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The birth—-death process (BDP) is widely used in evolutionary biology
as a model for generating phylogenetic trees of species. The generalized
birth—death process (GBDP) allows rate variation over time, with speciation
and extinction rates to be arbitrary functions of time. Here we review the
probability theory underpinning the GBDP as a model of cladogenesis
and recent findings concerning its identifiability. The GBDP with arbitrary
continuous rate functions has been shown to be non-identifiable from
lineage-through-time data: even with species phylogenies of infinite size
the parameters cannot be estimated. However, a restricted class of BDPs
with piecewise-constant rates has been shown to be identifiable. We
review and illustrate these results using simple examples and discuss their
implications for biologists interested in inferring the past tempo and mode
of evolution using reconstructed phylogenetic trees.

This article is part of the theme issue ‘“A mathematical theory of
evolution”: phylogenetic models dating back 100 years’.

1. Introduction

Phylogenetic relationships among species are a consequence of complex
historical processes, including population fragmentation and divergence,
genetic drift and ecological adaptation, ultimately leading to increased genetic
isolation and generating new species. These processes naturally lead to
hierarchical relationships among extant and extinct species, including shared
ancestral species existing at various times in the past. An evolutionary tree
representation of relationships among species has been used since the time of
Darwin in the nineteenth century [1]. “Tree thinking’ has become one of the
fundamental unifying principles of evolutionary biology [2].

Relationships among species over time are predominantly represented as a
binary tree (phylogeny) with branch lengths proportional to time (see figure
1). Although genomic datasets frequently contradict this tree view, supporting
more nuanced species relationships defined by introgression and horizontal
gene transfer which generates horizontal connections between branches and
produces networks rather than binary phylogenetic trees [3], binary trees still
provide a useful backbone onto which introgression may be superimposed.
Phylogenetic trees also provide a record of the tempo and mode of past
evolution in different groups of species [4].

Unique geological and environmental events are expected to play a
major role in generating phylogenetic relationships among species. Any
process-based mechanistic model of speciation and extinction will be highly
complex and group-specific, omit important unobserved factors, and be
unrealistic. Nonetheless, biologists have a deep interest in discovering the
forces that generated biological diversity, such as geological upheavals,
climatic catastrophes and extraterrestrial collisions that may be associated
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Figure 1. A species phylogeny for six species with internal nodes rank-ordered by age. A tree with labelled tips and rank-ordered internal nodes is called a ‘labelled
history” or ranked rooted tree’ The time of origin, £, is used to formulate the birth—death process (BDP) model of cladogenesis. In models considered in this article, the
tree topology is not informative about the parameters in the BDP, and only the speciation times (or equivalently the 'lineage through time' or LTT data) constitute the
data: ty, ..., ts.

with radiative speciations or mass extinctions. Unfortunately, the extreme stochasticity of even ‘neutral’ branching processes
with constant speciation and extinction rates can mislead inferences based solely on apparent diversification rates on the
phylogenetic tree or based on ‘reading of the tree leaves’. To infer speciation and extinction processes rigorously requires a
proper statistical inference framework.

To study speciation and extinction using estimated phylogenies a model of the processes generating the phylogeny is
needed. Here we focus on a class of stochastic continuous-time birth-death processes (BDPs) whose study began a century
ago with the pure-birth process proposed by Udny Yule [5]. BDPs have provided simple parametric models that allow formal
statistical inference procedures to be used to estimate birth (speciation) and death (extinction) rates from phylogenetic trees.
BDPs are obviously not an accurate model of the true underlying processes; however, they attempt to capture the most
important features with per-species rates of speciation and extinction that may vary through time or across lineages. BDP-based
inference methods have been widely used in evolutionary biology [6], but such approaches have also been criticized on several
grounds [7-9]. Here we review some recent criticisms and controversies, particularly concerning whether certain BDPs can be
distinguished by data. We provide a description of the most widely used BDP model that allows variable rates, the generalized
birth-death process (GBDP) [10], and consider the statistical properties of inference methods under the model.

Two distinct approaches have been taken to extend BDPs to account for variable rates of speciation and extinction: variation
of rates through time (with rates shared across all contemporary species) [11] and variation of rates across lineages [12,13]. An
important difference is that in the first (rate variation through time), all tree topologies with rank-ordered internal nodes and
labelled tips (so-called labelled histories; see §4 below) have equal probabilities. As a consequence, divergence times on the
phylogeny or the so-called ‘lineages through time’ (LTT) summary [11,14] provide a sufficient statistic for estimating speciation
and extinction rates. This is not the case in the second approach (with rate variation across lineages), in which tree topologies
are also informative about the rates. In this article, we consider only models of rate variation through time. However, many of
our observations are of relevance for inferences under the second class of models as well.

