets including noncoding
parts of the genome and including multiple samples
per species to infer gene flow in this group of species.
In this regard, we note that (Kim et al., 2023) has dis‑
cussed the complexities of Drosophila genome assembly
and made progress in producing high‑quality genomic
data.
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