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Bayesian inference was introduced into phylogenetics in the 1990s when Markov chain Monte Carlo (MCMC) was revolutionizing
Bayesian statistics. It is now the most widely used methodology for implementing advanced models of data analysis in the field.
Its ability to average over variations and uncertainties (via MCMC) makes it particularly suitable for implementing models that
deal with heterogeneous evolutionary processes for both molecular and morphological data. It provides a natural framework for
combining information from different sources, a prime example being Bayesian relaxed clock dating, which integrates information
in molecules and fossils to date the tree of life. Molecular phylogenetics has also emerged as a rich training ground for evaluating
new Bayesian computational methods. Nowadays the Bayesian method has been applied to address virtually all major questions
in evolutionary biology, such as inferring phylogenetic relationships and divergence times among species, detecting molecular
adaptation, estimating species trees despite conflicting gene trees, inferring viral pandemic dynamics, inferring gene flow between
species, delimiting species boundaries using genomic data, and reconstructing genes and genomes in extinct ancestral species.
This article provides a concise introduction to Bayesian phylogenetics, including Bayesian computation through MCMC.
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Introduction

Overview of Bayesian statistics
There are two principal philosophies in statistical data
analysis: the classical (Frequentist) and the Bayesian,
and they are based on different concepts of probability.
The Frequentist defines the probability of an event as
the expected frequency of occurrence of that event in
repeated random draws from a real or imaginary popu-
lation. When we say that the probability of heads for a
coin toss is 1

2 , we mean that the frequency of heads will
approach 1

2 when the number of tosses increases. The
performance of an inference procedure is judged by its
properties in repeated sampling from the data-generating
model (i.e. the likelihood model), with the parameters
fixed. For example, a parameter estimate (such as max-
imum likelihood estimate or MLE) is judged by its bias
and variance, while a hypothesis test (such as the like-
lihood ratio test or LRT) is judged by its false-positive
rate and power (or type-I and type-II errors).

In Bayesian statistics, probability measures one’s
degree of belief. When we say that a hypothesis (e.g., that
the extinction of the dinosaurs was caused by a meteorite
hitting the Earth) has probability 0.9, we mean that the
hypothesis is very likely to be true, judged by currently
available evidence or by one’s subjective opinion. A key
feature of Bayesian statistics is the use of statistical distri-
butions to describe uncertainties in all unknowns (such
as the unknown parameters in a model or the competing

hypotheses for explaining the same data). In classi-
cal statistics, parameters are fixed (although unknown)
constants and cannot be assigned distributions.

Suppose one wants to analyze the data (𝑥) to estimate
the unknown parameter 𝜃 under a model. The probability
of the data given the parameter 𝜃, 𝑝(𝑥 |𝜃), is the likeli-
hood function, and is known to contain all information
about the parameters 𝜃 in the data 𝑥 given the model. In a
Bayesian analysis, one assigns a distribution on 𝜃 before
the analysis of the data. This is called the prior distri-
bution and reflects one’s knowledge or belief about the
likely values of 𝜃. Bayesian analysis of the data then pro-
duces the distribution of 𝜃 given the data, 𝑓 (𝜃 |𝑥), called
the posterior distribution. The two are related through
the Bayes theorem

𝑝(𝜃 |𝑥) = 𝑝(𝜃)𝑝(𝑥 |𝜃)
𝑝(𝑥) ∝ 𝑝(𝜃)𝑝(𝑥 |𝜃). (1)

Here the marginal probability of the data, 𝑝(𝑥) =∫
𝑝(𝜃)𝑝(𝑥 |𝜃) d𝜃, is a normalizing constant, and its role

is to ensure that 𝑝(𝜃 |𝑥) is a proper statistical distribution
and integrates to 1. Eq. 1 thus says that the posterior is
proportional to the prior times the likelihood, or equiv-
alently, the posterior combines information in the prior
and in the data sample. Bayesian inference is then based
on the posterior distribution of parameters and models.
For example, for a continuous parameter, the posterior
mean provides a point estimate, and the 95% credibility
interval (CI) provides an interval estimate.

A major (Bayesian) criticism of classical statistics
is that it does not answer relevant questions, and the
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methodology comprises disconnected and sometimes
contradictory set of ideas and techniques. Take the LRT
as an example. A healthy test has the type-I error under
control and rejects the null hypothesis 𝐻0 in no more
than 5% of datasets when the test is applied to many
datasets generated under 𝐻0. If we are not interested in
the many imaginary datasets generated under 𝐻0 and
ask instead how probable 𝐻0 is true given the particular
dataset collected from our experiment, we get no answer.
The probability for 𝐻0 given the data, P(𝐻0 |𝑥), is not a
meaningful concept in classical statistics.

In contrast, Bayesian inference answers such ques-
tions head-on. Inference is conditioned on the data
observed, and disposes of the imaginary datasets under
the fixed model and parameters. Given the data col-
lected, the prior probability for 𝐻0 is updated to become
the posterior probability, P(𝐻0 |𝑥). The prior or the need
to use a prior is thus the dividing line between Bayesian
and classical statistics. To the Bayesian the prior is the
premium one pays to get straight answers to relevant
questions in statistical inference. For non-Bayesians, the
cost of this premium is too much to bear.

There exist two flavours of Bayesians: the objective
and the subjective. Objective Bayesians consider prob-
ability to be a representation of objective or rational
degree of belief. This school runs into trouble when no
prior information is available about the parameter and
the prior is supposed to represent total ignorance. For
a continuous parameter, Laplace’s ‘principle of insuf-
ficient reason’ is used to argue for a uniform prior
distribution over the range of the parameter, but this
leads to contradictions. For example, 𝜃 ∼ 𝑈 (0, 1) may
appear to be noninformative for a probability parameter
𝜃, but it implies a nonuniform distribution for a one-to-
one transform such as 𝜓 = log 𝜃

1−𝜃
. Surely if one has no

information concerning 𝜃 one must have no information
concerning 𝜓 (since they are one-to-one and knowing
one means knowing the other), but it is impossible for
both to have uniform distributions. The prior is not
invariant to a nonlinear transform. This contradiction is
fatal, and it is now generally accepted that noninforma-
tive priors do not exist and that no prior can represent
total ignorance.

To a subjective Bayesian, probability represents
one’s personal degree of belief. This appears to be the
more popular version of Bayesian statistics. While this
school is coherent, a criticism of it is that it is, uh, sub-
jective. Biologists often find the suggestion surprising
that a Bayesian analysis of their data calls for a psy-
choanalytical assessment of their personal beliefs, and
that the conclusion drawn from their experiment may be
influenced by subjective beliefs.

It should be mentioned that even though the philo-
sophical interpretations differ in classical statistics and
in objective and subjective Bayesian statistics, the laws
of probability are the same.

Given the different philosophies on which classical
and Bayesian statistics are based, an important ques-
tion to biologists is whether the two approaches produce
similar (numerical) answers. This depends on the nature

of the problem. In the so-called stable estimation prob-
lems, a well-formulated model 𝑓 (𝑥 |𝜃) is available, and
we want to estimate parameters 𝜃 from a large dataset.
The prior will have little effect, and both likelihood and
Bayesian estimates will be close to the true parame-
ter value. Furthermore, classical confidence intervals in
general match posterior CIs under vague priors. In many
other problems, both the prior and the likelihood may
exert substantial influence on the posterior. The poste-
rior may be sensitive to the prior, because the model is
ill-formulated and parameter-rich and there are strong
correlations among the parameters, or because the data
lack information. In difficult problems, Bayesian infer-
ence can be very sensitive to the prior, and Baysian
analysis and classic hypothesis testing can produce
opposite conclusions for the same dataset. We discuss
some examples later.