The data used to infer speciation and extinction rates are usually phylogenetic trees of species. Here we assume that fossils are
excluded and all species tips on the tree are contemporaneous; this is typical of most analyses (we do not consider applications
of BDPs as models of virus transmission with non-contemporaneous tips or ancient DNA samples). Such ‘time trees’ are
generated by analysing sequence data from a sample of contemporary species using phylogenetic inference methods that
assume a molecular clock or a ‘relaxed clock’ [15,16]. The branch lengths of the phylogeny are in units of the expected number
of substitutions but can be converted to absolute geological time by use of fossil calibrations. An example of a phylogenetic
tree is shown in figure 1. Such trees provide the history of surviving species; extinct species are effectively removed from the
tree if they are not direct ancestors. Nee ef al. [11] referred to this tree of relationships for only the contemporary species as the
‘reconstructed tree’.

Comparative studies using BDPs typically do not distinguish between gene trees and species trees although processes such
as incomplete lineage sorting could lead to gene tree versus species tree conflicts and biased species divergence time estimates
[17,18]. Also, treating inferred phylogenetic trees as observed data to infer speciation and extinction rates ignores phylogenetic
uncertainty (in particular uncertainty in branch lengths). One solution to this problem is to integrate over the trees while
estimating rates through Bayesian phylogenetic inference with a BDP used as a prior [19,20]. Another approximation uses trees
sampled from a separate Bayesian phylogenetic analysis through Markov chain Monte Carlo (MCMC) and averages inferences
over the MCMC sample [21]. Although potentially important, we ignore species tree versus gene tree conflicts and phylogenetic
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uncertainty in our considerations, focusing instead on the ‘best-case” scenario by using a known phylogenetic (species) tree to [ 3]

infer rates.

3. The Yule process

The Yule process [5] is a continuous-time pure-birth process in which birth (speciation) occurs at the per-lineage rate A and there
are no extinctions. The process begins with at least one lineage and the number of lineages is strictly increasing. For calculating
probabilities on phylogenetic trees the only transition probability needed is p;(t), the probability that a lineage existing at time 0
has exactly one descendant time ¢ later. If the process is initiated with ng = 1 lineages at time ¢ = 0 the finite difference equation is

pi(t+ At) = p(t)[1 - AAt] + o(At), (3.1)
and the limiting ordinary differential equation (ODE) is

pi(t + At) = pi(f) _

. . B o(At)
Am, At M \mp O+ =5
dpi(t) _
ETa 0% (3.2)
Solving (3.2) with initial condition p;(0) = 1 gives
pi(t) =e™. (3.3)

The general formula for p,(t) can be obtained by iteratively solving the successive ODEs. For example,

po(t + At) = pi(H)AAL + po(2)(1 - 2AAt) + o(At), (3.4)
which gives the ODE
dp,(t
ilzt( ) . —2py(H)A+ pi(t)A = —2py()A + e M. (3.5)

With the initial condition p,(0) = 0, this has the solution
palt) = e (e - 1), (3.6)
In general, p,(t) is given as

pa(t) = e #(1 —eMyr 1, (3.7)

4. Probability of the reconstructed tree

Edwards [22] considered the calculation of the probability of a phylogenetic tree under a Yule process. The same approach
applies under the GBDP considered later in this article with an obvious substitution of probability terms. We therefore review
the results for the Yule process in some detail. Edwards refers to a phylogenetic tree with labelled tips and rank-ordered
internal nodes as a ‘labelled history” (figure 1). This is the fundamental tree structure under both the coalescent model and the
birth—death model. Contribution [23] of this issue further defines the concept of a labelled history, extending it to multifurcating
trees. Rank-ordering the heights (times) of speciation events on a tree with a stem at time t,, we have t = {t, t,, ..., t, -1}, where
t; is the height of the root node (figure 1). A speciation event occurs on any of the i —1 branches of the tree that exist during
time interval (t;+ At, t;) with probability (i — 1)AAt; and the resulting lineage leaves exactly one descendant at time present with
probability p;(t;). The joint probability of having, after time ¢, n tips and node heights t is then
-1 -1

f(t nlto) = pr(to) [T idpn(t) = (n - 112" T pa(t) = (n - 1)1a" TeAxi=on, (4.1)
i=1 i=0

Integrating over the branch lengths for a fixed stem age gives the marginal probability of n descendants after time ¢,

17} th-2 B
f(nlto) = ﬁ o [ (= 1)IA" e Axi-0tde = e oMo — 1y (4.2)
1=1to n-1<

Some authors [24] use the probability density function (PDF) of speciation times conditional on having n tips and the stem age ¢,
(i.e. time that BDP was initiated with a single lineage):

(n-1*le e (n-1)" e Axi-du

Pa(to) e Mot —qyn-1 (*2)

f(t|t0/ Vl) =

However, the stem age is not a property of observed phylogenetic trees so it must be dealt with, for example, by integrating it
out using a Bayesian prior. Other authors [19] follow [22] and instead condition on the number of tips n and the age of the root
(which is observed in the phylogenetic tree):
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n-1
Pr(n|t) = Y. p(t1)Pa-(t1) = (n—1)e (1 -1y 72, (4.4)
i=1

and thus

(n-)IA" e L (n-2)1a" e Axi

S D) (] — gy L )

There may be situations where a stem age is a biologically meaningful concept (and a prior may be available). For example, in
branching models of cell fate in an organism, the stem age is the age of the zygote. However, in phylogenetic systematics the
meaning of a stem age is typically obscure. Conditioning on stem age, equation (4.3) can be rearranged to give

_/1[.