Overview of Bayesian phylogenetics
The Bayesian approach was introduced to molecular
phylogenetics in the 1990s by three groups (Rannala and
Yang, 1996; Yang and Rannala, 1997; Mau and Newton,
1997; Li et al., 2000). This was a time when Bayesian
MCMC algorithms were developed and implemented in
various branches of sciences, revolutionizing Bayesian
computation. The early studies in phylogenetics assumed
simple models of sequence evolution and a constant rate
of evolution (the molecular clock). Nowadays, several
Bayesian phylogenetic programs exist that implement a
wide range of complex models that account for various
features of sequence data. General Bayesian programs
for phylogenetic analysis include MrBayes (Ronquist
et al., 2012), RevBayes (Hohna et al., 2016), beast
(Drummond and Rambaut, 2007), and PhyloBayes (Lar-
tillot et al., 2009). Several Bayesian programs are
available for estimating species divergence times incor-
porating information in fossil and molecular data, such
as mcmctree (Yang, 2007) and beast (Drummond and
Rambaut, 2007).

In molecular phylogenetics, the data 𝑥 is an align-
ment (or alignments) of sequences of nucleotides,
codons, or amino acids from several species. Here, we
assume that the sequences are already aligned and ignore
possible alignment errors. Our focus is the phylogenetic
tree, which consists of the tree topology (𝜏) and the
branch lengths (denoted 𝒃). The branch length is mea-
sured by the expected number of substitutions per site,
and quantifies the amount of evolution along the branch.
Given the tree, the sequence data at the tips of the tree
(for extant species) are the product of the process of
sequence evolution along the branches. The process of
nucleotide substitution is typically described by a con-
tinuous time Markov chain model such as the JC (Jukes
and Cantor, 1969). This may include additional param-
eters (denoted 𝝓), such as the relative rates between
nucleotides and the equilibrium nucleotide frequencies.
More complex models may include parameters that
describe variable rates across sites in the sequence or the
nonsynonymous/synonymous substitution rate ratio in
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protein-coding genes (Yang, 1993; Goldman and Yang,
1994; Rodrigue et al., 2010).

The vector of parameters is then 𝜃 = (𝜏, 𝒃, 𝝓).
The posterior distribution of the tree topology, branch
lengths, and substitution parameters is then given by
eq. 1 as

𝑝(𝜏, 𝒃, 𝝓 |𝑥) ∝ 𝑝(𝜏, 𝒃)𝑝(𝝓)𝑝(𝑥 |𝜏, 𝒃, 𝝓), (2)

where 𝑝(𝜏, 𝒃) is the prior on tree topology and branch
lengths, 𝑝(𝝓) is the prior on substitution parameters,
while 𝑝(𝑥 |𝜏, 𝒃, 𝝓) is the probability of the sequence
data given the tree topology and branch lengths, also
known as the phylogenetic likelihood, calculated using
the pruning algorithm of Felsenstein (1981).

See Felsenstein (2004), Yang (2014), and Yang
(2018) for historical accounts of Bayesian phylogenet-
ics. Early work in the field mostly involved Bayesian
re-implementation of likelihood models developed pre-
viously. Nowadays many sophisticated parameter-rich
models may be available in the Bayesian framework
only. Bayesian marginalization, which averages over
uncertainties in latent variables, is an attractive way of
accommodating variation in the data that we are not
interested in but cannot ignore, and the ease with which
one can deal with high-dimensional multi-parameter
models is a great advantage of the Bayesian frame-
work. Maximum likelihood under such models is often
unfeasible computationally, as the likelihood function,
which averages over such random variables and involves
huge sums or high-dimensional integrals, may be too
expensive to calculate.

Priors in phylogenetic models
Whether we adopt the objective or subjective views,
Bayesian inference requires the specification of a prior.
The prior is expected to summarize one’s objective infor-
mation (according to objective Bayesians) or personal
beliefs (according to subjective Bayesians) about the
likely values of model parameters. Thus we can con-
struct the prior by making use of information gained in
past experiments under similar conditions or from other
independent evidence. The prior can also be specified
by modeling the physical/biological process.

In Bayesian phylogenetics, the tree topologies (𝜏)
represent discrete statistical models, the branch lengths
(𝒃) are continuous parameters that are defined only on
specific trees, while the substitution parameters (𝝓) are
often defined for all possible trees. The parameter space
of the inference problem is high-dimensional and also
complex. Specification of the prior is thus a nontrivial
task. Here we discuss prior specification in a simple
phylogenetic analysis to reconstruct the phylogeny.

First we consider the prior on the tree topology. Most
phylogenetic analyses are conducted without assuming
the molecular clock and use unrooted trees. It is common
to assign a uniform prior on all possible trees: each tree
is assigned the probability 1/𝑇𝑛, where 𝑇𝑛 is the number
of unrooted trees for 𝑛 species.

If the species are closely related, the evolutionary
rate may be roughly constant among species. One can
then use the molecular clock (the assumption of rate con-
stancy) to infer rooted trees. Rooted trees are also used to
infer species divergence times in the so-called molecu-
lar clock or relaxed-clock dating analysis (Thorne et al.,
1998; Drummond et al., 2006; dos Reis et al., 2016).
A prior distribution over the rooted trees and node ages
(branching times) can be generated using the birth-death
process (Rannala and Yang, 1996; Stadler, 2010). The
birth rate (speciation rate) and death rate (extinction
rate), and the sampling intensity can be fixed or assigned
further priors (called hyper-priors).

The birth-death process has been generalized to
allow the speciation and extinction rates to vary over
time. Such generalized birth-death process models have
been used to analyze data of estimated divergence times
on a species phylogeny (the so-called lineage-through-
time or LTT data) to infer macroevolutionary processes,
including changes in the speciation rate and extinction
rate. Evolutionary biologists have found such infer-
ence irresistibly interesting, as the inferred rate changes
may be correlated with geological, paleo-climatic and
extraterrestrial events that may have impacted biodiver-
sity on the planet. However, the birth-death process (in
particular with varying speciation and extinction rates)
is highly stochastic, able to generate wild fluctuations in
the LTT data, and it is debatable whether typical datasets
contain useful information for such inference (Louca and
Pennell, 2020; Legried and Terhorst, 2022; Rannala and
Yang, 2025). See Rosenberg et al. (2025) and related
articles for recent discussions of the topic.

Next, we consider the prior for branch lengths. A
binary unrooted tree for 𝑛 species has 2𝑛 − 3 branches.
Given each unrooted tree topology, the 2𝑛 − 3 branch
lengths can be assigned independent and identical dis-
tributions (i.i.d.) such as the uniform or exponential.
However, when applied to many variables, i.i.d. priors
may imply a very strong prior statement on the mean
or sum of those variables. Indeed i.i.d. priors on branch
lengths are found to be problematic, as they may be
informative and unreasonable about the tree length; see
Rannala et al. (2012) for alternative priors to deal with
the issue.

The following recommendations may be made con-
cerning priors in Bayesian phylogenetic analysis.
• There is no such a thing as an uninformative prior or

a prior that represents total ignorance; all priors carry
information.

• Even if the user of a Bayesian program has not explic-
itly specified a prior, a prior has been used in the
analysis. The user need consider the possibility that
the ‘default’ priors used by the software may not be
appropriate for the data and problem.

• It is important to assess the impact of the prior. The
prior may have considerable influence on the poste-
rior distribution of key parameters int he model, in
particular, if the model is complex involving many
parameters that are strongly correlated and the data
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are not very informative. Bayesian hypothesis testing
may be sensitive to the priors on parameters in the
models, as discussed below.

Markov Chain Monte Carlo

A Metropolis algorithm
Note that the normalizing constant 𝑝(𝑥) in eq. 1 involves
an integral. When there are many parameters in the
model, this integral will be multidimensional and may
be very hard to compute. Modern Bayesian inference
is often achieved through a computational algorithm
called MCMC. This is an iterative simulation algorithm
that generates a sample from the posterior distribution
𝑝(𝜃 |𝑥).

Here we illustrate the main features of the MCMC
algorithm by applying it to the simple phylogenetic prob-
lem of estimating the distance 𝜃 between two sequences
under the JC model (Jukes and Cantor, 1969). The data
consist of the human and orangutan mitochondrial 12S
rRNA genes, with 𝑥 = 90 differences at 𝑛 = 948 sites.
Parameter 𝜃 is the expected number of nucleotide sub-
stitutions per site between the two sequences. Given 𝜃,
the probability of observing the data or the likelihood is
given by the binomial probability

𝑝(𝑥 |𝜃) = 𝑝𝑥 (1 − 𝑝)𝑛−𝑥

=
( 3

4 − 3
4 e−4𝜃/3) 𝑥 · ( 1

4 + 3
4 e−4𝜃/3)𝑛−𝑥 , (3)

where 𝑝 = 3
4 − 3

4 e−4𝜃/3 is the probability that a site
is occupied by two different nucleotides in the two
sequences separated by a distance 𝜃.

The probability of the data viewed as a function of
the parameter, 𝐿 (𝜃) = 𝑝(𝑥 |𝜃), is the likelihood function.
By maximizing the likelihood function or its logarithm,
ℓ(𝜃) = log 𝐿 (𝜃), one gets the MLE as

𝜃 = −3
4 log

(
1 − 4

3 × 𝑥
𝑛

)
. (4)

This is the well-known JC distance formula, and in
our example, gives 𝜃 = 0.1015, close to the observed
proportion of different sites (𝑥/𝑛 = 0.095).

To estimate 𝜃 using a Bayesian approach, we have to
assign a prior on 𝜃. Here we assign an exponential prior
with mean 𝜇 = 0.1, with the prior density

𝑝(𝜃) = 1
𝜇

e−
1
𝜇
𝜃
, 𝜃 > 0. (5)

The posterior is then given by eq. 1 as

𝑝(𝜃 |𝑥) = 1
𝑝 (𝑥 ) 𝑝(𝜃)𝑝(𝑥 |𝜃)

= 1
𝑝 (𝑥 )

1
𝜇

e−
1
𝜇
𝜃 ( 3

4 − 3
4 e−4𝜃/3) 𝑥 · ( 1

4 + 3
4 e−4𝜃/3)𝑛−𝑥 ,

(6)
where

𝑝(𝑥) =
∫ ∞

0
𝑝(𝜃)𝑝(𝑥 |𝜃) d𝜃 (7)

is the normalizing constant. Note that in a Bayesian anal-
ysis, the data are known and treated as constants, while
our focus is on the unknown parameter 𝜃. The normal-
izing constant 𝑝(𝑥) is an integral which is nontrivial to
calculate even in one dimension.

The following algorithm uses a sliding window (of
width 𝑤) to propose new parameter values, and gener-
ates a sample from the posterior distribution, bypassing
computation of the normalizing constant, 𝑝(𝑥).
1. Initialize: 𝑛 = 948, 𝑥 = 90, 𝑤 = 0.25. Set initial

state: 𝜃 = 0.1, say.
2. Loop through the following steps

(a) (Propose a new value 𝜃′.) Generate 𝑢 ∼ 𝑈 (0, 1)
and set 𝜃′ = 𝜃+ ( 1

2 −𝑢)𝑤. Note that 𝜃 is a uniform
random variable over the interval

(
𝜃− 1

2𝑤, 𝜃+
1
2𝑤

)
.

(b) (Accept or reject the proposed value.) Compute
the posterior density ratio

𝛼 =
𝑝(𝜃′ |𝑥)
𝑝(𝜃 |𝑥) =

𝑝 (𝜃 ′ ) 𝑝 (𝑥 | 𝜃 ′ )
𝑝 (𝑥 )

𝑝 (𝜃 ) 𝑝 (𝑥 | 𝜃 )
𝑝 (𝑥 )

=
𝑝(𝜃′)𝑝(𝑥 |𝜃′)
𝑝(𝜃)𝑝(𝑥 |𝜃) .

(8)
If 𝛼 ≥ 1, accept 𝜃. Otherwise accept 𝜃 with proba-
bility 𝛼. This can be achieved by drawing another
random number 𝑣 ∼ 𝑈 (0, 1), and accepting 𝜃′ if
and only if 𝑣 < 𝛼. If 𝜃′ is accepted set 𝜃 = 𝜃′.
Otherwise keep the current 𝜃.

(c) Print out 𝜃.
The simple algorithm above is an instance of the

Metropolis algorithm (Metropolis et al., 1953). Here we
note its major features.
• The algorithm simulates a Markov chain; the next 𝜃

value the algorithm will visit depends on the current
𝜃 only, but not the 𝜃 values visited in the past. This
explains why the algorithm is also known as Markov
chain Monte Carlo (MCMC). Monte Carlo method,
also known as computer simulation, uses repeated
random sampling to generate numerical results, such
as the value of an integral. MCMC is a simulation
algorithm that generates a Markov chain.

• The algorithm is a hill-climbing algorithm although
it may go downhill. It visits 𝜃 values of high posterior
density more often than those of low density. In fact,
the probability that the visited 𝜃 value is in the small
interval (𝜃, 𝜃 + Δ𝜃) is 𝑝(𝑥 |𝜃)Δ𝜃. Recall that if a ran-
dom variable 𝑌 has the probability density function
(PDF) 𝑝(𝑦), then P(𝑦 < 𝑌 < 𝑦 + Δ𝑦) = 𝑝(𝑦)Δ𝑦. In
other words, the 𝜃 values generated by the algorithm
are a sample from the posterior distribution 𝑝(𝑥 |𝜃).

• The sliding-window proposal used here is symmetri-
cal: the probability density of proposing 𝜃′ from 𝜃 is
the same as that of proposing 𝜃 from 𝜃′. This is known
as the Metropolis algorithm. The symmetry in pro-
posal density is relaxed in Hastings’s algorithm, to be
described below.

• The algorithm does not require computation of the
normalizing constant 𝑝(𝑥). Note that 𝑝(𝑥) cancels out
in the calculation of the posterior ratio 𝛼 in eq. 8. The
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Fig. 1: MCMC for estimating sequence distance under
the JC model (𝜃). The data consists of 𝑥 = 90 differences
between two sequences of 𝑛 = 948 sites. (a) Two chains,
both starting from 𝜃 = 0.25, with the window size either
too small (𝑤 = 0.01) or too large (𝑤 = 1). The chain
with 𝑤 = 0.01 has an acceptance rate of 𝑃jump = 91%,
so that almost every proposal is accepted. However,
this chain takes baby steps and mixes slowly. The chain
with 𝑤 = 1 has 𝑃jump = 6.9%, so that most propos-
als are rejected. The chain often stays at the same state
for many iterations without a move. (b) Three chains
started from 𝜃 = 0.01, 0.5, and 1, with window size
𝑤 = 0.25 and 𝑃jump = 13.7%. The optimal chain should
achieve 𝑃jump ≈ 40% (Yang and Rodrı́guez, 2013), at
𝑤 = 0.1. After about 50 iterations, the three chains
become indistinguishable and have reached stationarity,
so that a burn-in of 50 iterations appears sufficient for
those chains. (c) Histogram constructed from a sam-
ple taken over 106 iterations. The prior (dashed line) is
shown as well for comparison.

algorithm thus requires calculation of the ratio of the
posteriors (at 𝜃 and 𝜃′), but not the posterior itself.
This explains how the MCMC algorithm can avoid
the calculation of high-dimensional integrals.
Figure 1(a) shows two runs of the algorithm using

different window sizes and different starting positions.
With the small window size, 𝑤 = 0.01, the proposed
values are very close to the current value, and most pro-
posals are accepted. However, the chain baby-walks and

is very slow in exploring the parameter space, with the
sampled values being high correlated. On the other hand,
the window size 𝑤 = 1 is too big, so that most proposals
are from unreasonable regions of the parameter space
and are rejected. The chain then stays in the same state
for a long time before it jumps, causing high correlation
between sample values as well. In either case the chain
mixes slowly. The optimal window size is intermediate,
achieved when ∼ 44% of proposals are accepted (Yang
and Rodrı́guez, 2013, table 1).