-1 A ; -
Ftltom = B O)H Am(t)—WHz@l(a) (n- 1>'1‘[ AP0 -] 1:[ e (46)

Pa(to)

This is the joint density of the order statistics for n - 1 independent and identically distributed (i.i.d.) random variables [22] with
kernel density:

/1x
flx)= — for0<x<t. 4.7)

In the case of the Yule process, the kernel density is a simple truncated exponential. This order-statistic form holds for the BDP
as well [24] (see also [25]). This representation suggests an efficient method for simulating from a BDP conditional on n and ¢,
[24], as used by [26] to simulate large trees under the BDP. In this procedure, n—1 i.i.d. variables are simulated from the kernel
(eq. 9 of [24]) and rank ordered to obtain a sample from the joint density.

5. The generalized birth—death process

The Yule process described above has obvious limitations. Extinction is not allowed in the model, and the speciation rate is
assumed constant. Feller proposed a linear BDP to incorporate extinction, with constant rates of speciation and extinction (4, u).
Kendall [10] developed a ‘generalized” birth-death process (GBDP) model in which the birth rate A(t) and death rate u(t) are
deterministic continuous functions of time. Remarkably, this generalized process still allows exact analytical solutions. Explicit
solutions are available for py(t), the probability that i descendants exist for a single lineage after ¢ units of time. Of particular
interest for calculating the PDF of phylogenetic trees using Edwards’s [22] method are the probabilities p;(t) and py(t) that
exactly one descendant, or zero descendants, respectively, exist after time t. Note that the stochastic process runs forward in
time but t measures time in the past with the present time being ¢ = 0. For example,

1
- | 5.1
Pt =1-—77 el ~200yy,(5) dis -

is the probability that all descendants of a single lineage have died out by time t. Equation (5.1) assumes that all extant species
descended from a particular ancestral node are sampled (i.e. complete sampling). This is the lineage extinction probability E(t)
in [27] and @(¢) in [28] (in the special case of complete sampling). We will instead use py(t) = O(t) = E(t), to be consistent with
Kendall’s original notation.

Nee et al. [11] added random sampling to the linear BDP. If a fraction p of lineages are randomly sampled at present, the
equivalent probability is determined by the finite difference equation

ot + At) = po(O)[1 = A(t + ABAL — pu(t + ADAL] + u(t + AtAL + po(£)*A(t + ADAL + o(AL). (5.2)

The three terms represent the probabilities that (i) no events occurred during the interval (t+At,t), with probability
[1-A(t+ At)At — p(t + At)At], and the lineage subsequently went extinct, with probability py(t); (ii) a death occurred, with
probability u(t + At)At, so that the lineage went extinct during (¢ + At, t); and (iii) a birth occurred, with probability A(t + At)At,
and both lineages subsequently went extinct, with probability py(t)*. Taking limits, we obtain the ODE

t+At) - t
Jim w = Jim (~po(OLA(+ At + (t+ AT+ p(t+ A0 + po(0)PA(L+ Ay + O(At) i
dpo(t) _ 2
S =~ BoOIA) + RO+ 1(0) + po(e)A00) 53)
Solving the equation with the initial condition py(0) =1 - p gives
=1 oJOA(s) ~ uls) ds
Po % + [ A(s)e/0A0) ~ k)dy ds (54)
For constant A and u equation (5.4) simplifies to
(A=t — ) —
po(t) = 26 AL Zp) Tk 55)

pAe H+ A(1-p)—p
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In the case of constant A and u with p =1, both equation 5.1 and equation 5.4 simplify to

pel 1)

e (5.6)

po(t) =

In calculating the PDF for labelled histories we also need the probability that a lineage has a single descendant after time ¢, the
solution of which (with complete sampling) from Kendall [10] is

pi(®) = [1 = po()I(1 = y), (5.7)
where

1
o SAlK) “AOM 1+ fhefiE0) -2y (s)ds] '

n=1- (5.8)

To obtain the PDF with sampling, a finite difference equation is again formulated
pa(t + At) = py()[1 = At + ADAL = (e + AAL] + 2y () ()ALt + AAL +0(AD). (59)