Samples taken before the chain has reached station-
arity are usually discarded as burn-in. In the runs of
figure 1b, the first 50 or 100 iterations may be so dis-
carded. Figure 1c shows a histogram (an approximation
to the posterior probability density) generated from a
long chain of 106 iterations. Further summaries of the
posterior distribution can be easily constructed as well.
The posterior mean is 0.102, close to the MLE. The pos-
terior standard deviation is 0.011, and the equal-tail 95%
CI is (0.081, 0.124). This is a stable estimation problem:
the prior does not have much influence and the Bayesian
estimate and MLE are very similar.

Metropolis-Hastings algorithm
In general, let 𝑥 be the data and 𝜃 be the parameters in
the model, and 𝑝(𝜃 |𝑥) be the posterior. We propose the
new parameter value from a proposal density 𝑞(𝜃′ |𝜃),
which may not be symmetrical. The algorithm, known as
the Metropolis-Hastings or MH algorithm (Metropolis
et al., 1953; Hastings, 1970), works as follows.
1. Set initial state to 𝜃 = 𝜃0.
2. Loop through the following steps

(a) (Propose a new value 𝜃′.) Generate 𝜃′ ∼ 𝑞(𝜃′ |𝜃).
(b) (Accept or reject the proposed value.) Accept the

new value 𝜃′ with probability

min(1, 𝛼) = min
(
1,

𝑞(𝜃 |𝜃′)
𝑞(𝜃′ |𝜃) ×

𝑝(𝜃′ |𝑥)
𝑝(𝜃 |𝑥)

)
. (9)

In other words, if 𝛼 ≥ 1, accept 𝜃. Otherwise
accept 𝜃 with probability 𝛼. This can be achieved
by drawing a random number 𝑣 ∼ 𝑈 (0, 1), and
accepting 𝜃′ if and only if 𝑣 < 𝛼. If 𝜃′ is accepted
set 𝜃 = 𝜃′. Otherwise keep the current 𝜃.

(c) Print out 𝜃.
Running the algorithm through many iterations produces
a sequence of values, (𝜃0, 𝜃1, 𝜃2, · · · ), which is a sample
from the posterior distribution 𝑝(𝜃 |𝑥).

The algorithm is nearly identical to the Metropolis
algorithm of the previous section. As in eq. 8, the nor-
malizing constant 𝑝(𝑥) cancels out in the calculation of
the posterior ratio in eq. 9. In other words, the acceptance
ratio 𝛼 in eq. 9 can be written as

𝛼 =
𝑞(𝜃 |𝜃′)
𝑞(𝜃′ |𝜃) ×

𝑝(𝜃′)
𝑝(𝜃) × 𝑝(𝑥 |𝜃′)

𝑝(𝑥 |𝜃)
= proposal ratio × prior ratio × likelihood ratio.

(10)
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Fig. 2: A target (posterior) distribution 𝜋(𝜃1, 𝜃2) repre-
sented by the three contour lines with strong correlation
between parameters 𝜃1 and 𝜃2. The MCMC algorithm
will be very inefficient if it moves in the directions of 𝜃1
and 𝜃2 as the chain zigzags in very small steps. One can
use the burn-in to estimate a bivariate normal approxi-
mation to the target and then move in the directions of
the axes of the ellipses for contour lines: 𝑧1 and 𝑧2.

The major difference of the MH algorithm from the
Metropolis algorithm of last section is the use of a pro-
posal ratio, 𝑞 (𝜃 | 𝜃 ′ )

𝑞 (𝜃 ′ | 𝜃 ) , also known as the Hastings ratio
(Hastings, 1970). This is a correction factor applied
because of the asymmetry of the proposal. If the pro-
posal favours certain 𝜃′ values (with large 𝑞(𝜃′ |𝜃)), such
values will be penalized at the time of deciding whether
or not to accept the proposal. As a result the chain con-
verges to the correct target distribution despite the ‘bias’
in the proposal. This explains why the density for the
new value 𝜃′ is in the denominator in the proposal ratio,
𝑞 (𝜃 | 𝜃 ′ )
𝑞 (𝜃 ′ | 𝜃 ) , while it is in the numerator in the prior ratio,
𝑝 (𝜃 ′ )
𝑝 (𝜃 ) , and likelihood ratio, 𝑝 (𝑥 | 𝜃 ′ )

𝑝 (𝑥 | 𝜃 ) .
The proposal density 𝑞(𝜃′ |𝜃) has to satisfy certain

requirements: it must specify an aperiodic recurrent
Markov chain. In other words, it must be possible to
move from one 𝜃 value to another and the implied
Markov chain must not have a period. It is typically easy
to construct such a chain and to verify that it satisfies
those requirements. Note that the proposal kernel is sep-
arate from the prior and likelihood, so that the same
proposal 𝑞(𝜃′ |𝜃) can be used in a variety of Bayesian
inference problems.

When there are many parameters in the model, it is
often unfeasible or computationally too complicated to
update all parameters simultaneously. Changing many
parameters simultaneously also causes poor mixing,
because high-dimensional moves tend to have high rejec-
tion rates forcing one to use small steps. Instead, one
can divide parameters into blocks, of possibly different
dimensions, and then update the blocks one by one. This
strategy often leads to computational efficiency. Also
when one block is updated, one can treat the other blocks
as fixed constants to design efficient proposals. Param-
eters that are strongly correlated may be grouped into
the same block and updated simultaneously taking into
account the correlation (fig. 2).

In phylogenetics, the parameter space may consist
of several components: the tree topology 𝜏, the branch

lengths 𝒃, and the substitution parameters 𝝓. In each
iteration, the different components may be updated in
turn. For example, variants of tree search algorithms
such as nearest neighbor interchange (NNI) and subtree
pruning and regrafting (SPR) (Swofford et al., 1996)
can be used to update the tree topology. The branch
lengths and substitution parameters can be updated using
sliding windows. The phylogenetic MCMC algorithm
generates a sample from the joint posterior distribution
of the tree topologies (𝜏), the branch lengths (𝒃), and the
substitution parameters (𝝓).

For an extensive discussion of Markov chain Monte
Carlo (MCMC) algorithms used in Bayesian phylogenet-
ics, see Chapters 7 and 8 of Yang (2014). The edited book
by Chen et al. (2014) summarizes recent developments
in Bayesian selection of phylogenetic models.

Summaries of the posterior sample
The MCMC sample from the posterior distribution can
be summarized in different ways.

For continuous parameters such as branch lengths (b)
and substitution parameters (𝝓), the posterior means or
medians are often used, together with the 95% posterior
CIs. Two types of intervals are commonly used. The
95% equal-tail CI lies between the 2.5% and 97.5%
quantiles of the posterior sample. The highest posterior
density (HPD) CI includes values that make up 95%
of the posterior probability and that have the highest
posterior density. When the data are informative so that
the posterior of the parameter is nearly symmetrical, the
two intervals will be nearly identical. Otherwise they can
be very different. The HPD interval is generally preferred
over the equal-tail interval since it has the shortest length
and includes only the most likely parameter values.

For the tree topology, a simple summary is the maxi-
mum a posteriori (MAP) tree, which is the tree topology
with the highest posterior probability (or the tree most
visited during the MCMC) (Rannala and Yang, 1996).
This may be considered a point estimate of the true tree.
However, when the data are not very informative, the
MAP tree may have a very low posterior probability,
and is a poor summary. One may also construct the 95%
credible set of trees, which includes the highest-posterior
trees with the total probability exceeding 95%. However,
if this set contains many trees, it will not be very useful.

Even though the whole tree has weak support, some
branches or splits may be well supported. Note that each
internal branch on the tree defines a split (a bipartition)
of the species. The posterior probability for a split is
the sum of posterior probabilities for trees containing
that split and can thus be estimated by the proportion
of sampled trees that have that split. The majority-rule
consensus tree includes splits that appear in at least half
of the trees sampled, with splits receiving less than 50%
posterior collapsed into a polytomy. The maximum clade
probability (MCC) tree, a heuristic summary used in
the program beast (Drummond and Rambaut, 2007),
is a binary tree with the maximum sum (or product) of
clade probabilities. Neither the sum nor the product of
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clade probabilities makes sense, but the MCC tree is
expected to be similar to the MAP tree when the data
are informative.

Window size, proposal kernel and mixing efficiency
In the JC distance example (fig. 1a), we discussed that
both too small and too large windows in the sliding-
window proposal lead to poor mixing. Here we explain
the theory for a more formal analysis of MCMC mixing
efficiency.

Our focus is on the distribution of the unknown
parameters 𝜃 while the data 𝑥 are fixed, so we rewrite
the posterior distribution as 𝜋(𝜃) ≡ 𝑝(𝜃 |𝑥). We con-
struct an MCMC algorithm to generate a sample
(𝜃 (0) , 𝜃 (1) , 𝜃 (2) , · · · , 𝜃 (𝑁 ) ) from the target distribution
𝜋(𝜃) to estimate the expectation of a function of the
parameters 𝜃,

𝐼 = E𝜋{ℎ(𝜃)} =
∫

ℎ(𝜃)𝜋(𝜃) d𝜃, (11)

where the expectation or averaging is over the posterior
distribution 𝜋(𝜃).

Using the MCMC sample, we calculate the sample
mean as an estimate of 𝐼,

𝐼 =
1
𝑁

𝑁∑︁
𝑖=1

ℎ(𝜃 (𝑖) ), (12)

where ℎ(𝜃 (𝑖) ) is the value of the function at 𝜃 (𝑖) . 𝐼 is an
unbiased estimate of 𝐼. Because the sampled values of 𝜃
and thus of ℎ(𝜃) are correlated, the variance of the esti-
mate may be larger than if the estimate is based on an
independent sample. Thus we contrast those two vari-
ances to measure the efficiency of the MCMC algorithm,
noting that a smaller variance means higher precision
and a better algorithm. The efficiency (𝐸) of the MCMC
algorithm for estimating the posterior mean 𝐼 is defined
as the ratio of the variance of the estimate based on an
independent sample to the variance of the estimate based
on the MCMC sample of the same size, assuming that
the sample size 𝑁 is large (e.g., Peskun, 1973; Green
and Han, 1992; Gelman et al., 1996). This is given as

𝐸 =
1

1 + 2(𝜌1 + 𝜌2 + · · · ) , (13)

where 𝜌𝑘 = corr(ℎ(𝜃 (𝑖) ), ℎ(𝜃 (𝑖+𝑘 ) )) is the lag-𝑘 auto-
correlation. The independent sampler has efficiency
100%. If 𝐸 = 1

4 , then an MCMC sample of 𝑁 = 1000
is only as good as an independent sample of 𝑁𝐸 = 250
(in terms of the variance of the estimate). Here 𝑁𝐸 is
known as the effective sample size (ESS).

Note that this approach of defining a function ℎ(𝜃)
and estimating its expectation 𝐼 is general and covers
almost all cases of interest. For example, suppose 𝜃1 is
the first component in the parameter vector and define
the function ℎ(𝜃) = 𝜃1. Then the expectation 𝐼 will be

the posterior mean of 𝜃1. In a phylogenetic analysis let
𝜃 = (𝜏, 𝒃), and suppose we are interested in whether
the sequence data support a particular tree 𝜏1, say, the
organismal tree. Define the function

ℎ(𝜃) =
{
1, if 𝜏 = 𝜏1,

0, if 𝜏 ≠ 𝜏1.
(14)

Then the expectation 𝐼 will be the posterior probability
of tree 𝜏1, and the estimate 𝐼 is simply the proportion of
MCMC samples in which the tree is 𝜏1. The reader is
invited to define a function ℎ(𝜃) to estimate the posterior
probability for a particular clade.

In the JC distance example discussed early, we
observed that too small and too large windows lead
to strong positive correlation between the sampled val-
ues. According to eq. 13, large 𝜌s mean low efficiency.
Instead of the uniform kernel, one can also use the
Gaussian proposal kernel in the sliding window, 𝜃′ |𝜃 ∼
𝑁 (𝜃, 𝜎2), in which case the proposal standard devia-
tion 𝜎 acts like a window size or step length. Numerical
calculations suggest that when the Gaussian proposal
is applied to the Gaussian target 𝑁 (0, 1), optimal effi-
ciency (of 𝐸 = 0.23) is achieved when 𝜎 = 2.5 with the
acceptance rate of 𝑃jump = 0.44 (Gelman et al., 1996).

The acceptance rate is easy to monitor and can be
used to adjust the step length, as the acceptance rate typ-
ically has a monotonic relationship with the step length
(lower acceptance for larger steps). Indeed one can adjust
the step lengths automatically during the burn-in (Yang
and Rodrı́guez, 2013). Let 𝜎 be the current step length
(the proposal standard deviation) and 𝑃jump the observed
acceptance rate. When the Gaussian proposal is applied
to the Gaussian target 𝑁 (0, 1), Gelman et al. (1996)
noted that 𝑃jump has a simple relationship with 𝜎2:

𝑃jump =
2
𝜋

tan−1
( 2
𝜎

)
. (15)

Then

𝜎∗ = 𝜎 ×
tan

(
𝜋
2 𝑃jump

)
tan

(
𝜋
2 𝑃

∗
jump

) , (16)

with the optimal acceptance rate 𝑃∗
jump = 0.44, gives the

optimal step length 𝜎∗ (Yang and Rodrı́guez, 2013). A
few rounds of automatic step-length adjustments may be
used during the burn-in to account for the fact that the
posterior may not be exactly Gaussian.

Besides the optimal window size or step length for
a given sliding-window proposal, alternative proposal
kernels may provide improved mixing. Several algo-
rithms make use of local information of the target to
guide the proposal. For example, in Hamiltonian Monte
Carlo (HMC) (Neal, 2011) the gradient is used to guide
the proposal toward high-probability regions; recall
that positive gradient or slope indicates the direction
where the density increases. Yang and Rodrı́guez (2013)
explored a Bactrian proposal which resembles a two-
humped camel and suppresses values close to the current
value, reducing positive autocorrelation in the MCMC
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Fig. 3: (a) The Bactrian proposal is a 1:1 mixture of
two normal distributions. When used as a proposal in
an MCMC algorithm, it favours values that are differ-
ent from the current value. Redrawn based on Yang and
Rodrı́guez (2013, fig. 1a). (b) The mirror move applied
to the Gaussian target 𝜋(𝑥) = 𝜙(𝑥; 𝜇, 𝜎2) with location
𝜇 and scale 𝜎. Given the current state 𝑥, the mirror move
samples around 𝑥∗ = 2𝜇−𝑥, the mirror image of the cur-
rent state on the other side of the target, using a proposal
standard deviation that is 1

2 the posterior standard devia-
tion (Thawornwattana et al., 2018). In real applications,
𝜇 and 𝜎 in the target are estimated during the burn-in.

sample (fig. 3a). For the 𝑁 (0, 1) target, the sliding-
window proposal based on the Gaussian, the uniform,
and the Bactrian kernels achieves the optimal efficiency
of 𝐸∗ = 0.23, 0.28, and 0.30, respectively, with the opti-
mal acceptance rate at 44%, 41%, and 30%, and with the
optimal proposal standard deviation to be 2.5×, 2.2×,
and 2.3× the target standard deviation, (fig. 4) (Yang
and Rodrı́guez, 2013; Thawornwattana et al., 2018). The
uniform sliding window is more efficient (and com-
putationally less expensive) than the Gaussian sliding
window, while the Bactrian sliding window is even most
efficient. The mirror proposal (fig. 3b) samples the new
value around the mirror image of the current value on
the ‘other side’ of the target, and may introduce nega-
tive correlation in the MCMC sample, achieving super
efficiency (with 𝐸 > 1) (Thawornwattana et al., 2018).