The two terms are the probabilities (i) that no events occur during the interval (t+At, t), with probability
1-A(t + At)At — u(t + At)At, and exactly one lineage survives after time t, p(t); and (ii) that a birth occurs during (t+At,t),
with probability A(t + At)At, and exactly one of the lineages survives to present, with probability 2p;(t)py(t). We have

Jim PEEEOZPO iy T o0+ A0 + e+ A0) + 2910 po012(e + Ary + X80 |
d
’(’ilt(t) =~ puB[A®) + u(0)] + 2P (D) po(DA(E) - (5.10)

This ODE is solved using the initial condition p;(0) = p to account for sampling, which gives

p exp {2,foA(s) po(s) ds}

pi(t) = . (5.11)
exp {f5[4(s) + (s)] ds}
If A and u are constant this simplifies to
(=Dt ) - )2
m() = c A-pp 3 (5.12)
[(u=[1-plA)et D= 2p]
In the case that p =1 this simplifies to
A — u)2e-nt
pi(t) = (- ) (5.13)

(2~ — ]

which matches the result obtained by solving eq. 5.7 of [10].

6. Tree likelihoods under the generalized birth—death process and the generalized Yule process

Kubo & Iwasa [14] considered a GBDP in which A(t) varies through time and u is constant, and another GBDP in which u(t)
varies through time while A is constant. They noted that both GBDPs produce the same likelihood on LTT data as a generalized
Yule process (GYP) with a time-variable birth rate (and with u = 0). The fact that multiple GBDPs produce an identical PDF for
a phylogeny means that the GBDPs are not statistically identifiable by the phylogeny (see definition in §7 below). For example,
the model of variable birth rate A(t) with a constant death rate u and the model of variable birth rate A(t) with zero death rate
1 =0 are two distinct models with different parameter values that are not identifiable using LTT data.

Louca & Pennell [8] considered GBDPs with both variable birth rate A(¢) and variable death rate u(t), and found that they
produce the same likelihood on species divergence times as a GYP with a time-variable birth rate. Indeed there is a whole class
of GBDPs with different time-dependent birth and death rates that have the same likelihood (are ‘congruent’ in the terminology
of [8]) and are thus non-identifiable. Note that to demonstrate non-identifiability it is sufficient to show that any GBDP can
be represented as a GYP. Suppose that the GBDP starts at time ¢, with a single lineage. The PDF of divergence times (i.e. the
likelihood) under the GBDP is

n-1
J(t, nlto) = pi(to) Hl [A(t)pi(8)], (6.1)

where p(t) is given in equation (5.7). This is the same as the likelihood under the GYP with a time-dependent birth rate
Ap(t) = AO[1 = po(1)]- (6.2)
Here 1,(¢) is called the ‘pulled” speciation rate in [8] and is a function of A(t), u(t) and p in the original GBDP. Define
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t
Ap(t) = f Ap(s) ds. (6.3)
0
Then the equivalent GYP likelihood is

n-1 n-1 :
Foltnlio) = O T] 2t 0 = e FA00 - mOIS [T A(6)[1 - poft e A0 NI, (6.4)
i=1 i=1

7. |dentifiability of birth—death processes

If the probability distributions of the data X are identical under model m with parameters 8 and under model m' with
parameters €', with

f(XIm, 6) = f(X|m', &) (7.1)

for essentially all possible data X, the models are non-identifiable by data X. Both the terms non-identifiability and unidenti-
fiability are used in the literature and should be considered synonyms. Note that the object of identifiability is the model
or parameters, the object of statistical inference. One may use the term within-model non-identifiability if m=m' and 6 # €', or
cross-model non-identifiability if m # m'. In the former case, two sets of parameter values in the same model are non-identifiable,
whereas in the latter two distinct models are non-identifiable. Non-identifiability reflects an essential indeterminancy in model
or problem formulation [29, p. 54] and the definition concerns infinite data or all data (except for isolated data points that
collectively have zero probability of occurrence, as implied in the term ‘essentially” in equation (7.1).

Some authors [30] define practical non-identifiability as ‘the case when distinct parameter combinations cannot be told apart
from the limited number of observations available in practice'. Thus, practical non-identifiability simply means low information
content in practical datasets. We avoid such terminology. Also, identifiability depends on the type of data; a model that is
non-identifiable with data X may be identifiable with extended data X'. For example, models of between-species introgression
are known to cause non-identifiability issues [31-33]. Introgression between sister lineages is non-identifiable using data of one
sequence per species per locus but is identifiable when multiple samples are available per species [34,35]. Some models of gene
flow are non-identifiable using gene tree topologies, but are identifiable using gene trees with branch lengths or sequence data
[36].