It may be noted that current MCMC algorithms in
Bayesian phylogenetics achieve very low mixing effi-
ciency. Suppose we run a Bayesian program over ∼ 108

MCMC iterations and achieve ESS ∼100. Then effi-
ciency is only 10−6. There is a need for developing smart
MCMC proposals to improve the mixing efficiency and
reduce running time and energy consumption (Douglas
et al., 2022).

Multiple local peaks and MC3

Multiple modes in the posterior can cause serious con-
vergence and mixing problems, and are a challenging
problem in Bayesian computation. Multiple modes may
arise due to conflict between the prior and the likelihood,
or because the model is parameter rich with a com-
plex correlation structure. A method for dealing with
multiple modes in the posterior is Metropolis-coupled
MCMC or MC3 algorithm, also known as parallel tem-
pering (Geyer, 1991; Marinari and Parisi, 1992). This
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Fig. 4: MCMC mixing efficiency (defined as the variance
ratio) plotted (a) against the proposal step length (𝜎) and
(b) against the acceptance rate (𝑃jump) for three proposals
applied to the 𝑁 (0, 1) target. The three proposals are all
sliding-windows moves based on the uniform, Gaussian
and Bactrian distributions (fig. 3a). Redrawn based on
Yang and Rodrı́guez (2013, fig. 2).

is popular in phylogenetics due to its implementation in
MrBayes (Altekar et al., 2004).

The MC3 algorithm involves running multiple chains
in parallel. The 𝑗 th chain has the stationary distribution

𝜋 𝑗 (𝜃) ∝ 𝜋(𝜃)1/𝑇𝑗 , (17)

where𝑇𝑗 = 1+𝜆( 𝑗–1), with 𝜆 > 0, is the temperature for
chain 𝑗 . The first chain has 𝜋1(·) = 𝜋(·), so it samples
from the target posterior density and is called the cold
chain. The other chains are designed to improve mixing
and are called hot chains. Note that raising the density
𝜋(·) to the power 1/𝑇 with 𝑇 > 1 has the effect of
flattening out the surface, making it easier for the Markov
chain to cross valleys and to move from one peak to
another.

The hot chains will visit the local peaks easily, and
swapping states between chains will let the cold chain
occasionally jump across valleys, leading to better mix-
ing. To increase the acceptance rate, one may build a
temperature ladder with multiple hot chains and attempt
to swap only adjacent chains in the ladder. At the end of
the run, output from only the cold chain is used, while
outputs from the hot chains are discarded. An obvious
disadvantage of the algorithm is that𝑚 chains are run but
only one chain is used for inference. MC3 is well suited
to implementation on multi-processor multi-core servers
or computer clusters, since each chain will require about
the same amount of computation per iteration, and there
is very little communication between chains.

In molecular phylogenetics, local peaks are known
to exist in the space of trees, and the problem is more
serious for tree-perturbation algorithms (such as NNI)
that do not induce many neighbouring trees for the cur-
rent tree. Unfortunately the MC3 algorithm is designed
to help the chain move from one peak to another on the
same posterior surface in problems of parameter esti-
mation under a well-specified likelihood model. It may
be ineffective for moving from one model to another
in cross-model algorithms. Note that different trees
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represent different likelihood models. Cross-model algo-
rithms (Green, 1995) often have more serious mixing
problems. In particular, in large datasets, the within-
model posterior may be very sharp, and a move from
one tree to another is like a jump from one tower in one
world to another tower in another world. The proposal
tends to be rejected even if the new tree has a higher pos-
terior probability than the current, because the proposed
branch lengths and other parameters are away from the
posterior mode.

MCMC convergence and mixing
We may distinguish two issues with an MCMC run: slow
convergence and poor mixing. Convergence means that
after the MCMC algorithm runs over many iterations,
the chain will approach the stationary distribution, inde-
pendent of the initial state. Slow convergence means
that the chain has not reached stationarity even after
many iterations. Poor mixing means that the chain mixes
slowly after it has reached stationarity. As mentioned
above, poor mixing may be due to too small or too large
step lengths, strong correlations in the parameters, etc.
Both convergence and mixing problems may occur in
large applications, and it may be challenging to assess
and overcome such problems. Here we mention a few
commonly used strategies for validating and diagnos-
ing MCMC programs. Note that those diagnostics are
able to reveal problems but may not be able to prove the
correctness of the algorithm or implementation.
1. Plotting visited states over the MCMC iterations in

so-called trace plots (see, e.g., fig. 1) is very useful
for detecting convergence and mixing problems. It is
important to monitor all parameters in the model.

2. For most proposals, the acceptance rate should be
neither too high nor too low. Acceptance rates of 10-
80% may be healthy but caution should be applied if
acceptance is near 0% or 100%.

3. Multiple runs of the algorithm from different starting
points should converge to the same posterior dis-
tribution. Running the same analysis multiple times
is often a very effective approach to identifying
problems with the MCMC run.

4. We can run the MCMC with no data and to compare
the MCMC sample against the prior. Note that if the
likelihood is set to 𝑓 (𝑥 |𝜃) = 1 in eq. 1, the posterior
will become the prior. If the Bayesian program does
not provide an option for ‘turning off’ the data, one
can easily construct a dummy empty dataset (e.g., an
alignment consisting of one site with missing data for
every species). Often the prior means and variances
etc. are analytically available for comparison. Also
one can simulate larger and larger datasets under a
fixed set of parameter values and analyze the simu-
lated data under the correct model, to confirm that the
Bayesian estimate becomes closer and closer to the
true value. This test relies on the fact that Bayesian
estimation is consistent.

5. Many Bayesian programs also provide facilities for
simulating data under the likelihood model. The so-
called Bayesian simulation may be very effective
for identifying problems with a Bayesian MCMC
implementation. In Bayesian simulation, one samples
parameter values from the prior and then use them
to simulate a replicate dataset under the likelihood
model. One can generate and analyze many replicate
datasets, with each dataset simulated using different
parameter values. Then the combined MCMC sam-
ple across the datasets should be from the prior. The
data size should be intermediate so that both the prior
and the likelihood influence the posterior. See Flouri
et al. (2023) for an application of this strategy.

Bayesian model comparison and hypothesis
testing

Marginal likelihood and Bayes factor
When multiple competing models are available to
explain the data, cross-model MCMC algorithms may
be used to move between models in addition to within-
model MCMC that moves in the parameter space
for each model (Green, 1995). Indeed, MCMC algo-
rithms in phylogenetics may move between different
tree topologies and are thus cross-model algorithms.
In general cross-model algorithms (in particular those
that move between models of different dimensions) run
into convergence and mixing problems more easily than
within-model algorithms.

Here we focus on Bayesian comparison of two mod-
els. The commonly used device for Bayesian model
comparison is the Bayes factor, which is the ratio of
the marginal likelihood values under the two compared
models. Let 𝜃0 be the parameter vector for 𝐻0, and 𝜃1 be
the parameter vector for 𝐻1. The Bayes factor in support
of 𝐻1 against 𝐻0 is

𝐵10 =
𝑀1
𝑀0

=
P(𝑥 |𝐻1)
P(𝑥 |𝐻0)

=

∫
𝑝(𝜃1)𝑝(𝑥 |𝜃1, 𝐻1) d𝜃1∫
𝑝(𝜃0)𝑝(𝑥 |𝜃0, 𝐻0) d𝜃0

,

(18)
where 𝑀0 and 𝑀1 are the marginal likelihoods for the
two models, respectively (Jeffreys, 1961). Note that the
marginal likelihood 𝑀 for each model is the normalizing
constant 𝑝(𝑥) in eq. 1.

The posterior model probabilities are given by

P(𝐻1 |𝑥)
P(𝐻0 |𝑥)

=
P(𝐻1)
P(𝐻0)

× 𝑀1
𝑀0

=
P(𝐻1)
P(𝐻0)

× 𝐵10. (19)

If the prior probabilities are uniform, P(𝐻0) = P(𝐻1),
the Bayes factor will be equal to the ratio of poste-
rior model probabilities: 𝐵10 =

P(𝐻1 |𝑥 )
P(𝐻0 |𝑥 ) or P(𝐻1 |𝑥) =

𝐵10
1+𝐵10

. This provides a ‘calibration’ for the Bayes fac-
tor: 𝐵10 = 19 (corresponding to P(𝐻1 |𝑥) = 0.95) may
be considered strong evidence for 𝐻1 while 𝐵10 = 99
(or P(𝐻1 |𝑥) = 0.99) means extremely strong evidence.
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Note that the Bayes factor may strongly support 𝐻0 as
well (when 𝐵10 < 0.05 or 0.01).