Non-identifiability comes in many stripes (table 1). In some cases 6 and 6’ under the same model represent isolated points
in the parameter space. One of the best known such cases is the non-identifiability of the label-switching type, as occurs in
Bayesian clustering. Let data X = {x;} be a sample from a mixture of two normal distributions, N(u;, o1) and N(u,, 03), with
the mixing proportions p; and p, =1- p;. Let 6 = (py, wy, 07, 4, 03) be the parameter vector. Then ' = (py, uy, 03, 1, 01) will have
exactly the same likelihood, with f(X|6) = f(X|0') whatever data X are. Thus 6 and &' are non-identifiable. In effect, the
labels ‘group 1" and ‘group 2" are switched between 8 and €'. This non-identifiability is known as a label-switching problem.
Models with label-switching non-identifiability can still be used for inference. For example, a relabelling algorithm can be used
to post-process the MCMC sample to fix the label-switching issue [38,39]. Concerning the linear BDP, several authors have
observed that the likelihood of the times under a BDP conditioned on a fixed number of lineages is invariant when the
birth rate 4 and the death rate u are swapped [24,25]. This non-identifiability due to the symmetry in A and y is thus of the
label-switching type, even though the two models are very different biologically. Similar non-identifiability (both within-model
and cross-model) of the label-switching type occurs in models of bidirectional introgression in analysis of multilocus genomic
data under the multispecies coalescent model [40].

Another common type of non-identifiability occurs when the likelihood function depends on the parameters 8 only though
a function h(6); in other words, the likelihood L(6) can be written as L(h(6)), with h(6) typically of a lower dimension than 6.
Then 6 and 6’ are non-identifiable if h(6) = h(€'). Consider, for example, the estimation of divergence times t = (t1, ---, t5) of figure
1 in a molecular clock dating analysis using a sequence alignment. There are six parameters in the model, 8 = (i, ty, ---, t5), where
u is the mutation rate. However, the likelihood for the sequence data depends on h(6) = (ti, tou, tau, tapt, tspt), which has five
dimensions. If we multiply u by a factor ¢ and divide all times by the same factor, #(6) remains unchanged and all parameters
generated through this transform are non-identifiable. There is a one-dimensional ridge on the likelihood surface along which
the likelihood is constant.

Non-identifiability of certain parameters may occur when some other parameters take particular values. This is known
as local non-identifiability. For example, in the clustering problem, if p, =0, then u, and o3 are non-identifiable. In the piecewise-
constant model of variable speciation rate (§7b), if a time period has zero duration, the rate for that time period will be
non-identifiable. Priors may be used to increase the separation between change points.

(a) Non-identifiability of a generalized birth—death process

Here we illustrate the non-identifiability of the GBDP as discussed in [8,14] using a simple example. We show that the
constant-rate BDP with complete sampling p = 1 produces the same likelihood for LTT data as a pure-birth process with variable
birth rate. As a result, the two models are non-identifiable.

Examining equations (6.1) and (6.4) we see that the two models are not identifiable if the following equality holds:

GOE0E20T “08€ 8905 y'Suni g syewnolBuoBusyndtaposeor [
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Table 1. Summary of different types of non-identifiability discussed in this article. BDP, birth—death process; GBDP, generalized birth—death process.

condition identifiability reference

inference under BDPs
GBDPW|thcontmuousratefunctlonsA(t)y(t) ....... nonldentlﬁable .................................................... crossmodel[8] ............
GB DP W|th pleceW|seco 5 stant rate functlons ........... i d entlﬁable ............................................................. C ro ssmodel ........................................................... [27] ...........
........ B
GBDP with piecewise-polynomial rate functions  identifiable cross-model [37]
........ B
BDP with constant rates 2, u 0=(4,u within-model, label-switching type [24,25]

Bayesian clustering parameters for different clusters are non- within-model, label-switching type [38,39]
identifiable
molecular clock dating without fossil times and rate are non-identifiable within-model, dimension reduction [15]
calibrations
Apy(t) = Ap(t)e0. (7.2)

On one hand, substituting equation (5.13) into the left hand side of equation (7.2) gives

AQ - p)’e 1

Apy(t) = . .
210 R (7.3)
On the other hand, from the constant rate BDP we have
t y -l)t,u
Ap(t) = ‘/0 A[1 = po(s)]ds = (A — )t +1log (T)' (7.4)
and by substituting equation (5.6) into equation (6.2) we obtain
el-mr_1
Ap(t) = A[1 = po(t)] = /1(1 - ’L;(e(’l‘—”)‘—/x)) (7.5)
Substituting equations (7.4) and (7.5) into the right hand side of equation (7.2) gives
— ) 2e@-mt
Ap(t)e o) = AA - p)y e (7.6)

[ = Ae=wry

Equation (7.3) and equation (7.5) are equal for any t, A, u. Thus, the likelihood under the constant-rate BDP (equation 6.1) and
the likelihood under the pure-birth process with variable rate 4,(t) of equation (7.5) (equation (6.4)) are equal. Note that both
models are special cases of the GBDP, so that those two GBDP models are non-identifiable. Figure 2 shows the relationship
between 4,(t) of the GYP (equation (7.5)) and the constant rates 1 and u in the BDP.

(b) Identifiability of birth—death processes with piecewise-constant rates

The GBDP with arbitrary speciation and extinction rate functions appears to be too general to allow identifiability. Legried &
Terhorst [27] considered a restricted class of GBDPs with rate functions A(t) and u(t) to be piecewise-constant over K pieces
(time periods). Such models are also known as multiple-change-point models in the statistics literature [41], with the boundaries
between pieces of constant rate known as change points. Legried & Terhorst [27] showed that these models are identifiable
as long as the number of tree tips is not too small relative to K. They further argue that with a large K these models can
approximate any GBDP to an arbitrary degree, although this does not mean that real datasets contain information to recover
arbitrary rate functions with any reliability (see below). Note that the result of §7a, that the BDP with constant rates 4 and u
and the pure-birth process with variable rate 4,(t) are non-identifiable, is not in contradiction with Legried & Terhorst [27]. The
variable-rate pure-birth process of equation (7.5) is not within the set of models considered by those authors, and there does not
exist a piecewise-constant rate function for the pure-birth process that gives the same likelihood as the constant-rate BDP.

In simple cases (with certain regularity conditions [42] assumed), identifiability of parameters is indicated by the uniqueness
of the maximum likelihood estimates and the non-singularity of Fisher’s information matrix, evaluated at the true parameter
value [42,43]. Here we use this idea to illustrate that the simplest member of this class of cladogenesis models, a Yule process
with two birth rates on different intervals, is identifiable. For simplicity, we assume that the time of the rate change is specified.

Consider a pure-birth process with complete sampling that begins at time ¢, in the past with rate 49 and switches to rate 4; at
time T. With ¢t > T assumed, equation (5.11) simplifies to
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Figure 2. The ‘pulled speciation rate’ /1p(t), for the equivalent generalized Yule process of [8], which is non-identifiable with the birth—death process (BDP) model
with constant birth and death rates (4, ) for three sets of parameter values. The BDP model with constant birth rate A and constant death rate 1t is non-identifiable,
using lineage through time data, with the Yule process with variable birth rate A,(¢) given in equation (7.5).

pi(t) = e S0 ds = Aot =D+ MT] _ o~o(t=T) Mt T 7.7)

This is also the probability that the lineage does not split over either time interval (¢, T) or (T, 0).

Now consider the reconstructed tree of n lineages where one lineage exists at time f, I lineages were born during interval
(to, T) and J were born during (T, 0) (figure 3). Let t° and t' be vectors of times of speciation events occurring in the epochs (to, T)
and (T, 0), respectively. For simplicity, we assume that ¢y and T are known, and there are only two parameters to estimate in the
model: Ay, A;. The likelihood for the observed times, according to equation (4.6), is

L(4o, 1) = f(t|to, )

I J
= [T idoe 2@ -D-4TT] (1 + jse ™,
i=1 j=1

= (I + J) A0~ Mg-do(Sh- 1) pe-A1(5) 1), (7.8)
with the log-likelihood:
I 7
log L=1log Ag+Jlog A1+ TI(Adg—A) =AY, 10 =21 ) t]. (7.9)
i=1 j=1
The partial derivatives are
ologL _ I o OlogL _J Lo
= +IT-)Y ), —=2==2-IT-)t], 7.10
TR TR I (R i TR 2 (7.10)
while the second derivatives are
2 2
610%L=_L2, 610%L=_i2. (7.11)
oA Ay oAy M
The maximum likelihood estimates are thus
~ 1 > J
lo=——Mm—, Aj=———M——. (7.12)
(Ziath) - IT (L1t +IT
The information matrix is
dlog L dlog L Ly
A3 0dpoh A2
Flog L dlogL| | iz .
0ok 917 A (7.13)

The true parameter values are positive real numbers. If I>0,J>0, the information matrix will be non-singular and the
parameters are identifiable. Note that here we have conditioned on the numbers of speciation times in each epoch: I, J. In the
constant-rate Yule process described in §3, the number of times (n — 1) is given by the number of tips n. Similarly, in the two-rate
processn=I1+J+1.
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Figure 3. A piecewise-constant rate Yule model with two time periods of different rates. During the time period (0, T), the birth rate is A; and J = 2 speciation
events are observed, whereas in the time period (T, £y), the birth rate is Agand I = 3 speciation events are observed.