The Bayes factor is a likelihood ratio, but it
has important differences from the likelihood ratio in
hypothesis testing.
1. In the LRT, the likelihood is optimized over the model

parameters, while in calculation of the Bayes fac-
tor or in Bayesian model comparison, the marginal
likelihood is an average over the model parameters.
As a result, the marginal likelihood is influenced by
the prior on model parameters as well as the data-
generating model. For example, a conflict between
the prior and the likelihood may make the model
appear poor in Bayesian model selection.

2. When we add a new parameter to the model, the opti-
mized likelihood may increase and never decrease,
and the LRT is used to decide whether the improve-
ment in likelihood is large enough to justify the
inclusion of the new parameter. In contrast, the
marginal likelihood may either increase or decrease
when a new parameter is added to the model, and
parameter-richness is penalized automatically in the
calculation of marginal likelihood with no need for a
test.

3. Bayes factors can be applied to non-nested models
and to comparison of more than two models. In con-
trast hypothesis testing applies to comparison of two
nested hypotheses, with the null hypothesis 𝐻0 cor-
responding to the alternative hypothesis 𝐻1 with the
parameter of interest fixed at the null value. Com-
parison of nonnested models using the LRT is very
challenging (so that information criteria such as the
AIC is used instead). Even when the two hypotheses
are nested, there can be considerable technical dif-
ficulties to apply the LRT if the testing problem is
‘nonstandard’ (Self and Liang, 1987; Brazzale and
Mameli, 2024). For example, the null parameter value
may be at the boundary of the parameter space for
𝐻1 (Self and Liang, 1987), or some parameters in 𝐻1
may become unidentifiable when the parameters of
interest are fixed at the null value. In such cases, the
distribution of the LRT statistic may be unknown or
may not exist. The Bayes factor applies in a straight-
forward manner under such conditions, with no need
for any special treatment.

4. Hypothesis testing and posterior model probabilities
(or Bayes factor) may produce different numeri-
cal results or even contradictory conclusions when
applied to the same data. In particular, the Bayes fac-
tor may lead to strong support for the null hypothesis
𝐻0 (or strong rejection of 𝐻1). This is not possible in
classical testing, in which one may fail to reject the
null but never support the null with great force. We
discuss an example of this below.
Computation of the marginal likelihood or Bayes

factor can be very demanding. Many methods exist (see
for review Fourment et al., 2020), but those that are likely
to produce reliable results, such as path-sampling or
thermodynamic integration (Ogata, 1989; Gelman and

A B
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Fig. 5: (a) The multispecies coalescent (MSC) model is
a special case (i.e., 𝐻0) of (b) the MSC-with-migration
model (MSC-M, 𝐻1), with the migration rate fixed at the
null value: 𝑀 = 𝑀0 = 0 (Flouri et al., 2023). Both mod-
els involve the species split time (𝜏) and the population
size parameter 𝜃. The two models can be tested using
the Bayes factor, which is given by the Savage-Dickey
density ratio.

Meng, 1998; Lartillot and Philippe, 2006), stepping-
stones (Xie et al., 2011), and nested sampling (Skilling,
2006), all require many expensive MCMC runs.

Test of nested hypotheses
When the two models are nested, Bayes factor is given
by the Savage-Dickey density ratio (Dickey, 1971). We
illustrate the approach using the example of figure 5,
in which genomic data are used to test for presence
of gene flow between two species. The null model is
the multispecies coalescent model with no gene flow
(𝐻0: MSC) while the alternative model is MSC-with-
migration (𝐻1: MSC-M). When the migration rate takes
the null value 𝑀 = 𝑀0 = 0, 𝐻1 reduces to 𝐻0, so the
two models are nested.

When the priors on nuisance parameters (parameters
that exist in both models; here these include species
split times and population sizes) match between the two
models, the Bayes factor 𝐵10 can be expressed as

𝐵10 =
𝑝(𝑀0)
𝑝(𝑀0 |𝑥)

, (20)

where 𝑝(𝑀0) is the prior density 𝑝(𝑀) and 𝑝(𝑀0 |𝒙) is
the posterior density 𝑝(𝑀 |𝒙), both evaluated at the null
value 𝑀0 = 0 (Dickey, 1971).

Ji et al. (2023) discussed how to process an MCMC
sample under 𝐻1 to calculate eq. 20. We define a null
region around the null value, with 𝑀 < 𝜖 , within which
gene flow is negligible. Then

𝐵10 =
𝑝(𝑀0) · 𝜖

𝑝(𝑀0 | 𝒙) · 𝜖 ≈ P(𝑀 < 𝜖)
P(𝑀 < 𝜖 | 𝒙) , (21)

Intuitively we contrast the prior and posterior prob-
abilities for negligible gene flow. If the posterior
probability is much larger than the prior probability, 𝐵10
will be large and the data will strongly support gene flow.
This occurs when the rate of gene flow (𝑀) is large and
outside the null region in the posterior.
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Calculation of 𝐵10 using eq. 21 involves running the
MCMC under 𝐻1 and processing the MCMC sample
to calculate the posterior probability P(𝑀 < 𝜖 |𝒙). The
prior probability is typically analytically available. This
approach thus involves ∼ 100 times less computation
than marginal likelihood calculations based on MCMC
(which may require 50 MCMC runs for each of the two
models; Fourment et al., 2020, table 1).

Jeffreys’s paradox
Classical hypothesis testing and Bayesian model selec-
tion applied to the same data may produce strongly
opposed conclusions, a situation known as Jeffreys’s
paradox (Jeffreys, 1935; Lindley, 1957).

Consider testing the null hypothesis 𝐻0 : 𝜇 = 0
against the alternative 𝐻1 : 𝜇 ≠ 0, using a data sam-
ple, 𝑥 = (𝑥1, 𝑥2, · · · , 𝑥𝑛), from the Gaussian distribution
𝑁 (𝜇, 1). The data can be summarized as the sample
mean 𝑥, with the likelihood given by 𝑥 ∼ 𝑁 (0, 1/𝑛)
under 𝐻0 and 𝑥 ∼ 𝑁 (𝜇, 1/𝑛) under 𝐻1. The likeli-
hood under 𝐻0 is 𝐿0 = 𝜙(𝑥; 0, 1

𝑛
), where 𝜙(𝑥; 𝜇, 𝜎2)

is the PDF for 𝑁 (𝜇, 𝜎2). The likelihood under 𝐻1 is
𝐿1(𝜇) = 𝜙(𝑥; 𝜇, 1

𝑛
). This is maximized at �̂� = 𝑥, with

𝐿1( �̂�) = 𝜙(𝑥; 𝑥, 1
𝑛
).

In hypothesis testing, the LRT statistic is

2Δℓ = 2 log
𝐿1
𝐿0

= 2 log
𝜙(𝑥; 𝑥, 1

𝑛
)

𝜙(𝑥; 0, 1
𝑛
)
= 𝑛|𝑥 |2, (22)

in comparison with the critical value 𝜒2
1,5% = 3.84. Note

that this is equivalent to the 𝑧 test, which compares
√
𝑛𝑥

with 𝑁 (0, 1), with the critical value 1.96 at the 5% level.
(If 𝑧 ∼ 𝑁 (0, 1), then 𝑧2 ∼ 𝜒2

1 .)
In a Bayesian analysis, 𝐻0 does not involve any

parameters so that the marginal likelihood is the like-
lihood: 𝑀0 = 𝐿0. For 𝐻1, we assign the prior 𝜇 ∼
𝑁 (𝜇0, 𝜎

2
0 ), and the marginal likelihood becomes

𝑀1 =

∫
𝜙(𝜇; 𝜇0, 𝜎

2
0 )𝜙

(
𝑥; 𝜇, 1

𝑛

)
d𝜇 = 𝜙(𝑥; 𝜇0, 𝜎

2
0 + 1

𝑛
).