8. The limits of statistical information

The fact that the GBDP with piecewise-constant speciation and extinction rates is identifiable [27] may be encouraging for
biologists interested in inferring speciation and extinction rates from reconstructed phylogenies. However, as noted by [27]
identifiability does not ensure that information is available in real datasets to produce parameter estimates that are reliable and
precise enough to draw useful biological conclusions. Simulations and other exploratory analyses may be used to determine
how informative typical datasets are. We note that when the speciation rate and extinction rate vary over time, there is a
general difficulty of small sample sizes. The case is similar to a coin-tossing experiment in which a sequence of coins with
different probabilities for heads are flipped, each only once or a very few times, with the aim of estimating the probabilities
for all coins. Furthermore, most studies applying the GBDP to reconstructed phylogenies (the LTT data) have assumed that the
true divergence times are known, whereas in practice estimated divergence times involve considerable errors and uncertainties
owing to the challenges of summarizing the fossil evidence, estimating branch lengths on molecular phylogenies, and the
confounding effects of rates and times in analysis of molecular data (see [15] for a review).

Here we conduct a simulation experiment under a simple scenario with only one rate change to explore the information
content in LTT data. We simulate divergence times with an extension of the two-rate Yule process model described in §7b
above, and ask whether the change in speciation rate at time T can be recovered using a piecewise-constant Yule process
model. We extend the model slightly by assuming that at the end of the first epoch (at time T), mass extinction occurs with
the probability of any lineage surviving to be p while speciation rate is much higher after the mass extinction than before, with
A1 > Ag. This mimics a mass-extinction scenario such as occurs in the fossil record at the Cretaceous-Palaeogene extinction event
(K-Pg boundary), where extinction opens up new niches previously occupied by other species, increasing the speciation rate.
However, many lineages existing before the extinction event will leave no descendants, so that it may not be possible to estimate
the speciation rate for those lineages (o) reliably.

For simplicity, we assume that the time of origin (t), the survival probability at extinction (p), the time of the mass extinction
(T) and the numbers of speciation events in the two time epochs (I, J) are all known, so that there are only two parameters in the
model: 4p and 4;. If a lineage arises in the first epoch at time ¢ > T the probability that it leaves exactly one descendant at present
is given by averaging over the number of lineages (m) right before the mass extinction (with probability p,,(t) of equation (3.7)),
with only one of them surviving the mass extinction and leaving one descendant in the sample:

pi(t|do, 2, T, p) = fj e DT 1y mp(1 - p)" e T = pe DT @8.1)
e [ (p-1)-e“p]’
Note that
giml pi(tldo=2,4=21,T, p)=e™, 8.2)
The likelihood is then
I J
Lo, ) = anipf(t?uo, AT, p)jlj1 AT+ je s, (8.3)

Note that the limit of equation (8.3) as p — 1 is equation (7.8) as expected. The log-likelihood is
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Figure 4. Log-likelihood surface for a realization of the two-rate epoch Yule process with a mass extinction event between epochs (figure 3). Time is given in millions
of years and the true rates are A4y = 0.025, A; = 0.125. LTT data are simulated assuming a mass extinction event at T = 66 Ma, with the survival probability at the
extinction to be p = 0.25, and the process originated at £, = 170 Ma. Note the very different scales for the Ay and A, axes.

I J
logL =Ilogly+ Y log[pi(t] |40, A1, T, p)] + Jlog i =41 ) t],
i=1 j=1

peAO(r? +T)- 4T

I J
=Ilog Ao+ ). log [ +Jlog -4 ) 1.
i=1 j=1

e’(p-1)-eMpP j (8.4)

We simulated a dataset using Ay = 0.025, 1; = 0.125, to =170, T = 66 and p = 0.25. In this case, the process starts at 170 Ma with a
speciation rate of 1 speciation per 40 Myr, and a mass extinction occurs at 66 Ma that caused 75% of species to become extinct
(similar to the K-Pg extinction). Following this event, the speciation rate increases fivefold to 1.25 speciations per 10 Myr. The
simulated data had I =3 and J =21 798, so the number of species in the reconstructed tree is 21 801, larger than many empirical
datasets of this type.

A contour plot of the log-likelihood surface is shown in figure 4. Here we used the correct model with the log-likelihood
given by equation (8.4), with p=0.25 and T = 66 set to their true values. Although 4; is relatively precisely estimated there is a
great deal of uncertainty about the speciation rate 4y before the mass extinction and it is difficult to infer a change in speciation
rate after the extinction event from this dataset. Thus, even for very large datasets, it can be very challenging to identify even a
large change in speciation rate between epochs. The two rates are identifiable in this case, but the information content in typical
datasets may be very limited. Note that we have chosen this example simply to illustrate the potential effects of mass extinctions
on rate inference; obviously a much more extensive simulation study would be needed to reach any general conclusions about
the power of inference that is expected in real data analyses.

May et al. [44] developed a Bayesian inference model with both temporal shifts of speciation and extinction rates and
periodic mass extinction events. Although they were specifically interested in detecting mass extinction events and estimating
their time of occurrence (rather than rates before and after such events) they did find from simulations that the power to detect
mass extinction events depends on how early they occur in relation to the phylogenetic tree. Ancient events near the root are
more difficult to detect: “a mass-extinction event that occurs too close to the root of the study tree will be difficult to detect
because too few lineages will have participated in that event’ [44, p.955]. This is similar to the situation concerning the ancestral
rate (dg) in our example.