(23)
The Bayes factor is then

𝐵10 =
𝑀1
𝑀0

=
𝜙(𝑥; 𝜇0, 𝜎

2
0 + 1

𝑛
)

𝜙(𝑥; 0, 1
𝑛
)

. (24)

While the LRT (eq. 22) depends on the data (𝑛|𝑥 |2) only,
the Bayes factor (eq. 24) depends on the prior (𝜇0, 𝜎

2
0 )

as well.
Consider a dataset that gives

√
𝑛|𝑥 | = 1.96 or 2Δℓ =

3.84 (or 𝐿1/𝐿0 = e1.92). The LRT is significant, with
the 𝑝-value 0.05.

In 𝐻1, the marginal or average likelihood 𝑀1 must be
smaller than the maximized likelihood, 𝑀1 ≤ 𝐿1. Sup-
pose we assign a prior for 𝐻1 to support 𝐻1 as much as
possible. The best one could do is to choose the prior to
match the observed data, with 𝜇0 = 𝑥 and 𝜎0 = 0. With

this extreme prior, 𝑀1 = 𝐿1, and the highest posterior
probability for 𝐻1 achieved is then P(𝐻1 |𝑥) = 𝐿1/(𝐿0 +
𝐿1) = 0.872 or P(𝐻0 |𝑥) = 1 − P(𝐻1 |𝑥) = 0.128. Even
with such an extreme prior, 12.8% is not small enough to
reject 𝐻0. With other choices of prior on 𝜇, P(𝐻0 |𝑥) can
be larger, and can indeed reach ∼100%. When that hap-
pens, the LRT and the Bayes factor will reach opposing
conclusions from the same data, with the LRT rejecting
𝐻0 and the Bayes factor strongly supporting 𝐻0.

Jeffereys’s paradox raises philosophical issues con-
cerning the principles of statistical inference and is the
topic of many discussions. Here we venture two com-
ments that appear to be non-controversial. First, it is
generally perceived that the LRT tends to reject the null
model and favour parameter-rich models too often, espe-
cially in large datasets. Note that if 𝐻0 is true, the false
positive rate of the LRT stays at 5% when the sample size
𝑛 → ∞. In contrast in Bayesian analysis, the true model
𝐻0 will dominate, so that 𝐵10 → 0 and P(𝐻0 |𝑥) → 1
when 𝑛 → ∞. Second, Bayesian model comparison,
using either Bayes factor or posterior model probabili-
ties, may be sensitive to the prior on model parameters,
in particular, priors on parameters that are in one model
but not the other.

High posterior probabilities for trees and clades
Bayesian model selection is known to be consistent.
When the data size 𝑛 → ∞, the true model ‘domi-
nates’, with its posterior probability approaching 1. If
several models are equally right, the model with fewer
parameters dominates (Dawid, 2011). However, this the-
ory applies only if the true model is included in the
comparison.

When the competing models are equally wrong,
Bayesian model selection may exhibit polarized behav-
iors in large datasets, supporting one model with full
force while rejecting the others. If one model is slightly
less wrong than the other, the less wrong model will
eventually win when the amount of data increases, but
the method may become overconfident before it becomes
reliable (Yang and Zhu, 2018).

In molecular phylogenetics, the Bayesian method
has been noted to produce very high posterior proba-
bilities for trees or clades in analyses of large datasets.
In some analyses the trees are decidedly incorrect (e.g.,
different trees for the three codon positions or for DNA
and protein data, or conflicting trees depending on taxon
sampling) and the high support values are spurious.
The extreme behavior of Bayesian model selection may
be a contributing factor. There have been attempts to
develop methods that are less sensitive to model vio-
lation, including BayesBag, which averages posterior
model probabilities over bootstrap replicate datasets
(Huggins and Miller, 2023). The effectiveness of such
ideas to phylogeny reconstruction is yet to be tested.
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Bayesian phylogenetic software

• Beast is a Bayesian MCMC program for phylogenetic
analysis of molecular and morphological data (Drum-
mond and Rambaut, 2007). It implements strict or
relaxed molecular clock models and works on rooted
trees.

• Bpp is a MCMC program for Bayesian analysis of
genomic sequence data from multiple species under
the multispecies coalescent models, incorporating
species divergences and interspecific gene flow (Yang,
2015; Flouri et al., 2018).

• mcmctree in paml (for Phylogenetic Analysis by
Maximum Likelihood) is a Bayesian MCMC program
for dating species divergences (Yang, 2007).

• MrBayes and its update RevBayes are Bayesian
MCMC programs for phylogenetic analysis using
nucleotide, amino acid, and codon sequences, as well
as morphological characters from extant and fossil
species (Ronquist et al., 2012; Hohna et al., 2016).

• PhyloBayes is a Bayesian MCMC program for phy-
logenetic reconstruction (Lartillot et al., 2009). It
includes sophisticated models of amino acid substitu-
tion that account for heterogeneity in the substitution
process among genes and sites, which may be
important for inferring deep phylogenies.

Key points/Objectives

• Bayesian inference (BI) is widely used in phylo-
genetics to implement advanced high-dimensional
multi-parameter models for analysis of molecular and
morphological data from extant and extinct species.

• MCMC algorithms make Bayesian computation pos-
sible, by bypassing computation of multidimensional
integrals.

• Bayesian marginalization is an attractive approach to
accounting for heterogeneity in the data-generating
process.

• BI provides a natural framework for integrating infor-
mation from different sources (such as molecules and
fossils in Bayesian relaxed clock dating analysis).

• In Bayesian model selection, the marginal likelihood
automatically penalizes parameter-rich models and
can support the null model with great force, which is
impossible with hypothesis testing.

• With model misspecification, Bayesian model com-
parison may exhibit extreme polarized behavior.

• BI is used in nearly every aspect of phylogenetic
analysis.

Conclusion

Since its introduction into phylogenetics in the 1990s,
Bayesian inference has become the dominating method-
ology for implementing advanced models of data
analysis in the field. The Bayesian framework is partic-
ularly natural for combining information from different
sources, and for implementing heterogeneous models of
sequence or trait evolution. Bayesian inference has been

applied to address virtually all major questions in evo-
lutionary biology, such as inferring phylogenetic rela-
tionships and divergence times among species, detecting
molecular adaptation, estimating species trees despite
conflicting gene trees, inferring viral pandemic dynam-
ics, inferring gene flow between species, delimiting
species boundaries using genomic data, and reconstruct-
ing genes and genomes in extinct ancestral species.
The field is also a rich ground for testing novel sta-
tistical computational algorithms. We expect continual
improvements in MCMC algorithms used in phylogenet-
ics will make the methodology ever more widely used
in analysis of the ever-increasing genomic data.

Acknowledgement

This work has been supported by Biotechnology and
Biological Sciences Research Council (BBSRC) grants
(BB/X007553/1, BB/X018571/1, BB/Y004132/1) to
Z.Y.

Relevant Websites
• bpp: https://github.com/bpp/bpp
• FigTree: https://beast.community/figtree
• MrBayes: http://mrbayes.sourceforge.net/
• paml/mcmctree: https://github.com/abacus-gene/paml
• PhyloBayes: https://github.com/bayesiancook/phylobayes
• Tracer: https://beast.community/tracer

Further Reading
• Yang (2014), Chapters 7 and 8.
• Chen et al. (2014).
• Jiao et al. (2021).
• dos Reis et al. (2016).
• Nascimento et al. (2017).

See also: Consensus Methods, Phylogenetics. Directed
Evolution, History of. Maximum Likelihood Phylo-
genetic Inference. Molecular Evolution, Models of.
Searching Tree Space, Methods for
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