9. Discussion

Recent analyses suggest that the GBDP with arbitrary time-dependent speciation and extinction rates is not identifiable using
LTT data, while the model becomes identifiable if the rate function is constrained to be piecewise-constant. We review those
theoretical results, and discuss their implications to inference using empirical phylogenies. We demonstrate that in at least some
cases even large phylogenies with thousands of species may not contain enough information to make useful inferences of past
speciation and extinction rates.

Several recent papers have responded directly to the non-identifiability result of [8], even suggesting possible solutions.
Morlon et al. [30] suggested the use of informative priors on rates or other sources of biological information to reduce the
space of congruent models. Other authors [45] analysed empirical and simulated datasets to examine whether trends such as
increasing rates of net cladogenesis can be identified, assuming that the congruent class of non-identifiable models has been
found and relying on programs such as CRABS [46] to enumerate all such models. Extinction rates are particularly difficult to
infer and one suggestion was to use a GYP to detect general trends of increasing or decreasing rates, again using the CRABS
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program [46] to identify congruent models of speciation and extinction rates. Kopperud ef al. [45] found that many proposed
congruent models were invalid (e.g. with negative extinction rates), so the space of valid models may be much smaller. They
pointed out that statistical uncertainty about rates may be as important as unidentifiability of congruence classes.

The findings discussed in §7b that piecewise-constant [27] (and piecewise-polynomial, [37]) time-dependent rate functions
are identifiable appear to offer hopes for evolutionary biologists interested in using timetrees to infer variable speciation and
extinction rates. Although identifiability with infinite data is reassuring, the information in finite datasets about the rates during
particular epochs may be very weak. To account for this, inference methods should be explicit about uncertainty of parameters
and numbers of rate epochs. Bayesian methods with diffuse priors may prove more reliable than likelihood in reflecting the
true levels of uncertainty in such cases. Another solution is to use simplified models that reduce the numbers of intervals with
distinct rates, introduce autocorrelation, or reduce the number of parameters that need to be estimated from the data. Another
venue for exploration is GBDP in which samples are collected through time (rather than all at the present time). Fossils add
useful information and may make the model identifiable. A recent study [47] claims that the fossilized GBDP is identifiable.

Some readers may be surprised by the poor information content about the ancestral speciation rate before a mass extinction
in our example in §8. However, in the simulation only four lineages existed prior to the extinction that are ancestral to all
contemporary species, so there is clearly very limited information in this case. Some studies examining the power to infer
ancient rate changes have produced more optimistic results. Stadler [48] developed a likelihood inference method for a BDP
with piecewise-constant rates with a fixed number of rate shifts, attempting to infer both the number and time points of rate
shifts and the rates on each interval. A small simulation with a single rate shift suggested that the method could accurately
identify both the rates and the time of the rate shift. The simulations considered only very low extinction rates (up to one-quar-
ter of the speciation rate in one simulation and three orders of magnitude lower extinction rates than the speciation rates in
another). For mass extinction events one expects the extinction rate to be potentially orders of magnitude greater than the
speciation rate, and a high extinction rate during a mass extinction will greatly reduce the number of ancestral lineages available
for inferring rates from a reconstructed tree. Similarly, there is typically more power to detect recent than ancient diversification
rate shifts (as found in [48] for mammalian diversification after the K-Pg mass extinction). More studies are needed to examine
the performance of inference with extinction rates similar to or higher than speciation rates. The effect of mass extinctions in
reducing information about past diversification rates shares many similarities with the related problem of inferring ancestral
population sizes from genetic data in the presence of a population bottleneck [49,50]. In both cases, low numbers of lineages
surviving the event lead to loss of information about rates prior to the event.

We have focused on the identifiability and inference properties of the GBDP with rate variation through time. Models of
among-lineage rate variation, often referred to as state-dependent extinction models (SSEs) [13], are another generalization of the
GBDP, so identifiability problems are likely to exist for such models as well. The difficulty of estimating parameters under SSE
models has already been a subject of debate, although some of the problems have been due to implementations [7]. Existing
inference methods invoking different assumptions are noted to produce very different results [51]. In some models, rates are
positive random variables drawn from a continuous distribution at rate-change events, while in others there exist a fixed set of
rates. Dragomir et al. [52] studied a multitype BDP (a particular type of SSE) with rates changing at random times but drawn
from a fixed set of rates and proved that parameters under the model are identifiable. Recently, several contradictory studies
have been posted that claim to prove either identifiability [53] or non-identifiability of general SSEs [54]. Hopefully, definitive
answers will emerge soon. In conclusion, the problem of inferring rates of speciation and extinction using stochastic birth-death
models, a legacy of Udny Yules’s [5] model in the 1920s, continues to provide rich challenges and unanswered questions for
biologists and mathematicians in the twenty-first century.
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